Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 571

Search results for: hydraulic

571 The Thermal Simulation of Hydraulic Cable Drum Trailers 15-Ton

Authors: Ahmad Abdul-Razzak Aboudi Al-Issa

Abstract:

Thermal is the main important aspect in any hydraulic system since it is affected on the hydraulic system performance. Therefore must be simulated the hydraulic system -that was designed- in this aspect before constructing it. In this study, an existed expert system was using to simulate the thermal aspect of a designed hydraulic system that will be used in an industrial field. The expert system which is used in this study is (Hydraulic System Calculations), and its symbol (HSC). HSC had been designed and coded in an interactive program userfriendly named (Microsoft Visual Basic 2010).

Keywords: fluid power, hydraulic system, thermal and hydrodynamic, expert system

Procedia PDF Downloads 388
570 Design an Expert System to Assess the Hydraulic System in Thermal and Hydrodynamic Aspect

Authors: Ahmad Abdul-Razzak Aboudi Al-Issa

Abstract:

Thermal and Hydrodynamic are basic aspects in any hydraulic system and therefore, they must be assessed with regard to this aspect before constructing the system. This assessment needs a good expertise in this aspect to obtain an efficient hydraulic system. Therefore, this study aims to build an expert system called Hydraulic System Calculations (HSC) to ensure a smooth operation for the hydraulic system. The expert system (HSC) had been designed and coded in an user-friendly interactive program called Microsoft Visual Basic 2010. The suggested code provides the designer with a number of choices to resolve the problem of hydraulic oil overheating which may arise during the continuous operation of the hydraulic unit. As a result, the HSC can minimize the human errors, effort, time and cost of hydraulic machine design.

Keywords: fluid power, hydraulic system, thermal and hydrodynamic, expert system

Procedia PDF Downloads 343
569 A Study on the Life Prediction Performance Degradation Analysis of the Hydraulic Breaker

Authors: Jong Won, Park, Sung Hyun, Kim

Abstract:

The kinetic energy to pass subjected to shock and chisel reciprocating piston hydraulic power supplied by the excavator using for the purpose of crushing the rock, and roads, buildings, etc., hydraulic breakers blow. Impact frequency, efficiency measurement of the impact energy, hydraulic breakers, to demonstrate the ability of hydraulic breaker manufacturers and users to a very important item. And difficult in order to confirm the initial performance degradation in the life of the hydraulic breaker has been thought to be a problem.In this study, we measure the efficiency of hydraulic breaker, Impact energy and Impact frequency, the degradation analysis of research to predict the life.

Keywords: impact energy, impact frequency, hydraulic breaker, life prediction

Procedia PDF Downloads 356
568 Prediction of Unsaturated Permeability Functions for Clayey Soil

Authors: F. Louati, H. Trabelsi, M. Jamei

Abstract:

Desiccation cracks following drainage-humidification cycles. With water loss, mainly due to evaporation, suction in the soil increases, producing volumetric shrinkage and tensile stress. When the tensile stress reaches tensile strength, the soil cracks. Desiccation cracks networks can directly control soil hydraulic properties. The aim of this study was for quantifying the hydraulic properties for examples the water retention curve, the saturated hydraulic conductivity, the unsaturated hydraulic conductivity function, the shrinkage dynamics in Tibar soil- clay soil in the Northern of Tunisia. Then a numerical simulation of unsaturated hydraulic properties for a crack network has been attempted. The finite elements code ‘CODE_BRIGHT’ can be used to follow the hydraulic distribution in cracked porous media.

Keywords: desiccation, cracks, permeability, unsaturated hydraulic flow, simulation

Procedia PDF Downloads 220
567 Energy Efficient Alternate Hydraulic System Called TejHydroLift

Authors: Tejinder Singh

Abstract:

This paper describes a new more efficient Hydraulic System which uses lesser work to produce more output. Conventional Hydraulic System like Hydraulic Lifts and Rams use lots of water to be pumped to produce output. TejHydroLift will do the equal amount of force with lesser input of water. The paper will show that force applied can be increased manifold without requiring to move smaller force by more distance which used to be required in Conventional Hydraulic Lifts. The paper describes one of the configurations of TejHydroLift System called “Slim Antenna TejHydroLift Configuration”. The TejHydroLift uses lesser water and hence demands lesser work to be performed to move the same load.

Keywords: alternate, hydraulic system, efficient, TejHydroLift

Procedia PDF Downloads 192
566 Hydraulic Studies on Core Components of PFBR

Authors: G. K. Pandey, D. Ramadasu, I. Banerjee, V. Vinod, G. Padmakumar, V. Prakash, K. K. Rajan

Abstract:

Detailed thermal hydraulic investigations are very essential for safe and reliable functioning of liquid metal cooled fast breeder reactors. These investigations are further more important for components with complex profile, since there is no direct correlation available in literature to evaluate the hydraulic characteristics of such components directly. In those cases available correlations for similar profile or geometries may lead to significant uncertainty in the outcome. Hence experimental approach can be adopted to evaluate these hydraulic characteristics more precisely for better prediction in reactor core components. Prototype Fast Breeder Reactor (PFBR), a sodium cooled pool type reactor is under advanced stage of construction at Kalpakkam, India. Several components of this reactor core require hydraulic investigation before its usage in the reactor. These hydraulic investigations on full scale models, carried out by experimental approaches using water as simulant fluid are discussed in the paper.

Keywords: fast breeder reactor, cavitation, pressure drop, reactor components

Procedia PDF Downloads 372
565 Thermal and Acoustic Design of Mobile Hydraulic Vehicle Engine Room

Authors: Homin Kim, Hyungjo Byun, Jinyoung Do, Yongil Lee, Hyunho Shin, Seungbae Lee

Abstract:

Engine room of mobile hydraulic vehicle is densely packed with an engine and many hydraulic components mostly generating heat and sound. Though hydraulic oil cooler, ATF cooler, and axle oil cooler etc. are added to vehicle cooling system of mobile vehicle, the overheating may cause downgraded performance and frequent failures. In order to improve thermal and acoustic environment of engine room, the computational approaches by Computational Fluid Dynamics (CFD) and Boundary Element Method (BEM) are used together with necessary modal analysis of belt-driven system. The engine room design layout and process, which satisfies the design objectives of sound power level and temperature levels of radiator water, charged air cooler, transmission and hydraulic oil coolers, is discussed.

Keywords: acoustics, CFD, engine room design, mobile hydraulics

Procedia PDF Downloads 254
564 Energy Efficiency Improvement of Excavator with Independent Metering Valve by Continuous Mode Changing Considering Engine Fuel Consumption

Authors: Sang-Wook Lee, So-Yeon Jeon, Min-Gi Cho, Dae-Young Shin, Sung-Ho Hwang

Abstract:

Hydraulic system of excavator gets working energy from hydraulic pump which is connected to output shaft of engine. Recently, main control valve (MCV) which is composed of several independent metering valve (IMV) has been introduced for better energy efficiency of the hydraulic system so that fuel efficiency of the excavator can be improved. Excavator with IMV has 5 operating modes depending on the quantity of regeneration flow. In this system, the hydraulic pump is controlled to supply demanded flow which is needed to operate each mode. Because the regenerated flow supply energy to actuators, the hydraulic pump consumes less energy to make same motion than one that does not regenerate flow. The horse power control is applied to the hydraulic pump of excavator for maintaining engine start under a heavy load and this control makes the flow of hydraulic pump reduced. When excavator is in complex operation such as loading or unloading soil, the hydraulic pump discharges small quantity of working fluid in high pressure. At this operation, the engine of excavator does not run at optimal operating line (OOL). The engine needs to be operated on OOL to improve fuel efficiency and by controlling hydraulic pump the engine can drive on OOL. By continuous mode changing of IMV, the hydraulic pump is controlled to make engine runs on OOL. The simulation result of this study shows that fuel efficiency of excavator with IMV can be improved by considering engine OOL and continuous mode changing algorithm.

Keywords: continuous mode changing, engine fuel consumption, excavator, fuel efficiency, IMV

Procedia PDF Downloads 271
563 Effects of Climate Change on Hydraulic Design Methods of Railway Infrastructures

Authors: Chiara Cesali

Abstract:

The effects of climate change are increasingly evident: increases in temperature (i.e. global warming), greater frequency of extreme weather events, i.e. storms, floods, which often affect transport infrastructures. Large-scale climatological models with long-term horizons (up to 2100) show the possibility of significant increases in precipitation in the future, according to the greenhouse gas emissions scenarios from IPCC. Consequently, the insufficiency of existing hydraulic works (i.e. bridges, culverts, drainage systems) may be more frequent, or those currently being designed may become insufficient in the future. Thus, the hydraulic design methods of transport infrastructure must begin to take into account the influence of climate change. To this purpose, criteria for applying to the hydraulic design of a railway infrastructure some of the approaches currently available for determining design rainfall intensity and/or peak discharge flow on the basis of possible climate change scenarios are defined and proposed in the paper. Some application cases are also described.

Keywords: climate change, hydraulic design, precipitation, railway

Procedia PDF Downloads 86
562 Hydraulic Resources Management under Imperfect Competition with Thermal Plants in the Wholesale Electricity Market

Authors: Abdessalem Abbassi, Ahlem Dakhlaoui, Lota D. Tamini

Abstract:

In this paper, we analyze infinite discrete-time games between hydraulic and thermal power operators in the wholesale electricity market under Cournot competition. We consider a deregulated electrical industry where certain demand is satisfied by hydraulic and thermal technologies. The hydraulic operator decides the production in each season of each period that maximizes the sum of expected profits from power generation with respect to the stochastic dynamic constraint on the water stored in the dam, the environmental constraint and the non-negative output constraint. In contrast, the thermal plant is operated with quadratic cost function, with respect to the capacity production constraint and the non-negativity output constraint. We show that under imperfect competition, the hydraulic operator has a strategic storage of water in the peak season. Then, we quantify the strategic inter-annual and intra-annual water transfer and compare the numerical results. Finally, we show that the thermal operator can restrict the hydraulic output without compensation.

Keywords: asymmetric risk aversion, electricity wholesale market, hydropower dams, imperfect competition

Procedia PDF Downloads 262
561 Effect of Modeling of Hydraulic Form Loss Coefficient to Break on Emergency Core Coolant Bypass

Authors: Young S. Bang, Dong H. Yoon, Seung H. Yoo

Abstract:

Emergency Core Coolant Bypass (ECC Bypass) has been regarded as an important phenomenon to peak cladding temperature of large-break loss-of-coolant-accidents (LBLOCA) in nuclear power plants (NPP). A modeling scheme to address the ECC Bypass phenomena and the calculation of LBLOCA using that scheme are discussed in the present paper. A hydraulic form loss coefficient (HFLC) from the reactor vessel downcomer to the broken cold leg is predicted by the computational fluid dynamics (CFD) code with a variation of the void fraction incoming from the downcomer. The maximum, mean, and minimum values of FLC are derived from the CFD results and are incorporated into the LBLOCA calculation using a system thermal-hydraulic code, MARS-KS. As a relevant parameter addressing the ECC Bypass phenomena, the FLC to the break and its range are proposed.

Keywords: CFD analysis, ECC bypass, hydraulic form loss coefficient, system thermal-hydraulic code

Procedia PDF Downloads 153
560 On the Free-Surface Generated by the Flow over an Obstacle in a Hydraulic Channel

Authors: M. Bouhadef, K. Bouzelha-Hammoum, T. Guendouzen-Dabouz, A. Younsi, T. Zitoun

Abstract:

The aim of this paper is to report the different experimental studies, conducted in the laboratory, dealing with the flow in the presence of an obstacle lying in a rectangular hydraulic channel. Both subcritical and supercritical regimes are considered. Generally, when considering the theoretical problem of the free-surface flow, in a fluid domain of finite depth, due to the presence of an obstacle, we suppose that the water is an inviscid fluid, which means that there is no sheared velocity profile, but constant upstream. In a hydraulic channel, it is impossible to satisfy this condition. Indeed, water is a viscous fluid and its velocity is null at the bottom. The two configurations are presented, i.e. a flow over an obstacle and a towed obstacle in a resting fluid.

Keywords: experiments, free-surface flow, hydraulic channel, subcritical regime, supercritical flow

Procedia PDF Downloads 231
559 Construction of a Radial Centrifuge Pump for Agricultural Applications

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

With the evolution of the productive processes, demonstrated mainly by the presence every time larger of the irrigation and to crescent it disputes for water, accompanied by your shortage (distances every time larger), there is need to project facilities that can provide supply of water with larger speed and efficiency. Being like this, the presence of hydraulic pumps in an irrigation project or water supply for small communities, is of highest importance, and the knowledge of the fundamental parts to your good operation it deserves the due attention and care. Hydraulic pumps are machines of flow, whose function is to supply energy for the water, in order to press down her, through the conversion of mechanical energy of your originating from rotor a motor the combustion or of an electric motor. This way, the hydraulic pumps are had as generating hydraulic machines. The objective of this work was to project and to build a radial centrifugal pump for agricultural application in small communities.

Keywords: centrifuge pump, hydraulic energy, agricultural applications, irrigation

Procedia PDF Downloads 297
558 Preliminary Evaluation of Hydraulic Resistance of a Multicomponent Geosynthetic Clay Liner

Authors: Samuel B. Makinde, Kerry R. Rowe

Abstract:

Tested in a flexible wall permeameter, a new geosynthetic clay liner (GCL) with a thin 200 g/m² polypropylene coated carrier geotextile decreases the hydraulic conductivity of the GCL by approximately one order of magnitude compared to the same geotextile without a coating. This research investigates how the hydraulic performance of the coating of multicomponent GCL varies with the level of controlled damage done to the coating under different applied stress conditions. This controlled damage will be used to establish the level of damage needed to increase the permeability by one, two and three orders of magnitude. Tests are also conducted on specimens aged in simulated municipal solid waste leachate at 85oC and the progressive change in hydraulic conductivity with degradation of the polymer is reported. The objective is to establish how long it takes for the level of degradation that gives rise to the same one, two and three orders of magnitude to increase in permeability of the coating reached within controlled damage. The paper will describe how additional ongoing tests at three other temperatures will be used to establish an Arrhenius relationship that will allow the predictions of the length of time required to lose substantial hydraulic resistance at different temperatures in a landfill.

Keywords: Arrhenius relationship, flexible wall permeameter, hydraulic conductivity, multicomponent geosynthetic clay liner

Procedia PDF Downloads 50
557 Obtaining the Hydraulic Concrete Resistant to the Aggressive Environment by Using Admixtures

Authors: N. Tabatadze

Abstract:

The research aim is to study the physical and mechanical characteristics of hydraulic concrete in the surface active environment. The specific goal is to obtain high strength and low deformable concrete based on nano additives, resistant to the aggressive environment. As result of research, the alkali-silica reaction was improved (relative elongation 0,122 % of admixture instead of 0,126 % of basic concrete after 14 days). The aggressive environment impact on the strength of heavy concrete, fabricated on the basis of the hydraulic admixture with the penetrating waterproof additives also was improved (strength on compression R28=47,5 mPa of admixture instead of R28=35,8 mPa). Moreover, water absorption (W=0,59 % of admixture instead of W=1,41 %), water tightness (R14=37,9 mPa instead R14=28,7 mPa) and water-resistance (B=18 instead B=12). The basic parameters of concrete with admixture was improved in comparison with basic concrete.

Keywords: hydraulic concrete, alkali-silica reaction, water absorption, water-resistance

Procedia PDF Downloads 267
556 Calibrations and Effect of Different Operating Conditions on the Performance of a Fluid Power Control System with Servo Solenoid Valve

Authors: Tahany W. Sadak, Fouly, A. Anwer, M. Rizk

Abstract:

The current investigation presents a study on the hydraulic performance of an electro-hydraulic servo solenoid valve controlled linear piston used in hydraulic systems. Advanced methods have been used to measure and record laboratory experiments, to ensure accurate analysis and evaluation. Experiments have been conducted under different values of temperature (28, 40 and 50 °C), supply pressure (10, 20, 30, 40 and 50 bar), system stiffness (32 N/mm), and load (0.0 & 5560 N). It is concluded that increasing temperature of hydraulic oil increases the quantity of flow rate, so it achieves an increase of the quantity of flow by 5.75 % up to 48.8 % depending on operating conditions. The values of pressure decay at low temperature are less than the values at high temperature. The frequency increases with the increase of the temperature. When we connect the springs to the system, it decreases system frequency. These results are very useful in the process of packing and manufacturing of fluid products, where the properties are not affected by 50 °C, so energy and time are saved.

Keywords: electro-hydraulic servo valve, fluid power control system, system stiffness, static and dynamic performance

Procedia PDF Downloads 78
555 Power Generation from Sewage by a Micro-Hydraulic Turbine

Authors: Tomomi Uchiyama, Tomoko Okayama, Yukio Ide

Abstract:

This study is concerned with the development of a micro-hydraulic turbine for power generation installed in sewer pipes. The runner has a circular hollow around the central (rotating) axis so that solid materials included in water can be easily flow through the runner without blocking the turbine. The laboratory experiments are also conducted. The hollow is very effective to make polyester fibers pass through the turbine. The guide vane is useful to heighten the turbine performance. But it is easily blocked by the fibers, making the turbine lose the function.

Keywords: micro-hydraulic turbine, power generation, sewage, sewer pipe

Procedia PDF Downloads 303
554 Numerical Study on the Cavity-Induced Piping Failure of Embankment

Authors: H. J. Kim, G. C. Park, K. C. Kim, J. H. Shin

Abstract:

Cavities are frequently found beneath conduits on pile foundations in old embankments. Cavity reduces seepage length significantly and consequently causes piping failure of embankments. Case studies of embankment failures indicate that the relative settlement between ground and pile supported-concrete conduit was the main reason of the cavity. In this paper, an attempt to simulate the cavity-induced piping failure mechanism was made using finite element numerical method. Piping potential is examined by carrying out parametric study for influencing factors such as cavity length, water level, and flow conditions. The concentration of hydraulic gradient adjacent to cavity was found. It is found that the hydraulic gradient close to the cavity exceeds considerably the critical hydraulic gradient causing piping. Piping failure potential due to the existence of cavity is evaluated and contour map for the potential risk of an embankment for piping failure is proposed.

Keywords: cavity, hydraulic gradient, levee, piping

Procedia PDF Downloads 447
553 Evaluation on Mechanical Stabilities of Clay-Sand Mixtures Used as Engineered Barrier for Radioactive Waste Disposal

Authors: Ahmet E. Osmanlioglu

Abstract:

In this study, natural bentonite was used as natural clay material and samples were taken from the Kalecik district in Ankara. In this research, bentonite is the subject of an analysis from standpoint of assessing the basic properties of engineered barriers with respect to the buffer material. Bentonite and sand mixtures were prepared for tests. Some of clay minerals give relatively higher hydraulic conductivity and lower swelling pressure. Generally, hydraulic conductivity of these type clays is lower than <10-12 m/s. The hydraulic properties of clay-sand mixtures are evaluated to design engineered barrier specifications. Hydraulic conductivities of bentonite-sand mixture were found in the range of 1.2x10-10 to 9.3x10-10 m/s. Optimum B/S mixture ratio was determined as 35% in terms of hydraulic conductivity and mechanical stability. At the second stage of this study, all samples were compacted into cylindrical shape molds (diameter: 50 mm and length: 120 mm). The strength properties of compacted mixtures were better than the compacted bentonite. In addition, the larger content of the quartz sand in the mixture has the greater thermal conductivity.

Keywords: engineered barriers, mechanical stability, clay, nuclear waste disposal

Procedia PDF Downloads 316
552 Hardware in the Loop Platform for Virtual Commissioning: Case Study of a Hydraulic-Press Model Simulated in Real-Time

Authors: Jorge Rodriguez-Guerra, Carlos Calleja, Aron Pujana, Ana Maria Macarulla

Abstract:

Hydraulic-press commissioning consumes a great amount of man-hours, due to the fact that it takes place several miles away from where it has been designed. This factor became exacerbated due to control designers’ lack of knowledge about which will be the final controller gains before they start working with it. Virtual commissioning has been postulated as an optimal solution to deal with this lack of knowledge. Here, a case study is presented in which a controller is set up against a real-time model based on a hydraulic-press. The press model is designed following manufacturer specifications and it is embedded in a real-time simulator. This methodology ensures that the model achieves similar responses as the real machine that would be placed on the industry. A deterministic communication protocol is in charge of the bidirectional information transmission between the real-time model and the controller. This platform allows the engineer to test and verify the final control responses with exactly the same hardware that is going to be installed in the hydraulic-press, in other words, realize a virtual commissioning of the electro-hydraulic actuator. The Hardware in the Loop (HiL) platform validates in laboratory conditions and harmless for the machine the control algorithms designed, which allows embedding them afterwards in the industrial environment without further modifications.

Keywords: deterministic communication protocol, electro-hydraulic actuator, hardware in the loop, real-time, virtual commissioning

Procedia PDF Downloads 73
551 Object-Oriented Multivariate Proportional-Integral-Derivative Control of Hydraulic Systems

Authors: J. Fernandez de Canete, S. Fernandez-Calvo, I. García-Moral

Abstract:

This paper presents and discusses the application of the object-oriented modelling software SIMSCAPE to hydraulic systems, with particular reference to multivariable proportional-integral-derivative (PID) control. As a result, a particular modelling approach of a double cylinder-piston coupled system is proposed and motivated, and the SIMULINK based PID tuning tool has also been used to select the proper controller parameters. The paper demonstrates the usefulness of the object-oriented approach when both physical modelling and control are tackled.

Keywords: object-oriented modeling, multivariable hydraulic system, multivariable PID control, computer simulation

Procedia PDF Downloads 254
550 Optimization for the Hydraulic Clamping System of an Internal Circulation Two-Platen Injection Molding Machine

Authors: Jian Wang, Lu Yang, Jiong Peng

Abstract:

Internal circulation two-platen clamping system for injection molding machine (IMM) has many potential advantages on energy-saving. In order to estimate its properties, experiments in this paper were carried out. Displacement and pressure of the components were measured. In comparison, the model of hydraulic clamping system was established by using AMESim. The related parameters as well as the energy consumption could be calculated. According to the analysis, the hydraulic system was optimized in order to reduce the energy consumption.

Keywords: AMESim, energy-saving, injection molding machine, internal circulation

Procedia PDF Downloads 460
549 Simulation and Analysis of Different Parameters in Hydraulic Circuit Due to Leakage

Authors: J.Das, Gyan Wrat

Abstract:

Leakage is the main gradual failure in the fluid power system, which is usually caused by the impurity in the oil and wear of matching surfaces between parts and lead to the change of the gap value. When leakage occurs in the system, the oil will flow from the high pressure chamber into the low pressure chamber through the gap, causing the reduction of system flow as well as the loss of system pressure, resulting in the decreasing of system efficiency. In the fluid power system, internal leakage may occur in various components such as gear pump, reversing valve and hydraulic cylinder, and affect the system work performance. Therefore, component leakage in the fluid power system is selected as the study to characterize the leakage and the effect of leakage on the system. Effect of leakage on system pressure and cylinder displacement can be obtained using pressure sensors and the displacement sensor. The leakage can be varied by changing the orifice using a flow control valve. Hydraulic circuit for leakage will be developed in Matlab/Simulink environment and simulations will be done by changing different parameters.

Keywords: leakage causes, effect, analysis, MATLAB simulation, hydraulic circuit

Procedia PDF Downloads 321
548 Effect of Hydraulic Diameter on Flow Boiling Instability in a Single Microtube with Vertical Upward Flow

Authors: Qian You, Ibrahim Hassan, Lyes Kadem

Abstract:

An experiment is conducted to fundamentally investigate flow oscillation characteristics in different sizes of single microtubes in vertical upward flow direction. Three microtubes have 0.889 mm, 0.533 mm, and 0.305 mm hydraulic diameters with 100 mm identical heated length. The mass flux of the working fluid FC-72 varies from 700 kg/m2•s to 1400 kg/m2•s, and the heat flux is uniformly applied on the tube surface up to 9.4 W/cm2. The subcooled inlet temperature is maintained around 24°C during the experiment. The effect of hydraulic diameter and mass flux are studied. The results showed that they have interactions on the flow oscillations occurrence and behaviors. The onset of flow instability (OFI), which is a threshold of unstable flow, usually appears in large microtube with diversified and sustained flow oscillations, while the transient point, which is the point when the flow turns from one stable state to another suddenly, is more observed in small microtube without characterized flow oscillations due to the bubble confinement. The OFI/transient point occurs early as hydraulic diameter reduces at a given mass flux. The increased mass flux can delay the OFI/transient point occurrence in large hydraulic diameter, but no significant effect in small size. Although the only transient point is observed in the smallest tube, it appears at small heat flux and is not sensitive to mass flux; hence, the smallest microtube is not recommended since increasing heat flux may cause local dryout.

Keywords: flow boiling instability, hydraulic diameter effect, a single microtube, vertical upward flow

Procedia PDF Downloads 504
547 Experiments of a Free Surface Flow in a Hydraulic Channel over an Uneven Bottom

Authors: M. Bouinoun, M. Bouhadef

Abstract:

The present study is concerned with the problem of determining the shape of the free surface flow in a hydraulic channel which has an uneven bottom. For the mathematical formulation of the problem, the fluid of the two-dimensional irrotational steady flow in water is assumed inviscid and incompressible. The solutions of the nonlinear problem are obtained by using the usual conformal mapping theory and Hilbert’s technique. An experimental study, for comparing the obtained results, has been conducted in a hydraulic channel (subcritical regime and supercritical regime).

Keywords: free-surface flow, experiments, numerical method, uneven bottom, supercritical regime, subcritical regime

Procedia PDF Downloads 303
546 Optimization of Multi-Zone Unconventional (Shale) Gas Reservoir Using Hydraulic Fracturing Technique

Authors: F. C. Amadi, G. C. Enyi, G. G. Nasr

Abstract:

Hydraulic fracturing is one of the most important stimulation techniques available to the petroleum engineer to extract hydrocarbons in tight gas sandstones. It allows more oil and gas production in tight reservoirs as compared to conventional means. The main aim of the study is to optimize the hydraulic fracturing as technique and for this purpose three multi-zones layer formation is considered and fractured contemporaneously. The three zones are named as Zone1 (upper zone), Zone2 (middle zone) and Zone3 (lower zone) respectively and they all occur in shale rock. Simulation was performed with Mfrac integrated software which gives a variety of 3D fracture options. This simulation process yielded an average fracture efficiency of 93.8%for the three respective zones and an increase of the average permeability of the rock system. An average fracture length of 909 ft with net height (propped height) of 210 ft (average) was achieved. Optimum fracturing results was also achieved with maximum fracture width of 0.379 inches at an injection rate of 13.01 bpm with 17995 Mscf of gas production.

Keywords: hydraulic fracturing, optimisation, shale, tight reservoir

Procedia PDF Downloads 356
545 A Method to Identify Areas for Hydraulic Fracturing by Using Production Logging Tools

Authors: Armin Shirbazo, Hamed Lamei Ramandi, Mohammad Vahab, Jalal Fahimpour

Abstract:

Hydraulic fracturing, especially multi-stage hydraulic fracturing, is a practical solution for wells with uneconomic production. The wide range of applications is appraised appropriately to have a stable well-production. Production logging tool, which is known as PLT in the oil and gas industry, is counted as one of the most reliable methods to evaluate the efficiency of fractures jobs. This tool has a number of benefits and can be used to prevent subsequent production failure. It also distinguishes different problems that occurred during well-production. In this study, the effectiveness of hydraulic fracturing jobs is examined by using the PLT in various cases and situations. The performance of hydraulically fractured wells is investigated. Then, the PLT is employed to gives more information about the properties of different layers. The PLT is also used to selecting an optimum fracturing design. The results show that one fracture and three-stage fractures behave differently. In general, the one-stage fracture should be created in high-quality areas of the reservoir to have better performance, and conversely, in three-stage fractures, low-quality areas are a better candidate for fracturing

Keywords: multi-stage fracturing, horizontal well, PLT, fracture length, number of stages

Procedia PDF Downloads 100
544 Develop a Software to Hydraulic Redesign a Depropanizer Column to Minimize Energy Consumption

Authors: Mahdi Goharrokhi, Rasool Shiri, Eiraj Naser

Abstract:

A depropanizer column of a particular refinery was redesigned in this work. That is, minimum reflux ratio, minimum number of trays, feed tray location and the hydraulic characteristics of the tower were calculated and compared with the actual values of the existing tower. To Design review of the tower, fundamental equations were used to develop software which its results were compared with two commercial software results. In each case PR EOS was used. Based on the total energy consumption in reboiler and condenser, feed tray location was also determined using case study definition for tower.

Keywords: column, hydraulic design, pressure drop, energy consumption

Procedia PDF Downloads 326
543 Characterization of Aquifer Systems and Identification of Potential Groundwater Recharge Zones Using Geospatial Data and Arc GIS in Kagandi Water Supply System Well Field

Authors: Aijuka Nicholas

Abstract:

A research study was undertaken to characterize the aquifers and identify the potential groundwater recharge zones in the Kagandi district. Quantitative characterization of hydraulic conductivities of aquifers is of fundamental importance to the study of groundwater flow and contaminant transport in aquifers. A conditional approach is used to represent the spatial variability of hydraulic conductivity. Briefly, it involves using qualitative and quantitative geologic borehole-log data to generate a three-dimensional (3D) hydraulic conductivity distribution, which is then adjusted through calibration of a 3D groundwater flow model using pumping-test data and historic hydraulic data. The approach consists of several steps. The study area was divided into five sub-watersheds on the basis of artificial drainage divides. A digital terrain model (DTM) was developed using Arc GIS to determine the general drainage pattern of Kagandi watershed. Hydrologic characterization involved the determination of the various hydraulic properties of the aquifers. Potential groundwater recharge zones were identified by integrating various thematic maps pertaining to the digital elevation model, land use, and drainage pattern in Arc GIS and Sufer golden software. The study demonstrates the potential of GIS in delineating groundwater recharge zones and that the developed methodology will be applicable to other watersheds in Uganda.

Keywords: aquifers, Arc GIS, groundwater recharge, recharge zones

Procedia PDF Downloads 70
542 Behavior of Clay effect on Electrical Parameter of Reservoir Rock Using Global Hydraulic Elements (GHEs) Approach

Authors: Noreddin Mousa

Abstract:

The main objective of this study is to estimate which type of clay minerals that more effect on saturation exponent using Global Hydraulic Elements (GHEs) approach to estimating the distribution of saturation exponent factor. Two wells and seven core samples have been selected from various (GHEs) for detailed study. There are many factors affecting saturation exponent such as wettability, grain pattern pressure of certain authigenic clays, which may promote oil wet characteristics of history of fluid displacement. The saturation exponent is related to the texture and affected by wettability and clay minerals. Capillary pressure (mercury injection) has been used to confirm GHEs which are selected to define rock types; the porous plate method is used to derive the saturation exponent in the laboratory. The petrography is very important in order to study the mineralogy and texture. In this study the results showing excellent relation between saturation exponent and the type of clay minerals which was observed that the Global Hydraulic Elements GHE-2 and GHE-5 which are containing Chlorite is more affect on saturation exponent comparing with the other GHE’s.

Keywords: GHEs, wettability, global hydraulic elements, petrography

Procedia PDF Downloads 218