Search results for: sulphur poisoning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 227

Search results for: sulphur poisoning

107 Removal of Heavy Metals from Aqueous Solutions by Low-Cost Materials: A Review

Authors: I. Nazari, B. Shaabani, P. Abaasifar

Abstract:

In small quantities certain heavy metals are nutritionally essential for a healthy life. The heavy metals linked most often to human poisoning are lead, mercury, arsenic, and cadmium. Other heavy metals including copper, zinc and chromium are actually required by the body in small quantity but can also be toxic in large doses. Nowadays, we have contamination to this heavy metals in some untreated industrial waste waters and even in several populated cities drinking waters around the world. The contamination of ground and underground water sources to heavy metals can be concentrated and travel up to food chain by drinking water and agricultural products. In recent years, the need for safe and economical methods for removal of heavy metals from contaminated water has necessitated research interest towards the finding low-cost alternatives. Bio-adsorbents have emerged as low-cost and efficient materials for the removal of heavy metals from waste and ground waters. The bio-adsorbents have an affinity for heavy metals ions to form metal complexes or chelates due to having functional groups including carboxyl, hydroxyl, imidazole, and etc. The objective of this study is to review researches in less expensive adsorbents and their utilization possibilities for various low-cost bio-adsorbents such as coffee beans, rice husk, and saw dust for the removal of heavy metals from contaminated waters.

Keywords: heavy metals, water pollution, bio-adsorbents, low cost adsorbents

Procedia PDF Downloads 327
106 Carvedilol Ameliorates Potassium Dichromate-Induced Acute Renal Injury in Rats: Plausible Role of Inflammation and Apoptosis

Authors: Bidya Dhar Sahu, Meghana Koneru, R. Shyam Sunder, Ramakrishna Sistla

Abstract:

Environmental and occupational exposure to hexavalent chromium [Cr(VI)] via textile manufacture, metallurgy, spray paints, stainless steel industries, drinking water containing chromium are often known to cause acute renal injury in humans and animals. Nephrotoxicity is the major effect of chromium poisoning. In the present study, we investigated the potential renoprotective effect and underlying mechanisms of carvedilol using rat model of potassium dichromate (K2Cr2O7)-induced nephrotoxicity. Exploration of the underlying mechanisms of carvedilol revealed that carvedilol attenuated nuclear translocation and DNA binding activity of NF-κB (p65), restored antioxidant and mitochondrial respiratory enzyme activities and attenuated apoptosis related protein expressions in kidney tissues. The serum levels of TNF-α, the renal iNOS and myeloperoxidase activity were significantly decreased in carvedilol pre-treated K2Cr2O7-induced nephrotoxic rats. These results were further supported and confirmed by histological findings. In conclusion, the findings of the present study demonstrated that carvedilol is an effective chemoprotectant against K2Cr2O7-induced nephrotoxicity in rats.

Keywords: apoptosis, carvedilol, inflammation, potassium dichromate-induced nephrotoxicity, applied pharmacology

Procedia PDF Downloads 254
105 Fulani Herdsmen and the Threat to Grassroots Security in Rural Nigeria

Authors: Akachi Odoemene

Abstract:

There is an ongoing grassroots war in Nigeria, particularly in its north central zone, as well as all through its southern parts, which have been most bloody. The war is between Fulani herdsmen and farming communities – an age-long problem which has escalated in the last decade and has assumed a very deadly dimension. In a typical scenario, Fulani herdsmen move into non-Fulani homelands with their cattle which graze on local farmlands, destroying farmers’ crops. This provokes their victims – the farmers – to acts of resistance, preventing the Fulani and their cattle from entering into farmlands. In some cases, there have been incidences of killing and/or stealing cattle, or poisoning of fields. In response, the herders wedge deadly attacks on farming communities, leading to the death of thousands of people. To be sure, this has been a major factor of instability in the rural areas of Nigeria. This paper aims at engaging the issues and cross-cutting issues of interest, as well as providing context and perspectives to the violent conflicts between Fulani herders and local communities in Nigeria. It particularly interrogates four central issues: (1) the nature and dynamics of the crisis, (2) the positions and stakes of the parties to the crisis, (3) the remedies available for containing/managing the conflicts and their desirability, and (4) perspectives on the positions of government(s) (and the African Union) on this conflict. Both primary and secondary sources were used for the purposes of this essay.

Keywords: Fulani Herdsmen, violent conflicts and insecurity, sustainable remedies, Nigeria

Procedia PDF Downloads 221
104 Biosensor System for Escherichia coli and Staphylococcus aureus Detection in Traditional Ice Cream

Authors: Raana Babadi Fathipour

Abstract:

Ice cream is a nutritious dairy product that, given its constituent materials and high nutritional value, is a suitable growth medium for the growth of various food microorganisms. The contamination of this product with pathogenic microorganisms may cause food poisoning and infections, and so could be harmful to human health. The foremost critical pathogenic microscopic organisms of ice cream incorporate Escherichia coli, Staphylococcus aureus, Bacillus cereus, Enterobacteriaceae, coliforms, Listeria monocytogenes and Enterococcus. Biosensor technology, albeit a recent addition to the dairy industry, has proven its worth in other fields, such as medical devices. Through numerous studies, the advantages of employing biosensors have consistently emerged. These incredible tools present expeditious and straightforward means while specifically targeting analytes. Thus, they bring forth unparalleled solutions that bolster ongoing advancements within dairy products and processes. This review delves into the latest developments in the realm of biosensors and evaluates the diverse techniques of bio-recognition and transduction in terms of their benefits, drawbacks, and relevance to traditional ice cream. Furthermore, the obstacles that impede the progress of these approaches in meeting the growing need for swift and real-time quality control of milk products, particularly ice cream, are also expounded upon.

Keywords: traditional ice cream, Escherichia coli, Staphylococcus aureus, biosensors

Procedia PDF Downloads 48
103 Atomic Layer Deposition of MoO₃ on Mesoporous γ-Al₂O₃ Prepared by Sol-Gel Method as Efficient Catalyst for Oxidative Desulfurization of Refractory Dibenzothiophene Compound

Authors: S. Said, Asmaa A. Abdulrahman

Abstract:

MoOₓ/Al₂O₃ based catalyst has long been widely used as an active catalyst in oxidative desulfurization reaction due to its high stability under severe reaction conditions and high resistance to sulfur poisoning. In this context, 4 & 9wt.% MoO₃ grafted on mesoporous γ-Al₂O₃ has been synthesized using the modified atomic layer deposition (ALD) method. Another MoO₃/Al₂O₃ sample was prepared by the conventional wetness impregnation (IM) method, for comparison. The effect of the preparation methods on the metal-support interaction was evaluated using different characterization techniques, including X-ray diffraction, X-ray photoelectron spectroscopy (XPS), N₂-physisorption, transmission electron microscopy (TEM), H₂- temperature-programmed reduction and FT-IR. Oxidative desulfurization (ODS) reaction of the model fuel oil was used as a probe reaction to examine the catalytic efficiency of the prepared catalysts. ALD method led to samples with much better physicochemical properties than those of the prepared one via the impregnation method. However, the 9 wt.%MoO₃/Al₂O₃ (ALD) catalyst in the ODS reaction of model fuel oil shows enhanced catalytic performance with ~90%, which has been attributed to the more Mo⁶⁺ surface concentrations relative to Al³⁺ with large pore diameter and surface area. The kinetic study shows that the ODS of DBT follows a pseudo first-order rate reaction.

Keywords: mesoporous Al₂O₃, xMoO₃/Al₂O₃, atomic layer deposition, wetness impregnation, ODS, DBT

Procedia PDF Downloads 77
102 Same-Day Detection Method of Salmonella Spp., Shigella Spp. and Listeria Monocytogenes with Fluorescence-Based Triplex Real-Time PCR

Authors: Ergun Sakalar, Kubra Bilgic

Abstract:

Faster detection and characterization of pathogens are the basis of the evoid from foodborne pathogens. Salmonella spp., Shigella spp. and Listeria monocytogenes are common foodborne bacteria that are among the most life-threatining. It is important to rapid and accurate detection of these pathogens to prevent food poisoning and outbreaks or to manage food chains. The present work promise to develop a sensitive, species specific and reliable PCR based detection system for simultaneous detection of Salmonella spp., Shigella spp. and Listeria monocytogenes. For this purpose, three genes were picked out, ompC for Salmonella spp., ipaH for Shigella spp. and hlyA for L. monocytogenes. After short pre-enrichment of milk was passed through a vacuum filter and bacterial DNA was exracted using commercially available kit GIDAGEN®(Turkey, İstanbul). Detection of amplicons was verified by examination of the melting temperature (Tm) that are 72° C, 78° C, 82° C for Salmonella spp., Shigella spp. and L. monocytogenes, respectively. The method specificity was checked against a group of bacteria strains, and also carried out sensitivity test resulting in under 10² CFU mL⁻¹ of milk for each bacteria strain. Our results show that the flourescence based triplex qPCR method can be used routinely to detect Salmonella spp., Shigella spp. and L. monocytogenes during the milk processing procedures in order to reduce cost, time of analysis and the risk of foodborne disease outbreaks.

Keywords: evagreen, food-born bacteria, pathogen detection, real-time pcr

Procedia PDF Downloads 218
101 Characterization of Emissions from the open burning of Municipal Solid Waste (MSW) under Tropical Environment

Authors: Anju Elizbath Peter, S. M. Shiva Nagendra, Indumathi M.Nambi

Abstract:

The deliberate fires initiated by dump managers and human scavengers to reduce the volume of waste and recovery of valuable metals/materials are common at municipal solid waste (MSW) disposal sites in developed country. A large amount of toxic gases released due to this act is responsible for the deterioration of regional and local air quality, which causes visibility impairment and acute respiratory diseases. The present study was aimed at the characterization of MSW and emission characteristics of burning of MSW in the laboratory. MSW samples were collected directly from the one of the open dumpsite located in Chennai city. Solid waste sampling and laboratory analysis were carried out according to American Society of Testing and Materials (ASTM) standards. Results indicated the values of moisture content, volatile solids (VS) and calorific values of solid waste samples were 16.67%,8%,9.17MJ/kg, respectively. The elemental composition showed that the municipal solid waste contains 25.84% of carbon, 3.69% of hydrogen, 1.57% of nitrogen and 0.26% of sulphur. The calorific value of MSW was found to be 9.17 MJ/Kg which is sufficient to facilitate self-combustion of waste. The characterization of emissions from the burning of 1 kg of MSW in the test chamber showed a total of 90 mg/kg of PM10 and 243 mg/kg of PM2.5. The current research study results will be useful for municipal authorities to formulate guideline and policy structure regarding the MSW management to reduce the impact of air emissions at an open dump site.

Keywords: characterization, MSW, open burning, PM10, PM2.5

Procedia PDF Downloads 317
100 Cellulose Containing Metal Organic Frameworks in Environmental Applications

Authors: Hossam El-Sayed Emam

Abstract:

As an essential issue for life, water while it’s important for all living organisms. However, the world is dangerously facing the serious problem for the deficiency of the sources of drinking water. Within the aquatic systems, there are various gases, microbes, and other toxic ingredients (chemical compounds and heavy metals) occurred owing to the draining of agricultural and industrial wastewater, resulting in water pollution. On the other hand, fuel (gaseous, liquid, or in solid phase) is one of the extensively consumable energy sources, and owing to its origin from fossil, it contains some sulfur-, nitrogen- and oxygen-based compounds that cause serious problems (toxicity, catalyst poisoning, corrosion, and gum formation andcarcinogenic effects), to be ascribed as undesirable pollutants.MOFs as porous coordinating polymers are superiorly exploited in the adsorption and separationof contaminants for wastewater treatment and fuel purification. The inclusion of highly adsorbent materials like MOFs to be immobilized within cellulosic materialscould be investigated as a new challenge for the separation of contaminants with high efficiency and opportunity for recyclability. Therefore, the current approach ascribes the exploitation of different MOFsimmobilized within cellulose (powder, films, and fabrics)for applications in environmental. Herein, using cellulose containing MOFs in dye removal (degradation and adsorption), pharmaceutical intermediates removal, and fuel purification were summarized.

Keywords: cellulose, MOFs, dye removal, pharmaceutical intermediates, fuel purification

Procedia PDF Downloads 127
99 Bioremoval of Malachite Green Dye from Aqueous Solution Using Marine Algae: Isotherm, Kinetic and Mechanistic Study

Authors: M. Jerold, V. Sivasubramanian

Abstract:

This study reports the removal of Malachite Green (MG) from simulated wastewater by using marine macro algae Ulva lactuca. Batch biosorption experiments were carried out to determine the biosorption capacity. The biosorption capacity was found to be maximum at pH 10. The effect of various other operation parameters such as biosorbent dosage, initial dye concentration, contact time and agitation was also investigated. The equilibrium attained at 120 min with 0.1 g/L of biosorbent. The isotherm experimental data fitted well with Langmuir Model with R² value of 0.994. The maximum Langmuir biosorption capacity was found to be 76.92 mg/g. Further, Langmuir separation factor RL value was found to be 0.004. Therefore, the adsorption is favorable. The biosorption kinetics of MG was found to follow pseudo second-order kinetic model. The mechanistic study revealed that the biosorption of malachite onto Ulva lactuca was controlled by film diffusion. The solute transfer in a solid-liquid adsorption process is characterized by the film diffusion and/or particle diffusion. Thermodynamic study shows ΔG° is negative indicates the feasibility and spontaneous nature for the biosorption of malachite green. The biosorbent was characterized using Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and elemental analysis (CHNS: Carbon, Hydrogen, Nitrogen, Sulphur). This study showed that Ulva lactuca can be used as promising biosorbent for the removal of MG from wastewater.

Keywords: biosorption, Ulva lactuca, wastewater, malachite green, isotherm, kinetics

Procedia PDF Downloads 129
98 Anticancer Activity of Edible Coprinus Mushroom (Coprinus comatus) on Human Glioblastoma Cell Lines and Interaction with Temozolomide

Authors: Maria Borawska, Patryk Nowakowski, Sylwia K. Naliwajko, Renata Markiewicz-Zukowska, Anna Puscion-Jakubik, Krystyna Gromkowska-Kepka, Justyna Moskwa

Abstract:

Coprinus comatus (O. F. Müll.) Pers.) should not be confused with the common Ink Cap, which contains coprine and can induce coprine poisoning. We study the possibility of applying coprinus mushroom (Coprinus comatus), available in Poland, as food product supporting the treatment of human glioblastoma cells. The U87MG and T98 glioblastoma cell lines were exposed to water (CW) or ethanol 95° (CE) Cantharellus extracts (50-500 μg/ml), with or without temozolomide (TMZ) during 24, 48 or 72 hours. The cell division was examined by the H³-thymidine incorporation. The statistical analysis was performed using Statistica v. 13.0 software. Significant differences were assumed for p < 0.05. We found that both, CW and CE, administrated alone, had inhibitory effect on cell lines growth, but the CE extract had a higher degree of growth inhibition. The anti-tumor effect of TMZ (50 μM) on U87MG was enhanced by mushroom extracts, and the effect was lower to the effect after using Coprinus comatus extracts (CW and CE) alone. A significant decrease (p < 0.05) in pro-MMP2 (82.61 ± 6.3% of control) secretion in U87MG cells was observed after treated with CE (250 μg/ml). We conclude that extracts of Coprinus comatus, edible mushroom, present cytotoxic properties on U87MG and T98 cell lines and may cooperate with TMZ synergistically enhancing its growth inhibiting activity against glioblastoma U87MG cell line.

Keywords: anticancer, glioma, mushroom, temozolomide

Procedia PDF Downloads 168
97 Camel Mortalities Due to Accidental Intoxcation with Ionophore

Authors: M. A. Abdelfattah, F. K. Waleed

Abstract:

Anticoccidials were utilized widely in veterinary practice for the avoidance of coccidiosis in poultry and assume a huge job as development promotants in ruminants. Ionophore harming is every now and again happens because of accidental access to medicated feed, errors in feed mixing, incorrect dosage calculation or misuse in non-recommended species. Camels on several farms in Eastern area of Saudi Arabia were accidently fed with a feed pellet containing 13 ppm salinomycin. One hundred and sixty-three camels died with mortality rate of 100%. The poisoning was clinically characterized by restlessness with tail lift to the top, jerk in the muscles of legs and thighs, excessive sweating, frequent setting and standing with body imbalance, lateral and sternal recumbences with the legs stretched back, eye tears with dilated pupil, vomiting of the stomach content, loss of consciousness and death of some of them. Feed analysis indicated the presence of salinomycin in pelleted feed in a range of 13 mg/kg-47 mg/kg. Necropsy findings and histopathological examinations were presented. Regulations and legal implications concerning with sale of contaminated feed in Saudi market are discussed in the light of feed law and by-law. The necessity for an effective implication of regulation concerning application of quality assurance systems based on the principles of Good Manufacturing Practice (GMP) and the application of Hazard Analysis of Critical Control Point (HACCP) during feed production is necessary to avoid feed accident.

Keywords: medicated feed, salinomycin, anticoccidial, camel, toxicity

Procedia PDF Downloads 89
96 Sustainable Development of HV Substation in Urban Areas Considering Environmental Aspects

Authors: Mahdi Naeemi Nooghabi, Mohammad Tofiqu Arif

Abstract:

Gas Insulated Switchgears by using an insulation material named SF6 (Sulphur Hexafluoride) and its significant dielectric properties have been the only choice in urban areas and other polluted industries. However, the initial investment of GIS is more than conventional AIS substation, its total life cycle costs caused to reach huge amounts of electrical market share. SF6 environmental impacts on global warming, atmosphere depletion, and decomposing to toxic gases in high temperature situation, and highest rate in Global Warming Potential (GWP) with 23900 times of CO2e and a 3200-year period lifetime was the only undeniable concern of GIS substation. Efforts of international environmental institute and their politic supports have been able to lead SF6 emission reduction legislation. This research targeted to find an appropriate alternative for GIS substations to meet all advantages in land occupation area and to improve SF6 environmental impacts due to its leakage and emission. An innovative new conceptual design named Multi-Storey prepared a new AIS design similar in land occupation, extremely low Sf6 emission, and maximum greenhouse gas emission reduction. Surprisingly, by considering economic benefits due to carbon price saving, it can earn more than $675 million during the 30-year life cycle by replacing of just 25% of total annual worldly additional GIS switchgears.

Keywords: AIS substation, GIS substation, SF6, greenhouse gas, global warming potential, carbon price, emission

Procedia PDF Downloads 278
95 Antihyperglycaemic and Antihyperlipidemic Activities of Pleiogynium timorense Seeds and Identification of Bioactive Compounds

Authors: Ataa A. Said, Elsayed A. Abuotabl, Gehan F. Abdel Raoof, Khaled Y. Mohamed

Abstract:

The aim of this study is to evaluate antihyperglycaemic and antihyperlipidemic activities of Pleiogynium timorense (DC.) Leenh (Anacardiaceae) seeds as well as to isolate and identify the bioactive compounds. Antihyperglycaemic effect was evaluated by measuring the effect of two dose levels (150 and 300 mg/kg) of 70% methanol extract of Pleiogynium timorense seeds on blood glucose level when administered 45 minutes before glucose loading. In addition, the effect of the plant extract on the lipid profile was determined by measuring serum total lipids (TL), total cholesterol (TC), triglycerides (TG), high density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol (LDL-C). Furthermore, the bioactive compounds were isolated and identified by chromatographic and spectrometric methods.The results showed that the methanolic extract of the seeds significantly reduced the levels of blood glucose,(TL), (TC), (TG) and (LDL-C) but no significant effect on (HDL-C) comparing with control group. Furthermore, four phenolic compound were isolated which were identified as; catechin, gallic acid, para methoxy benzaldehyde and pyrogallol which were isolated for the first time from the plant. In addition sulphur -containing compound (sulpholane) was isolated for the first time from the plant and from the family. To our knowledge, this is the first study about antihyperglycaemicand antihyperlipidemic activities of the seeds of Pleiogyniumtimorense and its bioactive compounds. So, the methanolic extract of the seeds of Pleiogynium timorense could be a step towards the development of new antihyperglycaemic and antihyperlipidemic drugs.

Keywords: antihyperglycaemic, bioactive compounds, phenolic, Pleiogynium timorense, seeds

Procedia PDF Downloads 185
94 The Relation Between Oxidative Stress, Inflammation, and Neopterin in the Paraquat-Induced Lung Toxicity

Authors: M. Toygar, I. Aydin, M. Agilli, F. N. Aydin, M. Oztosun, H. Gul, E. Macit, Y. Karslioglu, T. Topal, B. Uysal, M. Honca

Abstract:

Paraquat (PQ) is a well-known quaternary nitrogen herbicide. The major target organ in PQ poisoning is the lung. Reactive oxygen species (ROS) and inflammation play a crucial role in the development of PQ-induced pulmonary injury. Neopterin is synthesized in macrophage by interferon g and other cytokines. We aimed to evaluate the utility of neopterin as a diagnostic marker in PQ-induced lung toxicity. Sprague Dawley rats were randomly divided into two groups (sham and PQ), administered intraperitoneally 1 mL saline and PQ (15 mg/kg/mL) respectively. Blood samples and lungs were collected for analyses. Lung injury and fibrosis were seen in the PQ group. Serum total antioxidant capacity, lactate dehydrogenase (LDH), and lung transforming growth factor-1 (TGF-1) levels were significantly higher than the sham group (in all, p< 0.001). In addition, in the PQ group, serum neopterin and lung malondialdehyde (MDA) levels were also significantly higher than the sham group (in all, p 1/4 0.001). Serum neopterin levels were correlated with LDH activities, lung MDA, lung TGF-1 levels, and the degree of lung injury. These findings demonstrated that oxidative stress, reduction of antioxidant capacity, and inflammation play a crucial role in the PQ-induced lung injury. Elevated serum neopterin levels may be a prognostic parameter to determine extends of PQ-induced lung toxicity. Further studies may be performed to clarify the role of neopterin by different doses of PQ.

Keywords: paraquat, inflammation, oxidative stress, neopterin, lung toxicity

Procedia PDF Downloads 359
93 Development of Membrane Reactor for Auto Thermal Reforming of Dimethyl Ether for Hydrogen Production

Authors: Tie-Qing Zhang, Seunghun Jung, Young-Bae Kim

Abstract:

This research is devoted to developing a membrane reactor to flexibly meet the hydrogen demand of onboard fuel cells, which is an important part of green energy development. Among many renewable chemical products, dimethyl ether (DME) has the advantages of low reaction temperature (400 °C in this study), high hydrogen atom content, low toxicity, and easy preparation. Autothermal reforming, on the other hand, has a high hydrogen recovery rate and exhibits thermal neutrality during the reaction process, so the additional heat source in the hydrogen production process can be omitted. Therefore, the DME auto thermal reforming process was adopted in this study. To control the temperature of the reaction catalyst bed and hydrogen production rate, a Model Predictive Control (MPC) scheme was designed. Taking the above two variables as the control objectives, stable operation of the reformer can be achieved by controlling the flow rates of DME, steam, and high-purity air in real-time. To prevent catalyst poisoning in the fuel cell, the hydrogen needs to be purified to reduce the carbon monoxide content to below 50 ppm. Therefore, a Pd-Ag hydrogen semi-permeable membrane with a thickness of 3-5 μm was inserted into the auto thermal reactor, and the permeation efficiency of hydrogen was improved by steam purging on the permeation side. Finally, hydrogen with a purity of 99.99 was obtained.

Keywords: hydrogen production, auto thermal reforming, membrane, fuel cell

Procedia PDF Downloads 69
92 Toxicity of Acacia nilotica ( Garad) to Nubian Goats

Authors: B. Medani Amna, M. A. Elbadwi Samia, E. Amin Ahmed

Abstract:

Variable plants present in nature are used by simple rural and urban people, researchers and drug manufacturers for medicinal purposes. Garad is one of the most commonly used in Sudan for both treatment and prophylaxis of infections in the respiratory, urinogenital tracts and the skin. Water exctracts from Acacia nilotica bods were used in this very experiment to test for their toxicity to Nubian goats at two dose rates under proper experimental conditions. The clinical, pathological, haematological and biological changes in Nubian goats given daily oral doses of 1 and 5 g/kg body weight of Acacia nilotica to two groups of test goats. The goats of the control group were undosed with Acacia nilotica.Other than the dose co-related mortality rates, the clinical signs were observed to be salivation, staggered gait, intermittent loss of voice and low appetite. On histopathological testing, the main lesions were hepatic centrolobular necrosis and fatty changes associated with the significant changes in GGT and ALP are indicating hepatic dysfunction.Renal malfunction is indicated by haemorrhages in addition to the change in the urea concentration. The congested, haemorrhagic, emphysematous, edematous and cyanotic lungs may contribute to the development of dyspnea. Acacia nilotica poisoning may lead to an immunosuppression pointed out by the lymphocyte infiltration. On evaluation of the above results, Acacia nilotica was considered toxic to Nubian goats at the above mentioned doses. Future work for Acacia nilotica was forwarded and practical implications of the result were highlighted.

Keywords: Acaia nilotica, toxicity data, Nubian goats, Garad

Procedia PDF Downloads 433
91 The Research on Diesel Bus Emissions in Ulaanbaatar City: Mongolia

Authors: Tsetsegmaa A., Bayarsuren B., Altantsetseg Ts.

Abstract:

To make the best decision on reducing harmful emissions from buses, we need to have a clear understanding of the current state of their actual emissions. The emissions from city buses running on high sulfur fuel, particularly particulate matter (PM) and nitrogen oxides (NOx) from the exhaust gases of conventional diesel engines, have been studied and measured with and without diesel particulate filter (DPF) in Ulaanbaatar city. The study was conducted by using the PEMS (Portable Emissions Measurement System) and gravimetric method in real traffic conditions. The obtained data were used to determine the actual emission rates and to evaluate the effectiveness of the selected particulate filters. Actual road and daily PM emissions from city buses were determined during the warm and cold seasons. A bus with an average daily mileage of 242 km was found to emit 166.155 g of PM into the city's atmosphere on average per day, with 141.3 g in summer and 175.8 g in winter. The actual PM of the city bus is 0.6866 g/km. The concentration of NOx in the exhaust gas averages 1410.94 ppm. The use of DPF reduced the exhaust gas opacity of 24 buses by an average of 97% and filtered a total of 340.4 kg of soot from these buses over a period of six months. Retrofitting an old conventional diesel engine with cassette-type silicon carbide (SiC) DPF, despite the laboriousness of cleaning, can significantly reduce particulate matter emissions. Innovation: First comprehensive road PM and NOx emission dataset and actual road emissions from public buses have been identified. PM and NOx mathematical model equations have been estimated as a function of the bus technical speed and engine revolution with and without DPF.

Keywords: conventional diesel, silicon carbide, real-time onboard measurements, particulate matter, diesel retrofit, fuel sulphur

Procedia PDF Downloads 118
90 Hepatological Alterations in Market Gardeners Occupationally Exposed to Pesticides in the Western Highlands of Cameroon

Authors: M. G. Tanga, P. B. Telefo, D. N. Tarla

Abstract:

Even though the WHO, the EPA and other regulatory bodies have recognized the effects of acute pesticide poisoning little data exists on health effects after long-term low-dose exposures especially in Africa and Cameroon. The aim of this study was to evaluate the impact of pesticides on the hepatic functions of market gardeners in the Western Region of Cameroon by studying some biochemical parameters. Sixty six male market gardeners in Foumbot, Massangam, and Bantoum were interviewed on their health status, habits and pesticide use in agriculture, including the spray frequency, application method, and pesticide dosage. Thirty men with no history of pesticide exposure were recruited as control group. Thereafter, their blood samples were collected for assessment of hepatic function biomarkers (ALT, AST, and albumin). The results showed that 56 pesticides containing 25 active ingredients were currently used by market gardeners enrolled in our study and most of their symptoms (headache, fatigue, skin rashes, eye irritation, and nausea) were related to the use of these chemicals. Compared to the control subjects market gardeners’ ALT levels (32.9 ± 7.19 UL-1 vs. 82.11 ± 35.40 UL-1; P < 0.001) and, AST levels (40.63 ± 6.52 UL-1 vs. 112.11 UL-1 ± 47.15 UL-1; P < 0.001) were significantly increased. These results suggest that liver function tests can be used as biomarkers to indicate toxicity before overt clinical signs occur. The market gardeners’ chronic exposure to pesticides due to poor application measures could lead to hepatic function impairment. Further research on larger scale is needed to confirm these findings and to establish a mechanism of toxicity.

Keywords: biomarkers, liver, pesticides, occupational exposure

Procedia PDF Downloads 293
89 Determination of the Effect of Kaolin on the Antimicrobial Activity of Metronidazole-Kaolin Interaction

Authors: Omaimah Algohary

Abstract:

Kaolin is one of the principle intestinal adsorbents, has traditionally been used internally in the treatment of various enteric disorders, colitis, enteritis, dysentery, and diarrhea associated with food and alkaloidal poisoning and in traveler’s diarrhea. It binds to and traps bacteria and its toxins and gases in the gut. It also binds to water in the gut, which helps to make the stools firmer, hence giving symptomatic relief. Metronidazole is a synthetic antibacterial agent that is used primarily in the treatment of various anaerobic infections such as intra-abdominal infections, antiprotozoal, and as amebicidal. The need for safe, therapeutically effective antidiarrheal combination continuously lead to effective treatment. Metronidazol used for treatment of anaerobic bacteria and kaolin , when administered simultaneously, Metronidazole–Kaolin interactions have been reported by FDA but not studied. This project is the first to study the effect of Metronidazole–Kaolin interactions on the antimicrobial activity of metronidazole. Agar diffusion method performed to test the antimicrobial activity of metronidazole–kaolin antidiarrheal combination from aqueous solutions at an in-vivo simulated pHs conditions that obtained at 37+0.5 °C on Helicobacter pylori as anaerobic bacteria and E.coli as aerobic bacteria and used as a control for the technique. The antimicrobial activity of metronidazole combination as 1:1 and 1:2 with kaolin was abolished in acidic media as no zones of inhibition shown compared to only metronidazole that used as a control. In alkaline media metronidazole combination as 1:1 and 1:2 with kaolin showed diminutive activity compared to the control. These results proved that the kaolin adsorb metronidazole and abolish its antimicrobial activity and such combination should be avoided.

Keywords: kaolin, metronidazole, interaction, Helicobacter pylori. E. coli, antimicrobial activity

Procedia PDF Downloads 364
88 Hidrothermal Alteration Study of Tangkuban Perahu Craters, and Its Implication to Geothermal Conceptual Model

Authors: Afy Syahidan Achmad

Abstract:

Tangkuban Perahu is located in West Java, Indonesia. It is active stratovolcano type and still showing hidrothermal activity. The main purpose of this study is to find correlation between subsurface structure and hidrothermal activity on the surface. Using topographic map, SRTM images, and field observation, geological condition and alteration area was mapped. Alteration sample analyzed trough petrographic analysis and X-Ray Diffraction (XRD) analysis. Altered rock in study area showing white-yellowish white colour, and texture changing variation from softening to hardening because of alteration by sillica and sulphur. Alteration mineral which can be observed in petrographic analysis and XRD analysis consist of crystobalite, anatase, alunite, and pyrite. This mineral assemblage showing advanced argillic alteration type with West-East alteration area orientation. Alteration area have correlation with manifestation occurance such as steam vents, solfatara, and warm to hot pools. Most of manifestation occured in main crater like Ratu Crater and Upas crater, and parasitic crater like Domas Crater and Jarian Crater. This manifestation indicates permeability in subsurface which can be created trough structural process with same orientation. For further study geophysics method such as Magneto Telluric (MT) and resistivity can be required to find permeability zone pattern in Tangkuban Perahu subsurface.

Keywords: alteration, advanced argillic, Tangkuban Perahu, XRD, crystobalite, anatase, alunite, pyrite

Procedia PDF Downloads 391
87 Binderless Naturally-extracted Metal-free Electrocatalyst for Efficient NOₓ Reduction

Authors: Hafiz Muhammad Adeel Sharif, Tian Li, Changping Li

Abstract:

Recently, the emission of nitrogen-sulphur oxides (NOₓ, SO₂) has become a global issue and causing serious threats to health and the environment. Catalytic reduction of NOx and SOₓ gases into friendly gases is considered one of the best approaches. However, regeneration of the catalyst, higher bond-dissociation energy for NOx, i.e., 150.7 kcal/mol, escape of intermediate gas (N₂O, a greenhouse gas) with treated flue-gas, and limited activity of catalyst remains a great challenge. Here, a cheap, binderless naturally-extracted bass-wood thin carbon electrode (TCE) is presented, which shows excellent catalytic activity towards NOx reduction. The bass-wood carbonization at 900 ℃ followed by thermal activation in the presence of CO2 gas at 750 ℃. The thermal activation resulted in an increase in epoxy groups on the surface of the TCE and enhancement in the surface area as well as the degree of graphitization. The TCE unique 3D strongly inter-connected network through hierarchical micro/meso/macro pores that allow large electrode/electrolyte interface. Owing to these characteristics, the TCE exhibited excellent catalytic efficiency towards NOx (~83.3%) under ambient conditions and enhanced catalytic response under pH and sulphite exposure as well as excellent stability up to 168 hours. Moreover, a temperature-dependent activity trend was found where the highest catalytic activity was achieved at 80 ℃, beyond which the electrolyte became evaporative and resulted in a performance decrease. The designed electrocatalyst showed great potential for effective NOx-reduction, which is highly cost-effective, green, and sustainable.

Keywords: electrocatalyst, NOx-reduction, bass-wood electrode, integrated wet-scrubbing, sustainable

Procedia PDF Downloads 47
86 Method of Estimating Absolute Entropy of Municipal Solid Waste

Authors: Francis Chinweuba Eboh, Peter Ahlström, Tobias Richards

Abstract:

Entropy, as an outcome of the second law of thermodynamics, measures the level of irreversibility associated with any process. The identification and reduction of irreversibility in the energy conversion process helps to improve the efficiency of the system. The entropy of pure substances known as absolute entropy is determined at an absolute reference point and is useful in the thermodynamic analysis of chemical reactions; however, municipal solid waste (MSW) is a structurally complicated material with unknown absolute entropy. In this work, an empirical model to calculate the absolute entropy of MSW based on the content of carbon, hydrogen, oxygen, nitrogen, sulphur, and chlorine on a dry ash free basis (daf) is presented. The proposed model was derived from 117 relevant organic substances which represent the main constituents in MSW with known standard entropies using statistical analysis. The substances were divided into different waste fractions; namely, food, wood/paper, textiles/rubber and plastics waste and the standard entropies of each waste fraction and for the complete mixture were calculated. The correlation of the standard entropy of the complete waste mixture derived was found to be somsw= 0.0101C + 0.0630H + 0.0106O + 0.0108N + 0.0155S + 0.0084Cl (kJ.K-1.kg) and the present correlation can be used for estimating the absolute entropy of MSW by using the elemental compositions of the fuel within the range of 10.3%  C 95.1%, 0.0%  H  14.3%, 0.0%  O  71.1%, 0.0  N  66.7%, 0.0%  S  42.1%, 0.0%  Cl  89.7%. The model is also applicable for the efficient modelling of a combustion system in a waste-to-energy plant.

Keywords: absolute entropy, irreversibility, municipal solid waste, waste-to-energy

Procedia PDF Downloads 283
85 Management of Fungal Diseases of Onion (Allium cepa L.) by Using Plant Extracts

Authors: Shobha U. Jadhav, R. S. Saler

Abstract:

Onion is most Important Vegetable crop grown throughout the world. Onion suffers from pest and fungal diseases but the fungicides cause pollution and disturb microbial balance of soil. Under integrated fungal disease management programme cost effective and eco- friendly component like plant extract are used to control plant pathogens. Alternaria porri, Fusarium oxysporium, Stemphylium vesicarium are soil borne pathogens of onion. Effect of three different plant extract (Datura metel, Pongamia pinnata, Ipomoea palmata) at five different concentration Viz, 10,25,50,75 and 100 percentage on these pathogens was studied by food poisoning techniquie. Detura metal gave 94.73% growth of Alternaria porri at 10% extract concentraton and 26.31% growth in 100% extract concentration. As compared to Fusarium oxysporium, and Stemphylium vesicarium, Alternaria porri give good inhibitory response. In Pongamia pinnata L. at 10% extract concentration 84.21% growth and at 100% extract concentration 36.84% growth of Stemphylium vesicarium was observed. Stemphylium vesicarium give good in inhibitory response as compared to Alternaria porri and Fusarium oxysporium. Ipomoea palmata in 10% extract concentration 92% growth and in 100% extract concentration 40% growth of Fusarium oxysporium was recorded. Fusarium oxysporium give good inhibitory response as compared to Alternaria porri and, Stemphylium vesicarium.

Keywords: pathogen, onion, plant extract, Allium cepa L.

Procedia PDF Downloads 422
84 Multi Attribute Failure Mode Analysis of the Catering Systems: A Case Study of Sefako Makgatho Health Sciences University in South Africa

Authors: Mokoena Oratilwe Penwell, Seeletse Solly Matshonisa

Abstract:

The demand for quality products is a vital factor determining the success of a producing company, and the reality of this demand influences customer satisfaction. In Sefako Makgatho Health Sciences University (SMU), concerns over the quality of food being sold have been raised by mostly students and staff who are primary consumers of food being sold by the cafeteria. Suspicions of food poisoning and the occurrence of diarrhea-related to food from the cafeteria, amongst others, have been raised. However, minimal measures have been taken to resolve the issue of food quality. New service providers have been appointed, and still, the same trends are being observed, the quality of food seems to depreciate continuously. This paper uses multi-attribute failure mode analysis (MAFMA) for failure detection and minimization on the machines used for food production by SMU catering company before being sold to both staff, and students so as to improve production plant reliability, and performance. Analytical Hierarchy Process (AHP) will be used for the severity ranking of the weight criterions and development of the hierarchical structure for the cafeteria company. Amongst other potential issues detected, maintenance of the machines and equipment used for food preparations was of concern. Also, the staff lacked sufficient hospitality skills, supervision, and management in the cafeteria needed greater attention to mitigate some of the failures occurring in the food production plant.

Keywords: MAFMA, food quality, maintenance, supervision

Procedia PDF Downloads 105
83 Use of Different Plant Extracts in Fungal Disease Management of Onion (Allium cepa. L)

Authors: Shobha U. Jadhav

Abstract:

Onion is most important vegetable crop grown throughout the world. Onion suffers from pest and fungal diseases but these fungicides cause pollution and disturb microbial balance of soil. Under integrated fungal disease management programme cost effective and eco- friendly component like plant extract are used to control plant pathogens. Alternaria porri, Fusarium oxysporium, Stemphylium vesicarium are soil-borne pathogens of onion. Effect of three different plant extracts (Ocimum sanctum L., Xanthium strumarium B. and H. Withania somnifera Dunal)at five different concentration Viz, 10, 25, 50, 75, and 100 percentage on these pathogens was studied by food poisoning technique. Ocimum sanctum gave 84.21% growth of Alternaria porri at 10% extract concentration and 10.52% growth in 100% extract concentration. As compared to Fusarium oxysporium and Stemphylium vesicarium, Alternaria porri give good inhibitory response. In Xanthium strumarium B. and H. at 10% extract concentration 46.42% growth and at 100% extract concentration 28.57% growth of Fusarium oxysporum was observed. Fusarium oxysporum give good inhibitory response as compared to Alternaria porri and Stemphylium vesicarium. In Withania somnifera Dunal in 10% extract concentration 84.21% growth and in 100% extract concentration 21.05% growth of Stemphylium vesicarium was recorded. Stemphylium vesicarium give good inhibitory response as compared to Alternaria porri and Fusarium oxysporum.

Keywords: pathogen, onion, plant, extract

Procedia PDF Downloads 351
82 Review of Sulfur Unit Capacity Expansion Options

Authors: Avinashkumar Karre

Abstract:

Sulfur recovery unit, most commonly called as Claus process, is very significant gas desulfurization process unit in refinery and gas industries. Explorations of new natural gas fields, refining of high-sulfur crude oils, and recent crude expansion projects are needing capacity expansion of Claus unit for many companies around the world. In refineries, the sulphur recovery units take acid gas from amine regeneration units and sour water strippers, converting hydrogen sulfide to elemental sulfur using the Claus process. The Claus process is hydraulically limited by mass flow rate. Reducing the pressure drop across control valves, flow meters, lines, knock-out drums, and packing improves the capacity. Oxygen enrichment helps improve the capacity by removing nitrogen, this is more commonly done on all capacity expansion projects. Typical upgrades required due to oxygen enrichment are new burners, new refractory in thermal reactor, resizing of 1st condenser, instrumentation changes, and steam/condensate heat integration. Some other capacity expansion options typically considered are tail gas compressor, replacing air blower with higher head, hydrocarbon minimization in the feed, water removal, and ammonia removal. Increased capacity related upgrades in sulfur recovery unit also need changes in the tail gas treatment unit, typical changes include improvement to quench tower duty, packing area upgrades in quench and absorber towers and increased amine circulation flow rates.

Keywords: Claus process, oxygen enrichment, sulfur recovery unit, tail gas treatment unit

Procedia PDF Downloads 100
81 Social Crises and Its Impact on the Environment: Case Study of Jos, Plateau State

Authors: A. B. Benshak, M. G. Yilkangnha, V. Y. Nanle

Abstract:

Social crises and violent conflict can inflict direct (short-term) impact on the environment like poisoning water bodies, climate change, deforestation, destroying the chemical component of the soil due to the chemical and biological weapons used. It can also impact the environment indirectly (long-term), e.g., the destruction of political and economic infrastructure to manage the environmental resources and breaking down traditional conservation practices, population displacement and refugee flows which puts pressure on the already inadequate resources, infrastructure, facilities, amenities, services etc. This study therefore examines the impact of social crises on the environment in Jos Plateau State with emphasis on the long-term impact, analyze the relationship between crises and the environment and assess the perception of people on social crises because much work have concentrated on other repercussions such as the economy, health etc that are more politically expedient. The data for this research were collected mostly through interviews, questionnaire, dailies and reports on the subject matter. The data and findings were presented in tables and results showed that the environment is directly and indirectly impacted by crises and that these impacts can in turn result to a continuous cycle of violent activities if not addressed because of the inadequacies in the supply of infrastructural facilities, resources and so on caused by the inflow of displaced population. Recommendations were made on providing security to minimize conflict occurrences in Jos and its environs, minimizing the impact of social crises on the environment, provision of adequate infrastructural facilities to carter for population rise, renewal and regeneration schemes, etc. which will go a long way in mitigating the impact of crises on the environment.

Keywords: environment, impact, long-term, social crises

Procedia PDF Downloads 313
80 The Hepatoprotective Effects of Aquatic Extract of Levesticum Officinale against Paraquat Toxicity of Hepatocytes

Authors: Hasan Afarnegan, Ali Shahraki, Jafar Shahraki

Abstract:

Paraquat is widely used as a strong nitrogen-based herbicide for controlling of weeds in agriculture. This poison is extremely toxic for humans which induces several – organ failure by accumulation in cells and many instances of death occurred due to its poisoning. Paraquat metabolized primarily in the liver. The purpose of this study was to assess the effects of aquatic extract of levisticum officinale on oxidative status and biochemical factors in hepatocytes exposed to paraquat. Our results determined that hepatocytes destruction induced by paraquat is mediated by reactive oxygen species (ROS) production, lipid peroxidation and decrease of mitochondrial membrane potential were significantly (P<0.05) prevented by aquatic extract of Levisicum officinale (100, 200 and 300 µg/ml). These effects of paraquat also prevented via antioxidants and ROS scavengers (α-tocopherol, DMSO, manitol), mitochondrial permeability transition (MPT) pore sealing compound (carnitine).MPT pore sealing compound inhibited the hepatotoxicity, indicating that paraquat induced cell death via mithochondrial pathway. Pretreatment of hepatocytes with aquatic extracts of Levisticum officinale, antioxidants and ROS scavengers also blocked hepatic cell death caused by paraquat, suggesting that oxidative stress may be directly induced decline of mithochondrial membrane potential. In conclusion, paraquat hepatotoxicity can be attributed to oxidative stress and continued by mithochondrial membrane potential disruption. Levisticum officinale aquatic extract, presumably due to its strong antoxidant properties, could protect the destructive effects of paraquat on rat hepatocytes.

Keywords: hepatocyte protection, levisticum officinale, oxidative stress, paraquat

Procedia PDF Downloads 195
79 Effect of Solid Waste on the Sustainability of the Water Resource Quality in the Gbarain Catchment of the Niger Delta Region of Nigeria

Authors: Davidson E. Egirani, Nanfe R. Poyi, Napoleon Wessey

Abstract:

This paper would report on the effect of solid waste on water resource quality in the Gbarain catchment of the Niger Delta Region of Nigeria. The Gbarain catchment presently hosts two waste-dump sites located along the flanks of a seasonal flow stream and perennially waterlogged terrain. The anthropogenic activity has significantly affected the quality of surface and groundwater in the Gbarain catchment. These wastes have made the water resource environment toxic leading to the poisoning of aquatic life. The contaminated water resources could lead to serious environmental and human health challenges such as low agricultural yields to loss of vital human organs. The contamination is via geological processes such as seepage and direct infiltration of contaminants into watercourses. The results obtained from field and experimental investigations followed by modeling, and graphical interpretation indicate heavy metal load and fecal pollution in some of the groundwater. The metal load, Escherichia coli, and total coliforms counts exceed the international and regional recommended limits. The contaminate values include Lead (> 0.01 mg/L), Mercury (> 0.006 mg/L), Manganese (> 0.4 mg/L and Escherichia coli (> 0 per 100ml) of the samples. Land use planning, enactment, and implementation of environmental laws are necessary for this region, for effective surface water and groundwater resource management.

Keywords: aquatic life, solid waste, environmental health, human health, waste-dump site, water-resource environment

Procedia PDF Downloads 121
78 The Role of Fluid Catalytic Cracking in Process Optimisation for Petroleum Refineries

Authors: Chinwendu R. Nnabalu, Gioia Falcone, Imma Bortone

Abstract:

Petroleum refining is a chemical process in which the raw material (crude oil) is converted to finished commercial products for end users. The fluid catalytic cracking (FCC) unit is a key asset in refineries, requiring optimised processes in the context of engineering design. Following the first stage of separation of crude oil in a distillation tower, an additional 40 per cent quantity is attainable in the gasoline pool with further conversion of the downgraded product of crude oil (residue from the distillation tower) using a catalyst in the FCC process. Effective removal of sulphur oxides, nitrogen oxides, carbon and heavy metals from FCC gasoline requires greater separation efficiency and involves an enormous environmental significance. The FCC unit is primarily a reactor and regeneration system which employs cyclone systems for separation.  Catalyst losses in FCC cyclones lead to high particulate matter emission on the regenerator side and fines carryover into the product on the reactor side. This paper aims at demonstrating the importance of FCC unit design criteria in terms of technical performance and compliance with environmental legislation. A systematic review of state-of-the-art FCC technology was carried out, identifying its key technical challenges and sources of emissions.  Case studies of petroleum refineries in Nigeria were assessed against selected global case studies. The review highlights the need for further modelling investigations to help improve FCC design to more effectively meet product specification requirements while complying with stricter environmental legislation.

Keywords: design, emission, fluid catalytic cracking, petroleum refineries

Procedia PDF Downloads 114