Search results for: tailored porosity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 975

Search results for: tailored porosity

135 Experiences of Pediatric Cancer Patients and Their Families: A Focus Group Interview

Authors: Bu Kyung Park

Abstract:

Background: The survival rate of pediatric cancer patients has been increased. Thus, the needs of long-term management and follow-up education after discharge continue to grow. Purpose: The purpose of this study was to explore the experiences of pediatric cancer patients and their families from first diagnosis to returning their social life. The ultimate goal of this study was to assess which information and intervention did pediatric cancer patients and their families required and needed, so that this could provide fundamental information for developing educational content of web-based intervention program for pediatric cancer patients. Research Approach: This study was based on a descriptive qualitative research design using semi-structured focus group interview. Participants: Twelve pediatric cancer patients and 12 family members participated in a total six focus group interview sessions. Methods: All interviews were audiotaped after obtaining participants’ approval. The recordings were transcribed. Qualitative Content analysis using the inductive coding approach was performed on the transcriptions by three coders. Findings: Eighteen categories emerged from the six main themes: 1) Information needs, 2) Support system, 3) Barriers to treatment, 4) Facilitators to treatment, 5) Return to social life, 6) Healthcare system issues. Each theme had both pediatric cancer patients’ codes and their family members’ codes. Patients and family members had high information needs through the whole process of treatment, not only the first diagnosis but also after completion of treatment. Hospitals provided basic information on chemo therapy, medication, and various examinations. However, they were more likely to rely on information from other patients and families by word of mouth. Participants’ information needs were different according to their treatment stage (e.g., first admitted patients versus cancer survivors returning to their social life). Even newly diagnosed patients worried about social adjustment after completion of all treatment, such as return to school and diet and physical activity at home. Most family members had unpleasant experiences while they were admitted in hospitals and concerned about healthcare system issues, such as medical error and patient safety. Conclusions: In conclusion, pediatric cancer patients and their family members wanted information source which can provide tailored information based on their needs. Different information needs with patients and their family members based on their diagnosis, progress, stage of treatment were identified. Findings from this study will be used to develop a patient-centered online health intervention program for pediatric cancer patients. Pediatric cancer patients and their family members had variety fields of education needs and soak the information from various sources. Web-based health intervention program for them is required to satisfy their inquiries to provide reliable information.

Keywords: focus group interview, family caregivers, pediatric cancer patients, qualitative content analysis

Procedia PDF Downloads 162
134 Functionally Modified Melt-Electrospun Thermoplastic Polyurethane (TPU) Mats for Wound-Dressing Applications

Authors: Christoph Hacker, Zeynep Karahaliloglu, Gunnar Seide, Emir Baki Denkbas, Thomas Gries

Abstract:

A wound dressing material is designed to facilitate wound healing and minimize scarring. An ideal wound dressing material should protect the wound from any contaminations of exogeneous microorganism. In addition, the dressing material should provide a moist environment through extraction of body fluid from the wound area. Recently, wound dressing electrospun nanofibrous membranes are produced by electrospinning from a polymer solution or a polymer melt. These materials have a great potential as dressing materials for wound healing because of superior properties such as high surface-to-volume ratio, high porosity with excellent pore interconnectivity. Melt electrospinning is an attractive tissue engineering scaffold manufacturing process which eliminated the health risk posed by organic solvents used in electrospinning process and reduced the production costs. In this study, antibacterial wound dressing materials were prepared from TPU (Elastollan 1185A) by a melt-electrospinning technique. The electrospinning parameters for an efficient melt-electrospinning process of TPU were optimized. The surface of the fibers was modified with poly(ethylene glycol) (PEG) by radio-frequency glow discharge plasma deposition method and with silver nanoparticles (nAg) to improve their wettability and antimicrobial properties. TPU melt-electrospun mats were characterized using SEM, DSC, TGA and XPS. The cell viability and proliferation on modified melt-electrospun TPU mats were evaluated using a mouse fibroblast cell line (L929). Antibacterial effects of theirs against both Staphylococcus aureus strain and Escherichia coli were investigated by disk-diffusion method. TPU was successfully processed into a porous, fibrous network of beadless fibers in the micrometer range (4.896±0.94 µm) with a voltage of 50 kV, a working distance of 6 cm, a temperature of the thermocouple and hot coil of 225–230ºC, and a flow rate of 0.1 mL/h. The antibacterial test indicated that PEG-modified nAg-loaded TPU melt-electrospun structure had excellent antibacterial effects and cell study results demonstrated that nAg-loaded TPU mats had no cytotoxic effect on the fibroblast cells. In this work, the surface of a melt-electrospun TPU mats was modified via PEG monomer and then nAg. Results showed melt-electrospun TPU mats modified with PEG and nAg have a great potential for use as an antibacterial wound dressing material and thus, requires further investigation.

Keywords: melt electrospinning, nanofiber, silver nanoparticles, wound dressing

Procedia PDF Downloads 435
133 H2 Permeation Properties of a Catalytic Membrane Reactor in Methane Steam Reforming Reaction

Authors: M. Amanipour, J. Towfighi, E. Ganji Babakhani, M. Heidari

Abstract:

Cylindrical alumina microfiltration membrane (GMITM Corporation, inside diameter=9 mm, outside diameter=13 mm, length= 50 mm) with an average pore size of 0.5 micrometer and porosity of about 0.35 was used as the support for membrane reactor. This support was soaked in boehmite sols, and the mean particle size was adjusted in the range of 50 to 500 nm by carefully controlling hydrolysis time, and calcined at 650 °C for two hours. This process was repeated with different boehmite solutions in order to achieve an intermediate layer with an average pore size of about 50 nm. The resulting substrate was then coated with a thin and dense layer of silica by counter current chemical vapour deposition (CVD) method. A boehmite sol with 10 wt.% of nickel which was prepared by a standard procedure was used to make the catalytic layer. BET, SEM, and XRD analysis were used to characterize this layer. The catalytic membrane reactor was placed in an experimental setup to evaluate the permeation and hydrogen separation performance for a steam reforming reaction. The setup consisted of a tubular module in which the membrane was fixed, and the reforming reaction occurred at the inner side of the membrane. Methane stream, diluted with nitrogen, and deionized water with a steam to carbon (S/C) ratio of 3.0 entered the reactor after the reactor was heated up to 500 °C with a specified rate of 2 °C/ min and the catalytic layer was reduced at presence of hydrogen for 2.5 hours. Nitrogen flow was used as sweep gas through the outer side of the reactor. Any liquid produced was trapped and separated at reactor exit by a cold trap, and the produced gases were analyzed by an on-line gas chromatograph (Agilent 7890A) to measure total CH4 conversion and H2 permeation. BET analysis indicated uniform size distribution for catalyst with average pore size of 280 nm and average surface area of 275 m2.g-1. Single-component permeation tests were carried out for hydrogen, methane, and carbon dioxide at temperature range of 500-800 °C, and the results showed almost the same permeance and hydrogen selectivity values for hydrogen as the composite membrane without catalytic layer. Performance of the catalytic membrane was evaluated by applying membranes as a membrane reactor for methane steam reforming reaction at gas hourly space velocity (GHSV) of 10,000 h−1 and 2 bar. CH4 conversion increased from 50% to 85% with increasing reaction temperature from 600 °C to 750 °C, which is sufficiently above equilibrium curve at reaction conditions, but slightly lower than membrane reactor with packed nickel catalytic bed because of its higher surface area compared to the catalytic layer.

Keywords: catalytic membrane, hydrogen, methane steam reforming, permeance

Procedia PDF Downloads 232
132 Photocatalytic Disintegration of Naphthalene and Naphthalene Similar Compounds in Indoors Air

Authors: Tobias Schnabel

Abstract:

Naphthalene and naphthalene similar compounds are a common problem in the indoor air of buildings from the 1960s and 1970s in Germany. Often tar containing roof felt was used under the concrete floor to prevent humidity to come through the floor. This tar containing roof felt has high concentrations of PAH (Polycyclic aromatic hydrocarbon) and naphthalene. Naphthalene easily evaporates and contaminates the indoor air. Especially after renovations and energetically modernization of the buildings, the naphthalene concentration rises because no forced air exchange can happen. Because of this problem, it is often necessary to change the floors after renovation of the buildings. The MFPA Weimar (Material research and testing facility) developed in cooperation a project with LEJ GmbH and Reichmann Gebäudetechnik GmbH. It is a technical solution for the disintegration of naphthalene in naphthalene, similar compounds in indoor air with photocatalytic reforming. Photocatalytic systems produce active oxygen species (hydroxyl radicals) through trading semiconductors on a wavelength of their bandgap. The light energy separates the charges in the semiconductor and produces free electrons in the line tape and defect electrons. The defect electrons can react with hydroxide ions to hydroxyl radicals. The produced hydroxyl radicals are a strong oxidation agent, and can oxidate organic matter to carbon dioxide and water. During the research, new titanium oxide catalysator surface coatings were developed. This coating technology allows the production of very porous titan oxide layer on temperature stable carrier materials. The porosity allows the naphthalene to get easily absorbed by the surface coating, what accelerates the reaction of the heterogeneous photocatalysis. The photocatalytic reaction is induced by high power and high efficient UV-A (ultra violet light) Leds with a wavelength of 365nm. Various tests in emission chambers and on the reformer itself show that a reduction of naphthalene in important concentrations between 2 and 250 µg/m³ is possible. The disintegration rate was at least 80%. To reduce the concentration of naphthalene from 30 µg/m³ to a level below 5 µg/m³ in a usual 50 ² classroom, an energy of 6 kWh is needed. The benefits of the photocatalytic indoor air treatment are that every organic compound in the air can be disintegrated and reduced. The use of new photocatalytic materials in combination with highly efficient UV leds make a safe and energy efficient reduction of organic compounds in indoor air possible. At the moment the air cleaning systems take the step from prototype stage into the usage in real buildings.

Keywords: naphthalene, titandioxide, indoor air, photocatalysis

Procedia PDF Downloads 126
131 Non-Cytotoxic Natural Sourced Inorganic Hydroxyapatite (HAp) Scaffold Facilitate Bone-like Mechanical Support and Cell Proliferation

Authors: Sudip Mondal, Biswanath Mondal, Sudit S. Mukhopadhyay, Apurba Dey

Abstract:

Bioactive materials improve devices for a long lifespan but have mechanical limitations. Mechanical characterization is one of the very important characteristics to evaluate the life span and functionality of the scaffold material. After implantation of scaffold material the primary stage rejection of scaffold occurs due to non biocompatible effect of host body system. The second major problems occur due to the effect of mechanical failure. The mechanical and biocompatibility failure of the scaffold materials can be overcome by the prior evaluation of the scaffold materials. In this study chemically treated Labeo rohita scale is used for synthesizing hydroxyapatite (HAp) biomaterial. Thermo-gravimetric and differential thermal analysis (TG-DTA) is carried out to ensure thermal stability. The chemical composition and bond structures of wet ball-milled calcined HAp powder is characterized by Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) analysis. Fish scale derived apatite materials consists of nano-sized particles with Ca/P ratio of 1.71. The biocompatibility through cytotoxicity evaluation and MTT assay are carried out in MG63 osteoblast cell lines. In the cell attachment study, the cells are tightly attached with HAp scaffolds developed in the laboratory. The result clearly suggests that HAp material synthesized in this study do not have any cytotoxic effect, as well as it has a natural binding affinity for mammalian cell lines. The synthesized HAp powder further successfully used to develop porous scaffold material with suitable mechanical property of ~0.8GPa compressive stress, ~1.10 GPa a hardness and ~ 30-35% porosity which is acceptable for implantation in trauma region for animal model. The histological analysis also supports the bio-affinity of processed HAp biomaterials in Wistar rat model for investigating the contact reaction and stability at the artificial or natural prosthesis interface for biomedical function. This study suggests the natural sourced fish scale-derived HAp material could be used as a suitable alternative biomaterial for tissue engineering application in near future.

Keywords: biomaterials, hydroxyapatite, scaffold, mechanical property, tissue engineering

Procedia PDF Downloads 433
130 Learning from TikTok Food Pranks to Promote Food Saving Among Adolescents

Authors: Xuan (Iris) Li, Jenny Zhengye Hou, Greg Hearn

Abstract:

Food waste is a global issue, with an estimated 30% to 50% of food created never being consumed. Therefore, it is vital to reduce food waste and convert wasted food into recyclable outputs. TikTok provides a simple way of creating and duetting videos in just a few steps by using templates with the same sound/vision/caption effects to produce personalized content – this is called a duet, which is revealing to study the impact of TikTok on wasting more food or saving food. The research focuses on examining food-related content on TikTok, with particular attention paid to two distinct themes, food waste pranks and food-saving practices, to understand the potential impacts of these themes on adolescents and their attitudes toward sustainable food consumption practices. Specifically, the analysis explores how TikTok content related to food waste and/or food saving may contribute to the normalization and promotion of either positive or negative food behaviours among young viewers. The research employed content analysis and semi-structured interviews to understand what factors contribute to the difference in popularity between food pranks and food-saving videos and insights from the former can be applied to the latter to increase their communication effectiveness. The first category of food content on TikTok under examination pertains to food waste, including videos featuring pranks and mukbang. These forms of content have the potential to normalize or even encourage food waste behaviours among adolescents, exacerbating the already significant food waste problem. The second category of TikTok food content under examination relates to food saving, for example, videos teaching viewers how to maximize the use of food to reduce waste. This type of content can potentially empower adolescents to act against food waste and foster positive and sustainable food practices in their communities. The initial findings of the study suggest that TikTok content related to pranks appears to be more popular among viewers than content focused on teaching people how to save food. Additionally, these types of videos are gaining fans at a faster rate than content promoting more sustainable food practices. However, we argue there is a great potential for social media platforms like TikTok to play an educative role in promoting positive behaviour change among young people by sharing engaging content suitable to target audiences. This research serves as the first to investigate the potential utility of TikTok in food waste reduction and underscores the important role social media platforms can play in promoting sustainable food practices. The findings will help governments, organizations, and communities promote tailored and effective interventions to reduce food waste and help achieve the United Nations’ sustainable development goal of halving food waste by 2030.

Keywords: food waste reduction, behaviour, social media, TikTok, adolescents

Procedia PDF Downloads 46
129 Characteristics of Pore Pressure and Effective Stress Changes in Sandstone Reservoir Due to Hydrocarbon Production

Authors: Kurniawan Adha, Wan Ismail Wan Yusoff, Luluan Almanna Lubis

Abstract:

Preventing hazardous events during oil and gas operation is an important contribution of accurate pore pressure data. The availability of pore pressure data also contribute in reducing the operation cost. Suggested methods in pore pressure estimation were mostly complex by the many assumptions and hypothesis used. Basic properties which may have significant impact on estimation model are somehow being neglected. To date, most of pore pressure determinations are estimated by data model analysis and rarely include laboratory analysis, stratigraphy study or core check measurement. Basically, this study developed a model that might be applied to investigate the changes of pore pressure and effective stress due to hydrocarbon production. In general, this paper focused velocity model effect of pore pressure and effective stress changes due to hydrocarbon production with illustrated by changes in saturation. The core samples from Miri field from Sarawak Malaysia ware used in this study, where the formation consists of sandstone reservoir. The study area is divided into sixteen (16) layers and encompassed six facies (A-F) from the outcrop that is used for stratigraphy sequence model. The experimental work was firstly involving data collection through field study and developing stratigraphy sequence model based on outcrop study. Porosity and permeability measurements were then performed after samples were cut into 1.5 inch diameter core samples. Next, velocity was analyzed using SONIC OYO and AutoLab 500. Three (3) scenarios of saturation were also conducted to exhibit the production history of the samples used. Results from this study show the alterations of velocity for different saturation with different actions of effective stress and pore pressure. It was observed that sample with water saturation has the highest velocity while dry sample has the lowest value. In comparison with oil to samples with oil saturation, water saturated sample still leads with the highest value since water has higher fluid density than oil. Furthermore, water saturated sample exhibits velocity derived parameters, such as poisson’s ratio and P-wave velocity over S-wave velocity (Vp/Vs) The result shows that pore pressure value ware reduced due to the decreasing of fluid content. The decreasing of pore pressure result may soften the elastic mineral frame and have tendency to possess high velocity. The alteration of pore pressure by the changes in fluid content or saturation resulted in alteration of velocity value that has proportionate trend with the effective stress.

Keywords: pore pressure, effective stress, production, miri formation

Procedia PDF Downloads 264
128 Influence of Spirituality on Health Outcomes and General Well-Being in Patients with End-Stage Renal Disease

Authors: Ali A Alshraifeen, Josie Evans, Kathleen Stoddart

Abstract:

End-stage renal disease (ESRD) introduces physical, psychological, social, emotional and spiritual challenges into patients’ lives. Spirituality has been found to contribute to improved health outcomes, mainly in the areas of quality of life (QOL) and well-being. No studies exist to explore the influence of spirituality on the health outcomes and general well-being in patients with end-stage renal disease receiving hemodialysis (HD) treatment in Scotland. This study was conducted to explore spirituality in the daily lives of among these patients and how it may influence their QOL and general well-being. The study employed a qualitative method. Data were collected using semi-structured interviews with a sample of 21 patients. A thematic approach using Framework Analysis informed the qualitative data analysis. Participants were recruited from 11 dialysis units across four Health Boards in Scotland. The participants were regular patients attending the dialysis units three times per week. Four main themes emerged from the qualitative interviews: ‘Emotional and Psychological Turmoil’, ‘Life is Restricted’, ‘Spirituality’ and ‘Other Coping Strategies’. The findings suggest that patients’ QOL might be affected because of the physical challenges such as unremitting fatigue, disease unpredictability and being tied down to a dialysis machine, or the emotional and psychological challenges imposed by the disease into their lives such as wholesale changes, dialysis as a forced choice and having a sense of indebtedness. The findings also revealed that spirituality was an important coping strategy for the majority of participants who took part in the qualitative component (n=16). Different meanings of spirituality were identified including connection with God or Supernatural Being, connection with the self, others and nature/environment. Spirituality encouraged participants to accept their disease and offered them a sense of protection, instilled hope in them and helped them to maintain a positive attitude to carry on with their daily lives, which may have had a positive influence on their health outcomes and general well-being. The findings also revealed that humor was another coping strategy that helped to diffuse stress and anxiety for some participants and encouraged them to carry on with their lives. The findings from this study provide a significant contribution to a very limited body of work. The study contributes to our understanding of spirituality and how people receiving dialysis treatment use it to manage their daily lives. Spirituality is of particular interest due to its connection with health outcomes in patients with chronic illnesses. The link between spirituality and many chronic illnesses has gained some recognition, yet the identification of its influence on the health outcomes and well-being in patients with ESRD is still evolving. There is a need to understand patients’ experiences and examine the factors that influence their QOL and well-being to ensure that the services available are adequately tailored to them. Hence, further research is required to obtain a better understanding of the influence of spirituality on the health outcomes and general well-being of patients with ESRD.

Keywords: end-stage renal disease, general well-being, quality of life, spirituality

Procedia PDF Downloads 201
127 Nanoimprinted-Block Copolymer-Based Porous Nanocone Substrate for SERS Enhancement

Authors: Yunha Ryu, Kyoungsik Kim

Abstract:

Raman spectroscopy is one of the most powerful techniques for chemical detection, but the low sensitivity originated from the extremely small cross-section of the Raman scattering limits the practical use of Raman spectroscopy. To overcome this problem, Surface Enhanced Raman Scattering (SERS) has been intensively studied for several decades. Because the SERS effect is mainly induced from strong electromagnetic near-field enhancement as a result of localized surface plasmon resonance of metallic nanostructures, it is important to design the plasmonic structures with high density of electromagnetic hot spots for SERS substrate. One of the useful fabrication methods is using porous nanomaterial as a template for metallic structure. Internal pores on a scale of tens of nanometers can be strong EM hotspots by confining the incident light. Also, porous structures can capture more target molecules than non-porous structures in a same detection spot thanks to the large surface area. Herein we report the facile fabrication method of porous SERS substrate by integrating solvent-assisted nanoimprint lithography and selective etching of block copolymer. We obtained nanostructures with high porosity via simple selective etching of the one microdomain of the diblock copolymer. Furthermore, we imprinted of the nanocone patterns into the spin-coated flat block copolymer film to make three-dimensional SERS substrate for the high density of SERS hot spots as well as large surface area. We used solvent-assisted nanoimprint lithography (SAIL) to reduce the fabrication time and cost for patterning BCP film by taking advantage of a solvent which dissolves both polystyrenre and poly(methyl methacrylate) domain of the block copolymer, and thus block copolymer film was molded under the low temperature and atmospheric pressure in a short time. After Ag deposition, we measured Raman intensity of dye molecules adsorbed on the fabricated structure. Compared to the Raman signals of Ag coated solid nanocone, porous nanocone showed 10 times higher Raman intensity at 1510 cm(-1) band. In conclusion, we fabricated porous metallic nanocone arrays with high density electromagnetic hotspots by templating nanoimprinted diblock copolymer with selective etching and demonstrated its capability as an effective SERS substrate.

Keywords: block copolymer, porous nanostructure, solvent-assisted nanoimprint, surface-enhanced Raman spectroscopy

Procedia PDF Downloads 595
126 Energy Strategies for Long-Term Development in Kenya

Authors: Joseph Ndegwa

Abstract:

Changes are required if energy systems are to foster long-term growth. The main problems are increasing access to inexpensive, dependable, and sufficient energy supply while addressing environmental implications at all levels. Policies can help to promote sustainable development by providing adequate and inexpensive energy sources to underserved regions, such as liquid and gaseous fuels for cooking and electricity for household and commercial usage. Promoting energy efficiency. Increased utilization of new renewables. Spreading and implementing additional innovative energy technologies. Markets can achieve many of these goals with the correct policies, pricing, and regulations. However, if markets do not work or fail to preserve key public benefits, tailored government policies, programs, and regulations can achieve policy goals. The main strategies for promoting sustainable energy systems are simple. However, they need a broader recognition of the difficulties we confront, as well as a firmer commitment to specific measures. Making markets operate better by minimizing pricing distortions, boosting competition, and removing obstacles to energy efficiency are among the measures. Complementing the reform of the energy industry with policies that promote sustainable energy. Increasing investments in renewable energy. Increasing the rate of technical innovation at each level of the energy innovation chain. Fostering technical leadership in underdeveloped nations by transferring technology and enhancing institutional and human capabilities. promoting more international collaboration. Governments, international organizations, multilateral financial institutions, and civil society—including local communities, business and industry, non-governmental organizations (NGOs), and consumers—all have critical enabling roles to play in the problem of sustainable energy. Partnerships based on integrated and cooperative approaches and drawing on real-world experience will be necessary. Setting the required framework conditions and ensuring that public institutions collaborate effectively and efficiently with the rest of society are common themes across all industries and geographical areas in order to achieve sustainable development. Powerful tools for sustainable development include energy. However, significant policy adjustments within the larger enabling framework will be necessary to refocus its influence in order to achieve that aim. Many of the options currently accessible will be lost or the price of their ultimate realization (where viable) will grow significantly if such changes don't take place during the next several decades and aren't started right enough. In any case, it would seriously impair the capacity of future generations to satisfy their demands.

Keywords: sustainable development, reliable, price, policy

Procedia PDF Downloads 40
125 The M Health Paradigm for the Chronic Care Management of Obesity: New Opportunities in Clinical Psychology and Medicine

Authors: Gianluca Castelnuovo, Gian Mauro Manzoni, Giada Pietrabissa, Stefania Corti, Emanuele Giusti, Roberto Cattivelli, Enrico Molinari, Susan Simpson

Abstract:

Obesity is currently an important public health problem of epidemic proportions (globesity). Moreover Binge Eating Disorder (BED) is typically connected with obesity, even if not occurring exclusively in conjunction with overweight conditions. Typically obesity with BED requires a longer term treatment in comparison with simple obesity. Rehabilitation interventions that aim at improving weight-loss, reducing obesity-related complications and changing dysfunctional behaviors, should ideally be carried out in a multidisciplinary context with a clinical team composed of psychologists, dieticians, psychiatrists, endocrinologists, nutritionists, physiotherapists, etc. Long-term outpatient multidisciplinary treatments are likely to constitute an essential aspect of rehabilitation, due to the growing costs of a limited inpatient approach. Internet-based technologies can improve long-term obesity rehabilitation within a collaborative approach. The new m health (m-health, mobile health) paradigm, defined as clinical practices supported by up to date mobile communication devices, could increase compliance- engagement and contribute to a significant cost reduction in BED and obesity rehabilitation. Five psychological components need to be considered for successful m Health-based obesity rehabilitation in order to facilitate weight-loss.1) Self-monitoring. Portable body monitors, pedometers and smartphones are mobile and, therefore, can be easily used, resulting in continuous self-monitoring. 2) Counselor feedback and communication. A functional approach is to provide online weight-loss interventions with brief weekly or monthly counselor or psychologist visits. 3) Social support. A group treatment format is typically preferred for behavioral weight-loss interventions. 4) Structured program. Technology-based weight-loss programs incorporate principles of behavior therapy and change with structured weekly protocolos including nutrition, exercise, stimulus control, self-regulation strategies, goal-setting. 5) Individually tailored program. Interventions specifically designed around individual’s goals typically record higher rates of adherence and weight loss. Opportunities and limitations of m health approach in clinical psychology for obesity and BED are discussed, taking into account future research directions in this promising area.

Keywords: obesity, rehabilitation, out-patient, new technologies, tele medicine, tele care, m health, clinical psychology, psychotherapy, chronic care management

Procedia PDF Downloads 442
124 Carbonyl Iron Particles Modified with Pyrrole-Based Polymer and Electric and Magnetic Performance of Their Composites

Authors: Miroslav Mrlik, Marketa Ilcikova, Martin Cvek, Josef Osicka, Michal Sedlacik, Vladimir Pavlinek, Jaroslav Mosnacek

Abstract:

Magnetorheological elastomers (MREs) are a unique type of materials consisting of two components, magnetic filler, and elastomeric matrix. Their properties can be tailored upon application of an external magnetic field strength. In this case, the change of the viscoelastic properties (viscoelastic moduli, complex viscosity) are influenced by two crucial factors. The first one is magnetic performance of the particles and the second one is off-state stiffness of the elastomeric matrix. The former factor strongly depends on the intended applications; however general rule is that higher magnetic performance of the particles provides higher MR performance of the MRE. Since magnetic particles possess low stability properties against temperature and acidic environment, several methods how to improve these drawbacks have been developed. In the most cases, the preparation of the core-shell structures was employed as a suitable method for preservation of the magnetic particles against thermal and chemical oxidations. However, if the shell material is not single-layer substance, but polymer material, the magnetic performance is significantly suppressed, due to the in situ polymerization technique, when it is very difficult to control the polymerization rate and the polymer shell is too thick. The second factor is the off-state stiffness of the elastomeric matrix. Since the MR effectivity is calculated as the relative value of the elastic modulus upon magnetic field application divided by elastic modulus in the absence of the external field, also the tuneability of the cross-linking reaction is highly desired. Therefore, this study is focused on the controllable modification of magnetic particles using a novel monomeric system based on 2-(1H-pyrrol-1-yl)ethyl methacrylate. In this case, the short polymer chains of different chain lengths and low polydispersity index will be prepared, and thus tailorable stability properties can be achieved. Since the relatively thin polymer chains will be grafted on the surface of magnetic particles, their magnetic performance will be affected only slightly. Furthermore, also the cross-linking density will be affected, due to the presence of the short polymer chains. From the application point of view, such MREs can be utilized for, magneto-resistors, piezoresistors or pressure sensors especially, when the conducting shell on the magnetic particles will be created. Therefore, the selection of the pyrrole-based monomer is very crucial and controllably thin layer of conducting polymer can be prepared. Finally, such composite particle consisting of magnetic core and conducting shell dispersed in elastomeric matrix can find also the utilization in shielding application of electromagnetic waves.

Keywords: atom transfer radical polymerization, core-shell, particle modification, electromagnetic waves shielding

Procedia PDF Downloads 184
123 Heat Transfer Performance of a Small Cold Plate with Uni-Directional Porous Copper for Cooling Power Electronics

Authors: K. Yuki, R. Tsuji, K. Takai, S. Aramaki, R. Kibushi, N. Unno, K. Suzuki

Abstract:

A small cold plate with uni-directional porous copper is proposed for cooling power electronics such as an on-vehicle inverter with the heat generation of approximately 500 W/cm2. The uni-directional porous copper with the pore perpendicularly orienting the heat transfer surface is soldered to a grooved heat transfer surface. This structure enables the cooling liquid to evaporate in the pore of the porous copper and then the vapor to discharge through the grooves. In order to minimize the cold plate, a double flow channel concept is introduced for the design of the cold plate. The cold plate consists of a base plate, a spacer, and a vapor discharging plate, totally 12 mm in thickness. The base plate has multiple nozzles of 1.0 mm in diameter for the liquid supply and 4 slits of 2.0 mm in width for vapor discharging, and is attached onto the top surface of the porous copper plate of 20 mm in diameter and 5.0 mm in thickness. The pore size is 0.36 mm and the porosity is 36 %. The cooling liquid flows into the porous copper as an impinging jet flow from the multiple nozzles, and then the vapor, which is generated in the pore, is discharged through the grooves and the vapor slits outside the cold plate. A heated test section consists of the cold plate, which was explained above, and a heat transfer copper block with 6 cartridge heaters. The cross section of the heat transfer block is reduced in order to increase the heat flux. The top surface of the block is the grooved heat transfer surface of 10 mm in diameter at which the porous copper is soldered. The grooves are fabricated like latticework, and the width and depth are 1.0 mm and 0.5 mm, respectively. By embedding three thermocouples in the cylindrical part of the heat transfer block, the temperature of the heat transfer surface ant the heat flux are extrapolated in a steady state. In this experiment, the flow rate is 0.5 L/min and the flow velocity at each nozzle is 0.27 m/s. The liquid inlet temperature is 60 °C. The experimental results prove that, in a single-phase heat transfer regime, the heat transfer performance of the cold plate with the uni-directional porous copper is 2.1 times higher than that without the porous copper, though the pressure loss with the porous copper also becomes higher than that without the porous copper. As to the two-phase heat transfer regime, the critical heat flux increases by approximately 35% by introducing the uni-directional porous copper, compared with the CHF of the multiple impinging jet flow. In addition, we confirmed that these heat transfer data was much higher than that of the ordinary single impinging jet flow. These heat transfer data prove high potential of the cold plate with the uni-directional porous copper from the view point of not only the heat transfer performance but also energy saving.

Keywords: cooling, cold plate, uni-porous media, heat transfer

Procedia PDF Downloads 273
122 Beyond Sexual Objectification: Moderation Analysis of Trauma and Overexcitability Dynamics in Women

Authors: Ritika Chaturvedi

Abstract:

Introduction: Sexual objectification, characterized by the reduction of an individual to a mere object of sexual desire, remains a pervasive societal issue with profound repercussions on individual well-being. Such experiences, often rooted in systemic and cultural norms, have long-lasting implications for mental and emotional health. This study aims to explore the intricate relationship between experiences of sexual objectification and insidious trauma, further investigating the potential moderating effects of overexcitability as proposed by Dabrowski's theory of positive disintegration. Methodology: The research involved a comprehensive cohort of 204 women, spanning ages from 18 to 65 years. Participants were tasked with completing self-administered questionnaires designed to capture their experiences with sexual objectification. Additionally, the questionnaire assessed symptoms indicative of insidious trauma and explored overexcitability across five distinct domains: emotional, intellectual, psychomotor, sensory, and imaginational. Employing advanced statistical techniques, including multiple regression and moderation analysis, the study sought to decipher the intricate interplay among these variables. Findings: The study's results revealed a compelling positive correlation between experiences of sexual objectification and the onset of symptoms indicative of insidious trauma. This correlation underscores the profound and detrimental effects of sexual objectification on an individual's psychological well-being. Interestingly, the moderation analyses introduced a nuanced understanding, highlighting the differential roles of various overexcitability. Specifically, emotional, intellectual, and sensual overexcitability were found to exacerbate trauma symptomatology. In contrast, psychomotor overexcitability emerged as a protective factor, demonstrating a mitigating influence on the relationship between sexual objectification and trauma. Implications: The study's findings hold significant implications for a diverse array of stakeholders, encompassing mental health practitioners, educators, policymakers, and advocacy groups. The identified moderating effects of overexcitability emphasize the need for tailored interventions that consider individual differences in coping and resilience mechanisms. By recognizing the pivotal role of overexcitability in modulating the traumatic consequences of sexual objectification, this research advocates for the development of more nuanced and targeted support frameworks. Moreover, the study underscores the importance of continued research endeavors to unravel the intricate mechanisms and dynamics underpinning these relationships. Such endeavors are crucial for fostering the evolution of informed, evidence-based interventions and strategies aimed at mitigating the adverse effects of sexual objectification and promoting holistic well-being.

Keywords: sexual objectification, insidious trauma, emotional overexcitability, intellectual overexcitability, sensual overexcitability, psychomotor overexcitability, imaginational overexcitability

Procedia PDF Downloads 27
121 Analysis of Digital Transformation in Banking: The Hungarian Case

Authors: Éva Pintér, Péter Bagó, Nikolett Deutsch, Miklós Hetényi

Abstract:

The process of digital transformation has a profound influence on all sectors of the worldwide economy and the business environment. The influence of blockchain technology can be observed in the digital economy and e-government, rendering it an essential element of a nation's growth strategy. The banking industry is experiencing significant expansion and development of financial technology firms. Utilizing developing technologies such as artificial intelligence (AI), machine learning (ML), and big data (BD), these entrants are offering more streamlined financial solutions, promptly addressing client demands, and presenting a challenge to incumbent institutions. The advantages of digital transformation are evident in the corporate realm, and firms that resist its adoption put their survival at risk. The advent of digital technologies has revolutionized the business environment, streamlining processes and creating opportunities for enhanced communication and collaboration. Thanks to the aid of digital technologies, businesses can now swiftly and effortlessly retrieve vast quantities of information, all the while accelerating the process of creating new and improved products and services. Big data analytics is generally recognized as a transformative force in business, considered the fourth paradigm of science, and seen as the next frontier for innovation, competition, and productivity. Big data, an emerging technology that is shaping the future of the banking sector, offers numerous advantages to banks. It enables them to effectively track consumer behavior and make informed decisions, thereby enhancing their operational efficiency. Banks may embrace big data technologies to promptly and efficiently identify fraud, as well as gain insights into client preferences, which can then be leveraged to create better-tailored products and services. Moreover, the utilization of big data technology empowers banks to develop more intelligent and streamlined models for accurately recognizing and focusing on the suitable clientele with pertinent offers. There is a scarcity of research on big data analytics in the banking industry, with the majority of existing studies only examining the advantages and prospects associated with big data. Although big data technologies are crucial, there is a dearth of empirical evidence about the role of big data analytics (BDA) capabilities in bank performance. This research addresses a gap in the existing literature by introducing a model that combines the resource-based view (RBV), the technical organization environment framework (TOE), and dynamic capability theory (DC). This study investigates the influence of Big Data Analytics (BDA) utilization on the performance of market and risk management. This is supported by a comparative examination of Hungarian mobile banking services.

Keywords: big data, digital transformation, dynamic capabilities, mobile banking

Procedia PDF Downloads 24
120 Large-Scale Production of High-Performance Fiber-Metal-Laminates by Prepreg-Press-Technology

Authors: Christian Lauter, Corin Reuter, Shuang Wu, Thomas Troester

Abstract:

Lightweight construction became more and more important over the last decades in several applications, e.g. in the automotive or aircraft sector. This is the result of economic and ecological constraints on the one hand and increasing safety and comfort requirements on the other hand. In the field of lightweight design, different approaches are used due to specific requirements towards the technical systems. The use of endless carbon fiber reinforced plastics (CFRP) offers the largest weight saving potential of sometimes more than 50% compared to conventional metal-constructions. However, there are very limited industrial applications because of the cost-intensive manufacturing of the fibers and production technologies. Other disadvantages of pure CFRP-structures affect the quality control or the damage resistance. One approach to meet these challenges is hybrid materials. This means CFRP and sheet metal are combined on a material level. Therefore, new opportunities for innovative process routes are realizable. Hybrid lightweight design results in lower costs due to an optimized material utilization and the possibility to integrate the structures in already existing production processes of automobile manufacturers. In recent and current research, the advantages of two-layered hybrid materials have been pointed out, i.e. the possibility to realize structures with tailored mechanical properties or to divide the curing cycle of the epoxy resin into two steps. Current research work at the Chair for Automotive Lightweight Design (LiA) at the Paderborn University focusses on production processes for fiber-metal-laminates. The aim of this work is the development and qualification of a large-scale production process for high-performance fiber-metal-laminates (FML) for industrial applications in the automotive or aircraft sector. Therefore, the prepreg-press-technology is used, in which pre-impregnated carbon fibers and sheet metals are formed and cured in a closed, heated mold. The investigations focus e.g. on the realization of short process chains and cycle times, on the reduction of time-consuming manual process steps, and the reduction of material costs. This paper gives an overview over the considerable steps of the production process in the beginning. Afterwards experimental results are discussed. This part concentrates on the influence of different process parameters on the mechanical properties, the laminate quality and the identification of process limits. Concluding the advantages of this technology compared to conventional FML-production-processes and other lightweight design approaches are carried out.

Keywords: composite material, fiber-metal-laminate, lightweight construction, prepreg-press-technology, large-series production

Procedia PDF Downloads 214
119 Targeting and Developing the Remaining Pay in an Ageing Field: The Ovhor Field Experience

Authors: Christian Ihwiwhu, Nnamdi Obioha, Udeme John, Edward Bobade, Oghenerunor Bekibele, Adedeji Awujoola, Ibi-Ada Itotoi

Abstract:

Understanding the complexity in the distribution of hydrocarbon in a simple structure with flow baffles and connectivity issues is critical in targeting and developing the remaining pay in a mature asset. Subtle facies changes (heterogeneity) can have a drastic impact on reservoir fluids movement, and this can be crucial to identifying sweet spots in mature fields. This study aims to evaluate selected reservoirs in Ovhor Field, Niger Delta, Nigeria, with the objective of optimising production from the field by targeting undeveloped oil reserves, bypassed pay, and gaining an improved understanding of the selected reservoirs to increase the company’s reservoir limits. The task at the Ovhor field is complicated by poor stratigraphic seismic resolution over the field. 3-D geological (sedimentology and stratigraphy) interpretation, use of results from quantitative interpretation, and proper understanding of production data have been used in recognizing flow baffles and undeveloped compartments in the field. The full field 3-D model has been constructed in such a way as to capture heterogeneities and the various compartments in the field to aid the proper simulation of fluid flow in the field for future production prediction, proper history matching and design of good trajectories to adequately target undeveloped oil in the field. Reservoir property models (porosity, permeability, and net-to-gross) have been constructed by biasing log interpreted properties to a defined environment of deposition model whose interpretation captures the heterogeneities expected in the studied reservoirs. At least, two scenarios have been modelled for most of the studied reservoirs to capture the range of uncertainties we are dealing with. The total original oil in-place volume for the four reservoirs studied is 157 MMstb. The cumulative oil and gas production from the selected reservoirs are 67.64 MMstb and 9.76 Bscf respectively, with current production rate of about 7035 bopd and 4.38 MMscf/d (as at 31/08/2019). Dynamic simulation and production forecast on the 4 reservoirs gave an undeveloped reserve of about 3.82 MMstb from two (2) identified oil restoration activities. These activities include side-tracking and re-perforation of existing wells. This integrated approach led to the identification of bypassed oil in some areas of the selected reservoirs and an improved understanding of the studied reservoirs. New wells have/are being drilled now to test the results of our studies, and the results are very confirmatory and satisfying.

Keywords: facies, flow baffle, bypassed pay, heterogeneities, history matching, reservoir limit

Procedia PDF Downloads 103
118 Evolving Credit Scoring Models using Genetic Programming and Language Integrated Query Expression Trees

Authors: Alexandru-Ion Marinescu

Abstract:

There exist a plethora of methods in the scientific literature which tackle the well-established task of credit score evaluation. In its most abstract form, a credit scoring algorithm takes as input several credit applicant properties, such as age, marital status, employment status, loan duration, etc. and must output a binary response variable (i.e. “GOOD” or “BAD”) stating whether the client is susceptible to payment return delays. Data imbalance is a common occurrence among financial institution databases, with the majority being classified as “GOOD” clients (clients that respect the loan return calendar) alongside a small percentage of “BAD” clients. But it is the “BAD” clients we are interested in since accurately predicting their behavior is crucial in preventing unwanted loss for loan providers. We add to this whole context the constraint that the algorithm must yield an actual, tractable mathematical formula, which is friendlier towards financial analysts. To this end, we have turned to genetic algorithms and genetic programming, aiming to evolve actual mathematical expressions using specially tailored mutation and crossover operators. As far as data representation is concerned, we employ a very flexible mechanism – LINQ expression trees, readily available in the C# programming language, enabling us to construct executable pieces of code at runtime. As the title implies, they model trees, with intermediate nodes being operators (addition, subtraction, multiplication, division) or mathematical functions (sin, cos, abs, round, etc.) and leaf nodes storing either constants or variables. There is a one-to-one correspondence between the client properties and the formula variables. The mutation and crossover operators work on a flattened version of the tree, obtained via a pre-order traversal. A consequence of our chosen technique is that we can identify and discard client properties which do not take part in the final score evaluation, effectively acting as a dimensionality reduction scheme. We compare ourselves with state of the art approaches, such as support vector machines, Bayesian networks, and extreme learning machines, to name a few. The data sets we benchmark against amount to a total of 8, of which we mention the well-known Australian credit and German credit data sets, and the performance indicators are the following: percentage correctly classified, area under curve, partial Gini index, H-measure, Brier score and Kolmogorov-Smirnov statistic, respectively. Finally, we obtain encouraging results, which, although placing us in the lower half of the hierarchy, drive us to further refine the algorithm.

Keywords: expression trees, financial credit scoring, genetic algorithm, genetic programming, symbolic evolution

Procedia PDF Downloads 95
117 Electrohydrodynamic Patterning for Surface Enhanced Raman Scattering for Point-of-Care Diagnostics

Authors: J. J. Rickard, A. Belli, P. Goldberg Oppenheimer

Abstract:

Medical diagnostics, environmental monitoring, homeland security and forensics increasingly demand specific and field-deployable analytical technologies for quick point-of-care diagnostics. Although technological advancements have made optical methods well-suited for miniaturization, a highly-sensitive detection technique for minute sample volumes is required. Raman spectroscopy is a well-known analytical tool, but has very weak signals and hence is unsuitable for trace level analysis. Enhancement via localized optical fields (surface plasmons resonances) on nanoscale metallic materials generates huge signals in surface-enhanced Raman scattering (SERS), enabling single molecule detection. This enhancement can be tuned by manipulation of the surface roughness and architecture at the sub-micron level. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for SERS-based sensing devices. While most SERS substrates are manufactured by conventional lithographic methods, the development of a cost-effective approach to create nanostructured surfaces is a much sought-after goal in the SERS community. Here, a method is established to create controlled, self-organized, hierarchical nanostructures using electrohydrodynamic (HEHD) instabilities. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements. HEHD pattern formation enables the fabrication of multiscale 3D structured arrays as SERS-active platforms. Importantly, each of the HEHD-patterned individual structural units yield a considerable SERS enhancement. This enables each single unit to function as an isolated sensor. Each of the formed structures can be effectively tuned and tailored to provide high SERS enhancement, while arising from different HEHD morphologies. The HEHD fabrication of sub-micrometer architectures is straightforward and robust, providing an elegant route for high-throughput biological and chemical sensing. The superior detection properties and the ability to fabricate SERS substrates on the miniaturized scale, will facilitate the development of advanced and novel opto-fluidic devices, such as portable detection systems, and will offer numerous applications in biomedical diagnostics, forensics, ecological warfare and homeland security.

Keywords: hierarchical electrohydrodynamic patterning, medical diagnostics, point-of care devices, SERS

Procedia PDF Downloads 319
116 Beyond Objectification: Moderation Analysis of Trauma and Overexcitability Dynamics in Women

Authors: Ritika Chaturvedi

Abstract:

Introduction: Sexual objectification, characterized by the reduction of an individual to a mere object of sexual desire, remains a pervasive societal issue with profound repercussions on individual well-being. Such experiences, often rooted in systemic and cultural norms, have long-lasting implications for mental and emotional health. This study aims to explore the intricate relationship between experiences of sexual objectification and insidious trauma, further investigating the potential moderating effects of overexcitabilities as proposed by Dabrowski's theory of positive disintegration. Methodology: The research involved a comprehensive cohort of 204 women, spanning ages from 18 to 65 years. Participants were tasked with completing self-administered questionnaires designed to capture their experiences with sexual objectification. Additionally, the questionnaire assessed symptoms indicative of insidious trauma and explored overexcitabilities across five distinct domains: emotional, intellectual, psychomotor, sensory, and imaginational. Employing advanced statistical techniques, including multiple regression and moderation analysis, the study sought to decipher the intricate interplay among these variables. Findings: The study's results revealed a compelling positive correlation between experiences of sexual objectification and the onset of symptoms indicative of insidious trauma. This correlation underscores the profound and detrimental effects of sexual objectification on an individual's psychological well-being. Interestingly, the moderation analyses introduced a nuanced understanding, highlighting the differential roles of various overexcitabilities. Specifically, emotional, intellectual, and sensual overexcitabilities were found to exacerbate trauma symptomatology. In contrast, psychomotor overexcitability emerged as a protective factor, demonstrating a mitigating influence on the relationship between sexual objectification and trauma. Implications: The study's findings hold significant implications for a diverse array of stakeholders, encompassing mental health practitioners, educators, policymakers, and advocacy groups. The identified moderating effects of overexcitabilities emphasize the need for tailored interventions that consider individual differences in coping and resilience mechanisms. By recognizing the pivotal role of overexcitabilities in modulating the traumatic consequences of sexual objectification, this research advocates for the development of more nuanced and targeted support frameworks. Moreover, the study underscores the importance of continued research endeavors to unravel the intricate mechanisms and dynamics underpinning these relationships. Such endeavors are crucial for fostering the evolution of informed, evidence-based interventions and strategies aimed at mitigating the adverse effects of sexual objectification and promoting holistic well-being.

Keywords: sexual objectification, insidious trauma, emotional overexcitability, intellectual overexcitability, sensual overexcitability, psychomotor overexcitability, imaginational overexcitability

Procedia PDF Downloads 22
115 The Influences of Facies and Fine Kaolinite Formation Migration on Sandstones’ Reservoir Quality, Sarir Formation, Sirt Basin Libya

Authors: Faraj M. Elkhatri, Hana Ali Alafi

Abstract:

The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. (present-day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Basin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly found by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some of fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets but also small disaggregated kaolinite platelets derived from the disaggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore, but also coat some of the surrounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and reduce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on selected minerals observed during the SEM study were obtained through the use of an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats, with limited occlusion by kaolinite. very fine-grained elemental combinations (Si/Al/Na/Cl, Si/Al Ca/Cl/Ti, and Qtz/Ti) have been identified and conformed by EDS analysis. However, the identification of the fine grained disaggregated material as mainly kaolinite though study area.

Keywords: fine migration, formation damage, kaolinite, soled bulging.

Procedia PDF Downloads 47
114 Application of Multilinear Regression Analysis for Prediction of Synthetic Shear Wave Velocity Logs in Upper Assam Basin

Authors: Triveni Gogoi, Rima Chatterjee

Abstract:

Shear wave velocity (Vs) estimation is an important approach in the seismic exploration and characterization of a hydrocarbon reservoir. There are varying methods for prediction of S-wave velocity, if recorded S-wave log is not available. But all the available methods for Vs prediction are empirical mathematical models. Shear wave velocity can be estimated using P-wave velocity by applying Castagna’s equation, which is the most common approach. The constants used in Castagna’s equation vary for different lithologies and geological set-ups. In this study, multiple regression analysis has been used for estimation of S-wave velocity. The EMERGE module from Hampson-Russel software has been used here for generation of S-wave log. Both single attribute and multi attributes analysis have been carried out for generation of synthetic S-wave log in Upper Assam basin. Upper Assam basin situated in North Eastern India is one of the most important petroleum provinces of India. The present study was carried out using four wells of the study area. Out of these wells, S-wave velocity was available for three wells. The main objective of the present study is a prediction of shear wave velocities for wells where S-wave velocity information is not available. The three wells having S-wave velocity were first used to test the reliability of the method and the generated S-wave log was compared with actual S-wave log. Single attribute analysis has been carried out for these three wells within the depth range 1700-2100m, which corresponds to Barail group of Oligocene age. The Barail Group is the main target zone in this study, which is the primary producing reservoir of the basin. A system generated list of attributes with varying degrees of correlation appeared and the attribute with the highest correlation was concerned for the single attribute analysis. Crossplot between the attributes shows the variation of points from line of best fit. The final result of the analysis was compared with the available S-wave log, which shows a good visual fit with a correlation of 72%. Next multi-attribute analysis has been carried out for the same data using all the wells within the same analysis window. A high correlation of 85% has been observed between the output log from the analysis and the recorded S-wave. The almost perfect fit between the synthetic S-wave and the recorded S-wave log validates the reliability of the method. For further authentication, the generated S-wave data from the wells have been tied to the seismic and correlated them. Synthetic share wave log has been generated for the well M2 where S-wave is not available and it shows a good correlation with the seismic. Neutron porosity, density, AI and P-wave velocity are proved to be the most significant variables in this statistical method for S-wave generation. Multilinear regression method thus can be considered as a reliable technique for generation of shear wave velocity log in this study.

Keywords: Castagna's equation, multi linear regression, multi attribute analysis, shear wave logs

Procedia PDF Downloads 200
113 Mature Field Rejuvenation Using Hydraulic Fracturing: A Case Study of Tight Mature Oilfield with Reveal Simulator

Authors: Amir Gharavi, Mohamed Hassan, Amjad Shah

Abstract:

The main characteristics of unconventional reservoirs include low-to ultra low permeability and low-to-moderate porosity. As a result, hydrocarbon production from these reservoirs requires different extraction technologies than from conventional resources. An unconventional reservoir must be stimulated to produce hydrocarbons at an acceptable flow rate to recover commercial quantities of hydrocarbons. Permeability for unconventional reservoirs is mostly below 0.1 mD, and reservoirs with permeability above 0.1 mD are generally considered to be conventional. The hydrocarbon held in these formations naturally will not move towards producing wells at economic rates without aid from hydraulic fracturing which is the only technique to assess these tight reservoir productions. Horizontal well with multi-stage fracking is the key technique to maximize stimulated reservoir volume and achieve commercial production. The main objective of this research paper is to investigate development options for a tight mature oilfield. This includes multistage hydraulic fracturing and spacing by building of reservoir models in the Reveal simulator to model potential development options based on sidetracking the existing vertical well. To simulate potential options, reservoir models have been built in the Reveal. An existing Petrel geological model was used to build the static parts of these models. A FBHP limit of 40bars was assumed to take into account pump operating limits and to maintain the reservoir pressure above the bubble point. 300m, 600m and 900m lateral length wells were modelled, in conjunction with 4, 6 and 8 stages of fracs. Simulation results indicate that higher initial recoveries and peak oil rates are obtained with longer well lengths and also with more fracs and spacing. For a 25year forecast, the ultimate recovery ranging from 0.4% to 2.56% for 300m and 1000m laterals respectively. The 900m lateral with 8 fracs 100m spacing gave the highest peak rate of 120m3/day, with the 600m and 300m cases giving initial peak rates of 110m3/day. Similarly, recovery factor for the 900m lateral with 8 fracs and 100m spacing was the highest at 2.65% after 25 years. The corresponding values for the 300m and 600m laterals were 2.37% and 2.42%. Therefore, the study suggests that longer laterals with 8 fracs and 100m spacing provided the optimal recovery, and this design is recommended as the basis for further study.

Keywords: unconventional, resource, hydraulic, fracturing

Procedia PDF Downloads 278
112 A Stepped Care mHealth-Based Approach for Obesity with Type 2 Diabetes in Clinical Health Psychology

Authors: Gianluca Castelnuovo, Giada Pietrabissa, Gian Mauro Manzoni, Margherita Novelli, Emanuele Maria Giusti, Roberto Cattivelli, Enrico Molinari

Abstract:

Diabesity could be defined as a new global epidemic of obesity and being overweight with many complications and chronic conditions. Such conditions include not only type 2 diabetes, but also cardiovascular diseases, hypertension, dyslipidemia, hypercholesterolemia, cancer, and various psychosocial and psychopathological disorders. The financial direct and indirect burden (considering also the clinical resources involved and the loss of productivity) is a real challenge in many Western health-care systems. Recently the Lancet journal defined diabetes as a 21st-century challenge. In order to promote patient compliance in diabesity treatment reducing costs, evidence-based interventions to improve weight-loss, maintain a healthy weight, and reduce related comorbidities combine different treatment approaches: dietetic, nutritional, physical, behavioral, psychological, and, in some situations, pharmacological and surgical. Moreover, new technologies can provide useful solutions in this multidisciplinary approach, above all in maintaining long-term compliance and adherence in order to ensure clinical efficacy. Psychological therapies with diet and exercise plans could better help patients in achieving weight loss outcomes, both inside hospitals and clinical centers and during out-patient follow-up sessions. In the management of chronic diseases clinical psychology play a key role due to the need of working on psychological conditions of patients, their families and their caregivers. mHealth approach could overcome limitations linked with the traditional, restricted and highly expensive in-patient treatment of many chronic pathologies: one of the best up-to-date application is the management of obesity with type 2 diabetes, where mHealth solutions can provide remote opportunities for enhancing weight reduction and reducing complications from clinical, organizational and economic perspectives. A stepped care mHealth-based approach is an interesting perspective in chronic care management of obesity with type 2 diabetes. One promising future direction could be treating obesity, considered as a chronic multifactorial disease, using a stepped-care approach: -mhealth or traditional based lifestyle psychoeducational and nutritional approach. -health professionals-driven multidisciplinary protocols tailored for each patient. -inpatient approach with the inclusion of drug therapies and other multidisciplinary treatments. -bariatric surgery with psychological and medical follow-up In the chronic care management of globesity mhealth solutions cannot substitute traditional approaches, but they can supplement some steps in clinical psychology and medicine both for obesity prevention and for weight loss management.

Keywords: clinical health psychology, mhealth, obesity, type 2 diabetes, stepped care, chronic care management

Procedia PDF Downloads 317
111 Learners’ Preferences in Selecting Language Learning Institute (A Study in Iran)

Authors: Hoora Dehghani, Meisam Shahbazi, Reza Zare

Abstract:

During the previous decade, a significant evolution has occurred in the number of private educational centers and, accordingly, the increase in the number of providers and students of these centers around the world. The number of language teaching institutes in Iran that are considered private educational sectors is also growing exponentially as the request for learning foreign languages has extremely increased in recent years. This fact caused competition among the institutions in improving better services tailored to the students’ demands to win the competition. Along with the growth in the industry of education, higher education institutes should apply the marketing-related concepts and view students as customers because students’ outlooks are similar to consumers with education. Studying the influential factors in the selection of an institute has multiple benefits. Firstly, it acknowledges the institutions of the students’ choice factors. Secondly, the institutions use the obtained information to improve their marketing methods. It also helps institutions know students’ outlooks that can be applied to expand the student know-how. Moreover, it provides practical evidence for educational centers to plan useful amenities and programs, and use efficient policies to cater to the market, and also helps them execute the methods that increase students’ feeling of contentment and assurance. Thus, this study explored the influencing factors in the selection of a language learning institute by language learners and examined and compared the importance among the varying age groups and genders. In the first phase of the study, the researchers selected 15 language learners as representative cases within the specified age ranges and genders purposefully and interviewed them to explore the comprising elements in their language institute selection process and analyzed the results qualitatively. In the second phase, the researchers identified elements as specified items of a questionnaire, and 1000 English learners across varying educational contexts rated them. The TOPSIS method was used to analyze the data quantitatively by representing the level of importance of the items for the participants generally and specifically in each subcategory; genders and age groups. The results indicated that the educational quality, teaching method, duration of training course, establishing need-oriented courses, and easy access were the most important elements. On the other hand, offering training in different languages, the specialized education of only one language, the uniform and appropriate appearance of office staff, having native professors to the language of instruction, applying Computer or online tests instead of the usual paper tests respectively as the least important choice factors in selecting a language institute. Besides, some comparisons among different groups’ ratings of choice factors were made, which revealed the differences among different groups' priorities in choosing a language institute.

Keywords: choice factors, EFL institute selection, english learning, need analysis, TOPSIS

Procedia PDF Downloads 132
110 Paramedic Strength and Flexibility: Findings of a 6-Month Workplace Exercise Randomised Controlled Trial

Authors: Jayden R. Hunter, Alexander J. MacQuarrie, Samantha C. Sheridan, Richard High, Carolyn Waite

Abstract:

Workplace exercise programs have been recommended to improve the musculoskeletal fitness of paramedics with the aim of reducing injury rates, and while they have shown efficacy in other occupations, they have not been delivered and evaluated in Australian paramedics to our best knowledge. This study investigated the effectiveness of a 6-month workplace exercise program (MedicFit; MF) to improve paramedic fitness with or without health coach (HC) support. A group of regional Australian paramedics (n=76; 43 male; mean ± SD 36.5 ± 9.1 years; BMI 28.0 ± 5.4 kg/m²) were randomised at the station level to either exercise with remote health coach support (MFHC; n=30), exercise without health coach support (MF; n=23), or no-exercise control (CON; n=23) groups. MFHC and MF participants received a 6-month, low-moderate intensity resistance and flexibility exercise program to be performed ƒ on station without direct supervision. Available exercise equipment included dumbbells, resistance bands, Swiss balls, medicine balls, kettlebells, BOSU balls, yoga mats, and foam rollers. MFHC and MF participants were also provided with a comprehensive exercise manual including sample exercise sessions aimed at improving musculoskeletal strength and flexibility which included exercise prescription (i.e. sets, reps, duration, load). Changes to upper-body (push-ups), lower-body (wall squat) and core (plank hold) strength and flexibility (back scratch and sit-reach tests) after the 6-month intervention were analysed using repeated measures ANOVA to compare changes between groups and over time. Upper-body (+20.6%; p < 0.01; partial eta squared = 0.34 [large effect]) and lower-body (+40.8%; p < 0.05; partial eta squared = 0.08 (moderate effect)) strength increased significantly with no interaction or group effects. Changes to core strength (+1.4%; p=0.17) and both upper-body (+19.5%; p=0.56) and lower-body (+3.3%; p=0.15) flexibility were non-significant with no interaction or group effects observed. While upper- and lower-body strength improved over the course of the intervention, providing a 6-month workplace exercise program with or without health coach support did not confer any greater strength or flexibility benefits than exercise testing alone (CON). Although exercise adherence was not measured, it is possible that participants require additional methods of support such as face-to-face exercise instruction and guidance and individually-tailored exercise programs to achieve adequate participation and improvements in musculoskeletal fitness. This presents challenges for more remote paramedic stations without regular face-to-face access to suitably qualified exercise professionals, and future research should investigate the effectiveness of other forms of exercise delivery and guidance for these paramedic officers such as remotely-facilitated digital exercise prescription and monitoring.

Keywords: workplace exercise, paramedic health, strength training, flexibility training

Procedia PDF Downloads 117
109 Applicability and Reusability of Fly Ash and Base Treated Fly Ash for Adsorption of Catechol from Aqueous Solution: Equilibrium, Kinetics, Thermodynamics and Modeling

Authors: S. Agarwal, A. Rani

Abstract:

Catechol is a natural polyphenolic compound that widely exists in higher plants such as teas, vegetables, fruits, tobaccos, and some traditional Chinese medicines. The fly ash-based zeolites are capable of absorbing a wide range of pollutants. But the process of zeolite synthesis is time-consuming and requires technical setups by the industries. The marketed costs of zeolites are quite high restricting its use by small-scale industries for the removal of phenolic compounds. The present research proposes a simple method of alkaline treatment of FA to produce an effective adsorbent for catechol removal from wastewater. The experimental parameter such as pH, temperature, initial concentration and adsorbent dose on the removal of catechol were studied in batch reactor. For this purpose the adsorbent materials were mixed with aqueous solutions containing catechol ranging in 50 – 200 mg/L initial concentrations and then shaken continuously in a thermostatic Orbital Incubator Shaker at 30 ± 0.1 °C for 24 h. The samples were withdrawn from the shaker at predetermined time interval and separated by centrifugation (Centrifuge machine MBL-20) at 2000 rpm for 4 min. to yield a clear supernatant for analysis of the equilibrium concentrations of the solutes. The concentrations were measured with Double Beam UV/Visible spectrophotometer (model Spectrscan UV 2600/02) at the wavelength of 275 nm for catechol. In the present study, the use of low-cost adsorbent (BTFA) derived from coal fly ash (FA), has been investigated as a substitute of expensive methods for the sequestration of catechol. The FA and BTFA adsorbents were well characterized by XRF, FE-SEM with EDX, FTIR, and surface area and porosity measurement which proves the chemical constituents, functional groups and morphology of the adsorbents. The catechol adsorption capacities of synthesized BTFA and native material were determined. The adsorption was slightly increased with an increase in pH value. The monolayer adsorption capacities of FA and BTFA for catechol were 100 mg g⁻¹ and 333.33 mg g⁻¹ respectively, and maximum adsorption occurs within 60 minutes for both adsorbents used in this test. The equilibrium data are fitted by Freundlich isotherm found on the basis of error analysis (RMSE, SSE, and χ²). Adsorption was found to be spontaneous and exothermic on the basis of thermodynamic parameters (ΔG°, ΔS°, and ΔH°). Pseudo-second-order kinetic model better fitted the data for both FA and BTFA. BTFA showed large adsorptive characteristics, high separation selectivity, and excellent recyclability than FA. These findings indicate that BTFA could be employed as an effective and inexpensive adsorbent for the removal of catechol from wastewater.

Keywords: catechol, fly ash, isotherms, kinetics, thermodynamic parameters

Procedia PDF Downloads 101
108 Internet Memes as Meaning-Making Tools within Subcultures: A Case Study of Lolita Fashion

Authors: Victoria Esteves

Abstract:

Online memes have not only impacted different aspects of culture, but they have also left their mark on particular subcultures, where memes have reflected issues and debates surrounding specific spheres of interest. This is the first study that outlines how memes can address cultural intersections within the Lolita fashion community, which are much more specific and which fall outside of the broad focus of politics and/or social commentary. This is done by looking at the way online memes are used in this particular subculture as a form of meaning-making and group identity reinforcement, demonstrating not only the adaptability of online memes to specific cultural groups but also how subcultures tailor these digital objects to discuss both community-centered topics and more broad societal aspects. As part of an online ethnography, this study focuses on qualitative content analysis by taking a look at some of the meme communication that has permeated Lolita fashion communities. Examples of memes used in this context are picked apart in order to understand this specific layered phenomenon of communication, as well as to gain insights into how memes can operate as visual shorthand for the remix of meaning-making. There are existing parallels between internet culture and cultural behaviors surrounding Lolita fashion: not only is the latter strongly influenced by the former (due to its highly globalized dispersion and lack of physical shops, Lolita fashion is almost entirely reliant on the internet for its existence), both also emphasize curatorial roles through a careful collaborative process of documenting significant aspects of their culture (e.g., Know Your Meme and Lolibrary). Further similarities appear when looking at ideas of inclusion and exclusion that permeate both cultures, where memes and language are used in order to both solidify group identity and to police those who do not ascribe to these cultural tropes correctly, creating a feedback loop that reinforces subcultural ideals. Memes function as excellent forms of communication within the Lolita community because they reinforce its coded ideas and allows a kind of participation that echoes other cultural groups that are online-heavy such as fandoms. Furthermore, whilst the international Lolita community was mostly self-contained within its LiveJournal birthplace, it has become increasingly dispersed through an array of different social media groups that have fragmented this subculture significantly. The use of memes is key in maintaining a sense of connection throughout this now fragmentary experience of fashion. Memes are also used in the Lolita fashion community to bridge the gap between Lolita fashion related community issues and wider global topics; these reflect not only an ability to make use of a broader online language to address specific issues of the community (which in turn provide a very community-specific engagement with remix practices) but also memes’ ability to be tailored to accommodate overlapping cultural and political concerns and discussions between subcultures and broader societal groups. Ultimately, online memes provide the necessary elasticity to allow their adaption and adoption by subcultural groups, who in turn use memes to extend their meaning-making processes.

Keywords: internet culture, Lolita fashion, memes, online community, remix

Procedia PDF Downloads 145
107 Promoting Incubation Support to Youth Led Enterprises: A Case Study from Bangladesh to Eradicate Hazardous Child Labour through Microfinance

Authors: Md Maruf Hossain Koli

Abstract:

The issue of child labor is enormous and cannot be ignored in Bangladesh. The problem of child exploitation is a socio-economic reality of Bangladesh. This paper will indicate the causes, consequences, and possibilities of using microfinance as remedies of hazardous child labor in Bangladesh. Poverty is one of the main reasons for children to become child laborers. It is an indication of economic vulnerability, inadequate law, and enforcement system and cultural and social inequities along with the inaccessible and low-quality educational system. An attempt will be made in this paper to explore and analyze child labor scenario in Bangladesh and will explain holistic intervention of BRAC, the largest nongovernmental organization in the world to address child labor through promoting incubation support to youth-led enterprises. A combination of research methods were used to write this paper. These include non-reactive observation in the form of literature review, desk studies as well as reactive observation like site visits and, semi-structured interviews. Hazardous Child labor is a multi-dimensional and complex issue. This paper was guided by the answer following research questions to better understand the current context of hazardous child labor in Bangladesh, especially in Dhaka city. The author attempted to figure out why child labor should be considered as a development issue? Further, it also encountered why child labor in Bangladesh is not being reduced at an expected pace? And finally what could be a sustainable solution to eradicate this situation. One of the most challenging characteristics of child labor is that it interrupts a child’s education and cognitive development hence limiting the building of human capital and fostering intergenerational reproduction of poverty and social exclusion. Children who are working full-time and do not attend school, cannot develop the necessary skills. This leads them and their future generation to remain in poor socio-economic condition as they do not get a better paying job. The vicious cycle of poverty will be reproduced and will slow down sustainable development. The outcome of the research suggests that most of the parents send their children to work to help them to increase family income. In addition, most of the youth engaged in hazardous work want to get training, mentoring and easy access to finance to start their own business. The intervention of BRAC that includes classroom and on the job training, tailored mentoring, health support, access to microfinance and insurance help them to establish startup. This intervention is working in developing business and management capacity through public-private partnerships and technical consulting. Supporting entrepreneurs, improving working conditions with micro, small and medium enterprises and strengthening value chains focusing on youth and children engaged with hazardous child labor.

Keywords: child labour, enterprise development, microfinance, youth entrepreneurship

Procedia PDF Downloads 101
106 Numerical Investigation of Multiphase Flow Structure for the Flue Gas Desulfurization

Authors: Cheng-Jui Li, Chien-Chou Tseng

Abstract:

This study adopts Computational Fluid Dynamics (CFD) technique to build the multiphase flow numerical model where the interface between the flue gas and desulfurization liquid can be traced by Eulerian-Eulerian model. Inside the tower, the contact of the desulfurization liquid flow from the spray nozzles and flue gas flow can trigger chemical reactions to remove the sulfur dioxide from the exhaust gas. From experimental observations of the industrial scale plant, the desulfurization mechanism depends on the mixing level between the flue gas and the desulfurization liquid. In order to significantly improve the desulfurization efficiency, the mixing efficiency and the residence time can be increased by perforated sieve trays. Hence, the purpose of this research is to investigate the flow structure of sieve trays for the flue gas desulfurization by numerical simulation. In this study, there is an outlet at the top of FGD tower to discharge the clean gas and the FGD tower has a deep tank at the bottom, which is used to collect the slurry liquid. In the major desulfurization zone, the desulfurization liquid and flue gas have a complex mixing flow. Because there are four perforated plates in the major desulfurization zone, which spaced 0.4m from each other, and the spray array is placed above the top sieve tray, which includes 33 nozzles. Each nozzle injects desulfurization liquid that consists of the Mg(OH)2 solution. On each sieve tray, the outside diameter, the hole diameter, and the porosity are 0.6m, 20 mm and 34.3%. The flue gas flows into the FGD tower from the space between the major desulfurization zone and the deep tank can finally become clean. The desulfurization liquid and the liquid slurry goes to the bottom tank and is discharged as waste. When the desulfurization solution flow impacts the sieve tray, the downward momentum will be converted to the upper surface of the sieve tray. As a result, a thin liquid layer can be developed above the sieve tray, which is the so-called the slurry layer. And the volume fraction value within the slurry layer is around 0.3~0.7. Therefore, the liquid phase can't be considered as a discrete phase under the Eulerian-Lagrangian framework. Besides, there is a liquid column through the sieve trays. The downward liquid column becomes narrow as it interacts with the upward gas flow. After the flue gas flows into the major desulfurization zone, the flow direction of the flue gas is upward (+y) in the tube between the liquid column and the solid boundary of the FGD tower. As a result, the flue gas near the liquid column may be rolled down to slurry layer, which developed a vortex or a circulation zone between any two sieve trays. The vortex structure between two sieve trays results in a sufficient large two-phase contact area. It also increases the number of times that the flue gas interacts with the desulfurization liquid. On the other hand, the sieve trays improve the two-phase mixing, which may improve the SO2 removal efficiency.

Keywords: Computational Fluid Dynamics (CFD), Eulerian-Eulerian Model, Flue Gas Desulfurization (FGD), perforated sieve tray

Procedia PDF Downloads 261