Search results for: soft clays
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1033

Search results for: soft clays

703 Experimental Investigations on Ultimate Bearing Capacity of Soft Soil Improved by a Group of End-Bearing Column

Authors: Mamata Mohanty, J. T. Shahu

Abstract:

The in-situ deep mixing is an effective ground improvement technique which involves columnar inclusion into soft ground to increase its bearing capacity and reduce settlement. The first part of the study presents the results of unconfined compression on cement-admixed clay prepared at different cement content and subjected to varying curing periods. It is found that cement content is a prime factor controlling the strength of the cement-admixed clay. Besides cement content, curing period is important parameter that adds to the strength of cement-admixed clay. Increase in cement content leads to significant increase in Unconfined Compressive Strength (UCS) values especially at cement contents greater than 8%. The second part of the study investigated the bearing capacity of the clay ground improved by a group of end-bearing column using model tests under plain-strain condition. This study mainly focus to examine the effect of cement contents on the ultimate bearing capacity and failure stress of the improved clay ground. The study shows that the bearing capacity of the improved ground increases significantly with increase in cement contents of the soil-cement columns. A considerable increase in the stiffness of the model ground and failure stress was observed with increase in cement contents.

Keywords: bearing capacity, cement content, curing time, unconfined compressive strength, undrained shear strength

Procedia PDF Downloads 152
702 Soft Skills: Expectations and Needs in Tourism

Authors: Susana Silva, Dora Martins

Abstract:

The recent political, economic, social technological and employment changes significantly affect the tourism organizations and consequently the changing nature of the employment experience of the tourism workforce. Such scene leads several researchers and labor analysts to reflect about what kinds of jobs, knowledge and competences are need to ensure the success to teach, to learning and to work on this sector. In recent years the competency-based approach in high education level has become of significant interest. On the one hand, this approach could leads to the forming of the key students’ competences which contribute their better preparation to the professional future and on the other hand could answer better to practical demands from tourism job market. The goals of this paper are (1) to understand the expectations of university tourism students in relation to the present and future tourism competences demands, (2) to identify the importance put on the soft skills, (3) to know the importance of high qualification to their future professional activity and (4) to explore the students perception about present and future tourist sector specificities. To this proposal, a questionnaire was designed and distributed to every students who participate on classes of Hospitality Management under degree and master from one public Portuguese university. All participants were invited, during December 2014 and September 2015, to answer the questionnaire at the moment and on presence of one researcher of this study. Fulfilled the questionnaire 202 students (72, 35,6% male and 130, 64.4% female), the mean age was 21,64 (SD=5,27), 91% (n=86) were undergraduate and 18 (9%) were master students. 80% (n=162) of our participants refers as a possibility to look for a job outside the country.42% (n=85) prefers to work in a medium-sized tourism units (with 50-249 employees). According to our participants the most valued skills in tourism are the domain of foreign languages (87.6%, n=177), the ability to work as a team (85%), the personal persistence (83%, n=168), the knowledge of the product/services provided (73.8%, n=149), and assertiveness (66.3%, n=134). 65% (n=131) refers the availability to look for a job in a home distance of 1000 kilometers and 59% (n=119) do not consider the possibility to work in another area than tourism. From the results of this study we are in the position of confirming the need for universities to maintain a better link with the professional tourism companies and to rethink some competences into their learning course model. Based on our results students, universities and companies could understand more deeply the motivations, expectations and competences need to build the future career who study and work on the tourism sector.

Keywords: human capital, employability, students’ competencies perceptions, soft skills, tourism

Procedia PDF Downloads 231
701 A Radiographic Superimposition in Orthognathic Surgery of Class III Skeletal Malocclusion

Authors: Albert Suryaprawira

Abstract:

Patients requiring correction of severe Class III skeletal discrepancy historically has been among the most challenging treatments for orthodontists. Correction of an aesthetic and functional problem is crucially important. This is a case report of an adult male aged 18 years who complained of difficulty in chewing and speaking. Patient has a prominent profile with mandibular excess. The pre-treatment cephalometric radiograph was taken to analyse the skeletal problem and to measure the amount of bone movement and the prediction soft tissue response. The panoramic radiograph was also taken to analyse bone quality, bone abnormality, third molar impaction, etc. Before the surgery, the pre-surgical cephalometric radiograph was taken to re-evaluate the plan and to settle the final amount of bone cut. After the surgery, the post-surgical cephalometric radiograph was taken to confirm the result with the plan. The superimposition between those radiographs was performed to analyse the outcome. It includes the superimposition of the cranial base, maxilla, and mandible. Superimposition is important to describe the amount of hard and soft tissue movement. It is also important to predict the possibility of relapse after the surgery. The patient needs to understand all the surgical plan, outcome and relapse prevention. The surgery included mandibular set back by bilateral sagittal split osteotomies. Although the discrepancy was severe using this combination of treatment and the use of radiographic superimposition, an aesthetically pleasing and stable result was achieved.

Keywords: cephalometric, mandibular set back, orthognathic, superimposition

Procedia PDF Downloads 236
700 An Assessment of the Extent and Impact of Motor Insurance Fraud Claims in Nigeria

Authors: Olatokunbo Shoyemi, Mario Brito, Ian Dawson

Abstract:

In recent times, the Nigerian motor insurers have experienced high volume of motor insurance claim pay-outs and insignificant contribution to the net premium income of the Nigerian insurance market, which has been a major concern for the shareholders/stakeholders. It has been argued that there are many factors that have brought about these concerns. However, anecdotal evidence (ongoing debates among industry practitioners) suggests prevalence of fraud due to poor practices in motor insurance business in Nigeria. This study is therefore aimed to carry out an assessment of fraud in motor insurance claims as perceived by experts in the Nigerian insurance market. This study adopted a descriptive research design, and the analysis was built on a survey among insurance experts in Nigeria using a designed questionnaire. A purposive and snowball sampling were used to select our sample (N = 120) - representing a selection of all professionally qualified insurance experts in Nigeria insurance industry. The study found that Nigerian insurance experts (i) largely agree that there is a problematic level of fraud in the Nigerian motor insurance industry; (ii) perceive soft fraud to be about 3 times more common than hard fraud in the Nigerian motor insurance industry, and (iii) strongly agree there are problematic impacts from fraud on the solvency of the Nigerian motor insurers. This paper has provided an empirical understanding of the existence, extent, and impact of fraud risks within the Nigerian insurance market based on expert knowledge and insights rather than, as has often been the case, a reliance on individual anecdotes.

Keywords: claims, net premium income, motor insurance, soft fraud, hard fraud

Procedia PDF Downloads 85
699 Quantification of Enzymatic Activities of Proteins, Peroxidase and Phenylalanine Ammonia Lyase, in Growing Phaseolus vulgaris L, with Application Bacterial Consortium to Control Fusarium and Rhizoctonia

Authors: Arredondo Valdés Roberto, Hernández Castillo Francisco Daniel, Laredo Alcalá Elan Iñaky, Gonzalez Gallegos Esmeralda, Castro Del Angel Epifanio

Abstract:

The common bean or Phaseolus vulgaris L. is the most important food legume for direct consumption in the world. Fusarium dry rot in the major fungus disease affects Phaseolus vulgaris L, after planting. In another hand, Rhizoctonia can be found on all underground parts of the plant and various times during the growing season. In recent years, the world has conducted studies about the use of natural products as substitutes for herbicides and pesticides, because of possible ecological and economic benefits. Plants respond to fungal invasion by activating defense responses associated with accumulation of several enzymes and inhibitors, which prevent pathogen infection. This study focused on the role of proteins, peroxidase (POD), phenylalanine ammonia lyase (PAL), in imparting resistance to soft rot pathogens by applied different bacterial consortium, formulated and provided by Biofertilizantes de Méxicanos industries, analyzing the enzyme activity at different times of application (6 h, 12 h and 24 h). The resistance of these treatments was correlated with high POD and PAL enzyme activity as well as increased concentrations of proteins. These findings show that PAL, POD and synthesis of proteins play a role in imparting resistance to Phaseolus vulgaris L. soft rot infection by Fusarium and Rhizoctonia.

Keywords: fusarium, peroxidase, phenylalanine ammonia lyase, rhizoctonia

Procedia PDF Downloads 324
698 Mechanical and Biodegradability of Porous Poly-ε-Caprolactone/Polyethylene Glycol Copolymer-Reinforced Cellulose Nanofibers for Soft Tissue Engineering Applications

Authors: Mustafa Abu Ghalia, Mohammed Seddik

Abstract:

The design and development of a new class of biomaterial has gained particular interest in producing polymer scaffold for biomedical applications. Improving mechanical properties, biological and controlling pores scaffold are important factors to provide appropriate biomaterial for implement in soft tissue repair and regeneration. In this study, poly-ε-caprolactone (PCL) /polyethylene glycol (PEG) copolymer (80/20) incorporated with CNF scaffolds were made employing solvent casting and particulate leaching methods. Four mass percentages of CNF (1, 2.5, 5, and 10 wt.%) were integrated into the copolymer through a silane coupling agent. Mechanical properties were determined using Tensile Tester data acquisition to investigate the effect of porosity, pore size, and CNF contents. Tensile strength obtained for PCL/PEG- 5 wt.% CNF was 16 MPa, which drastically decreased after creating a porous structure to 7.1 MPa. The optimum parameters of the results were found to be 5 wt.% for CNF, 240 μm for pore size, and 83% for porosity. Scanning electron microscopy (SEM) micrograph reveals that consistent pore size and regular pore shape were accomplished after the addition of CNF-5 wt. % into PCL/PEG. The results of mass loss of PCL/PEG reinforced-CNF 1% have clearly enhanced to double values compared with PCL/PEG copolymer and three times with PCL/PEG scaffold-CNF 1%. In addition, all PCL/PEG reinforced and scaffold- CNF were partially disintegrated under composting conditions confirming their biodegradable behavior. This also provides a possible solution for the end life of these biomaterials.

Keywords: PCL/PEG, cellulose nanofibers, tissue engineering, biodegradation, compost polymers

Procedia PDF Downloads 37
697 The Prevalence of Intubation Induced Dental Complications among Hospitalized Patients

Authors: Dorsa Rahi, Arghavan Tonkanbonbi, Soheila Manifar, Behzad Jafvarnejad

Abstract:

Background and Aim: Intraoral manipulation is performed during endotracheal intubation for general anesthesia, which can traumatize the soft and hard tissue in the oral cavity and cause postoperative pain and discomfort. Dental trauma is the most common complication of intubation. This study aimed to assess the prevalence of dental complications due to intubation in patients hospitalized in Imam Khomeini Hospital during 2018-2019. Materials and Methods: A total of 805 patients presenting to the Cancer Institute of Imam Khomeini Hospital for preoperative anesthesia consultation were randomly enrolled. A dentist interviewed the patients and performed a comprehensive clinical oral examination preoperatively. The patients underwent clinical oral examination by another dentist postoperatively. Results: No significant correlation was found between dental trauma (tooth fracture, tooth mobility, or soft tissue injury) after intubation with the age or gender of patients. According to the Wilcoxon test and McNemar-Bowker Test, the rate of mobility before the intubation was significantly different from that after the intubation (P=0.000). Maxillary central incisors, maxillary left canine and mandibular right and left central incisors had the highest rate of fracture. Conclusion: Mobile teeth before the intubation are at higher risk of avulsion and aspiration during the procedure. Patients with primary temporomandibular joint disorders are more susceptible to post-intubation trismus.

Keywords: oral trauma, dental trauma, intubation, anesthesia

Procedia PDF Downloads 123
696 Water and Beverage Consumption among Children and Adolescents in Tehran Metropolitan City of Iran

Authors: Mitra Abtahi, Esmat Nasseri, Morteza Abodllahi

Abstract:

Introduction: Adequate hydration is necessary for proper physical and mental function. The aim of this study is to determine the consumption of water and all other beverages in children (8-13 years) and adolescents (14-17 years) in Tehran metropolitan city of Iran. Materials and Methods: In this cross-sectional study, 455 children (8-13 years) and 334 adolescents (14-17 years) were retrieved from north, center, and south of Tehran (18 schools). Instrument for data collection consisted of a “demographic and general health” questionnaire and a “7-day fluid record”. Data analyses were performed with SPSS 16 software. Results: The mean total consumption of fluids in school children was 1302 ± 500.6 ml/day. The highest mean intakes were observed for water (666 ± 398 ml/day), followed by milk (239 ± 183 ml/day), regular soft beverages (RSB) (188 ± 148 ml/day), and juices (60 ± 74 ml/day). Water, hot drinks (mainly tea) and soft drinks intake was significantly more in boys than girls. A significantly lower intake of milk and a higher intake of RSB and hot beverages (mainly tea) have been seen among adolescents compared to children. Conclusion: The most important finding is that mean fluid intake of children and adolescents does not meet international adequate intake references for water and fluids. This finding may suggest the necessity of development of the local references. To improve fluid intake habits of children and adolescents, relevant policy making and actions are warranted.

Keywords: adolescents, beverages, children, water

Procedia PDF Downloads 155
695 Predicting the Effect of Vibro Stone Column Installation on Performance of Reinforced Foundations

Authors: K. Al Ammari, B. G. Clarke

Abstract:

Soil improvement using vibro stone column techniques consists of two main parts: (1) the installed load bearing columns of well-compacted, coarse-grained material and (2) the improvements to the surrounding soil due to vibro compaction. Extensive research work has been carried out over the last 20 years to understand the improvement in the composite foundation performance due to the second part mentioned above. Nevertheless, few of these studies have tried to quantify some of the key design parameters, namely the changes in the stiffness and stress state of the treated soil, or have consider these parameters in the design and calculation process. Consequently, empirical and conservative design methods are still being used by ground improvement companies with a significant variety of results in engineering practice. Two-dimensional finite element study to develop an axisymmetric model of a single stone column reinforced foundation was performed using PLAXIS 2D AE to quantify the effect of the vibro installation of this column in soft saturated clay. Settlement and bearing performance were studied as an essential part of the design and calculation of the stone column foundation. Particular attention was paid to the large deformation in the soft clay around the installed column caused by the lateral expansion. So updated mesh advanced option was taken in the analysis. In this analysis, different degrees of stone column lateral expansions were simulated and numerically analyzed, and then the changes in the stress state, stiffness, settlement performance and bearing capacity were quantified. It was found that application of radial expansion will produce a horizontal stress in the soft clay mass that gradually decrease as the distance from the stone column axis increases. The excess pore pressure due to the undrained conditions starts to dissipate immediately after finishing the column installation, allowing the horizontal stress to relax. Changes in the coefficient of the lateral earth pressure K ٭, which is very important in representing the stress state, and the new stiffness distribution in the reinforced clay mass, were estimated. More encouraging results showed that increasing the expansion during column installation has a noticeable effect on improving the bearing capacity and reducing the settlement of reinforced ground, So, a design method should include this significant effect of the applied lateral displacement during the stone column instillation in simulation and numerical analysis design.

Keywords: bearing capacity, design, installation, numerical analysis, settlement, stone column

Procedia PDF Downloads 358
694 Effect of Sodium Hydroxide on Geotechnical Properties of Soft Soil in Kathmandu Valley

Authors: Bal Deep Sharma, Suresh Ray Yadav

Abstract:

Local soils are often chosen due to their widespread availability and low cost. However, these soils typically have poor durability, which can lead to significant limitations in their use for construction. To address this issue, various soil stabilization techniques have been developed and used over the years. This study investigates the viability of employing the mineral polymerization (MIP) technique to stabilize black soils, intending to enhance their suitability for construction applications. This technique involves the microstructural transformation of certain clay minerals into solid and stable compounds exhibiting characteristics similar to hydroxy sodalite, feldspathoid, or zeolite. This transformation occurs through the action of an alkaline reactant at atmospheric pressure and low temperature. The soil sample was characterized using grain size distribution, Atterberg limit test, organic content test, and pH-value tests. The unconfined compressive strength of the soil specimens, prepared with varying percentages of sodium hydroxide as an additive and sand as a filler by weight, was determined at the optimum moisture content. The unconfined compressive strength of the specimens was tested under three different conditions: dry, wet, and cycling. The maximum unconfined compressive strengths were 77.568 kg/cm², 38.85 kg/cm², and 56.3 kg/cm² for the dry, wet, and cycling specimens, respectively, while the unconfined compressive strength of the untreated soil was 7.38 kg/cm². The minimum unconfined compressive strength of the wet and cycling specimens was greater than that of the untreated soil. Based on these findings, it can be concluded that these soils can be effectively used as construction material after treatment with sodium hydroxide.

Keywords: soil stabilization technique, soft soil treatment, sodium hydroxide, unconfined compressive strength

Procedia PDF Downloads 41
693 Thermal, Chemical, and Mineralogical Properties of Soil Building Blocks Reinforced with Cement

Authors: Abdelmalek Ammari

Abstract:

This paper represents an experimental study to determine the effect between thermal conductivity of Compressed Earth Block Stabilized (CEBs) by cement and the mineralogical and chemical analyses of soil, all the samples of CEB in the dry state and with different content of cement, the samples made by soil stabilized by Portland Cement. The soil used collected from fez city in Morocco. That determination of the thermal conductivity of CEBs plays an important role when considering its suitability for energy saving insulation. The measurement technique used to determine thermal conductivity is called hot ring method, the thermal conductivity of the tested samples is strongly affected by the quantity of the cement added. The soil of Fez, mainly composed of calcite, quartz, and dolomite, improved the behaviour of the material by the addition of cement. The findings suggest that to manufacture lightweight samples with high thermal insulation properties, it is advisable to use clays that contain quartz. . In addition, quartz has high thermal conductivity.

Keywords: compressed earth blocks, thermal conductivity, mineralogical, chemical, temperature

Procedia PDF Downloads 127
692 Antibacterial Hydrogels for Wound Care

Authors: Saba Atefyekta

Abstract:

Aim: Control of bacterial bioburden in wounds is an important step for minimizing the risk of wound infection. An antimicrobial hydrogel wound dressing is developed out of soft polymeric hydrogels that contain antimicrobial peptides (AMPs). Such wound dressings can bind and kill all types of bacteria, even the resistance types at the wound site. Methods: AMPs are permanently bonded onto a soft nanostructured polymer via covalent attachment and physical entanglement. This improves stability, rapid antibacterial activity, and, most importantly, prevents the leaching of AMPs. Major Findings: Antimicrobial analysis of antimicrobial hydrogels using in-vitro wound models confirmed >99% killing efficiency against multiple bacterial trains, including MRSA, MDR, E. Coli. Furthermore, the hydrogel retained its antibacterial activity for up to 4 days when exposed to human serum. Tests confirmed no release of AMPs, and it was proven non-toxic to mammalian cells. An in-vivo study on human intact skin showed a significant reduction of bacteria for part of the subject’s skin treated with antibacterial hydrogels. A similar result was detected through a qualitative study in veterinary trials on different types of surgery wounds in cats, dogs, and horses. Conclusions: Antimicrobial hydrogels wound dressings developed by permanent attachment of AMPs can effectively and rapidly kill bacteria in contact. Such antibacterial hydrogel wound dressings are non-toxic and do not release any substances into the wound.

Keywords: antibacterial wound dressing, antimicrobial peptides, post-surgical wounds, infection

Procedia PDF Downloads 59
691 Optimization of Bifurcation Performance on Pneumatic Branched Networks in next Generation Soft Robots

Authors: Van-Thanh Ho, Hyoungsoon Lee, Jaiyoung Ryu

Abstract:

Efficient pressure distribution within soft robotic systems, specifically to the pneumatic artificial muscle (PAM) regions, is essential to minimize energy consumption. This optimization involves adjusting reservoir pressure, pipe diameter, and branching network layout to reduce flow speed and pressure drop while enhancing flow efficiency. The outcome of this optimization is a lightweight power source and reduced mechanical impedance, enabling extended wear and movement. To achieve this, a branching network system was created by combining pipe components and intricate cross-sectional area variations, employing the principle of minimal work based on a complete virtual human exosuit. The results indicate that modifying the cross-sectional area of the branching network, gradually decreasing it, reduces velocity and enhances momentum compensation, preventing flow disturbances at separation regions. These optimized designs achieve uniform velocity distribution (uniformity index > 94%) prior to entering the connection pipe, with a pressure drop of less than 5%. The design must also consider the length-to-diameter ratio for fluid dynamic performance and production cost. This approach can be utilized to create a comprehensive PAM system, integrating well-designed tube networks and complex pneumatic models.

Keywords: pneumatic artificial muscles, pipe networks, pressure drop, compressible turbulent flow, uniformity flow, murray's law

Procedia PDF Downloads 46
690 Effects of Family Order and Informal Social Control on Protecting against Child Maltreatment: A Comparative Study of Seoul and Kathmandu

Authors: Thapa Sirjana, Clifton R. Emery

Abstract:

This paper examines the family order and Informal Social Control (ISC) by the extended families as a protective factor against Child Maltreatment. The findings are discussed using the main effects and the interaction effects of family order and informal social control by the extended families. The findings suggest that IPV mothers are associated with child abuse and child neglect. The children are neglected in the home more and physical abuse occurs in the case, if mothers are abused by their husbands. The mother’s difficulties of being abused may lead them to neglect their children. The findings suggest that ‘family order’ is a significant protective factor against child maltreatment. The results suggest that if the family order is neither too high nor too low than that can play a role as a protective factor. Soft type of ISC is significantly associated with child maltreatment. This study suggests that the soft type of ISC by the extended families is a helpful approach to develop child protection in both the countries. This study is analyzed the data collected from Seoul and Kathmandu families and neighborhood study (SKFNS). Random probability cluster sample of married or partnered women in 20 Kathmandu wards and in Seoul 34 dongs were selected using probability proportional to size (PPS) sampling. Overall, the study is to make a comparative study of Korea and Nepal and examine how the cultural differences and similarities associate with the child maltreatment.

Keywords: child maltreatment, intimate partner violence, informal social control and family order Seoul, Kathmandu

Procedia PDF Downloads 227
689 Hydrodynamics in Wetlands of Brazilian Savanna: Electrical Tomography and Geoprocessing

Authors: Lucas M. Furlan, Cesar A. Moreira, Jepherson F. Sales, Guilherme T. Bueno, Manuel E. Ferreira, Carla V. S. Coelho, Vania Rosolen

Abstract:

Located in the western part of the State of Minas Gerais, Brazil, the study area consists of a savanna environment, represented by sedimentary plateau and a soil cover composed by lateritic and hydromorphic soils - in the latter, occurring the deferruginization and concentration of high-alumina clays, exploited as refractory material. In the hydromorphic topographic depressions (wetlands) the hydropedogical relationships are little known, but it is observed that in times of rainfall, the depressed region behaves like a natural seasonal reservoir - which suggests that the wetlands on the surface of the plateau are places of recharge of the aquifer. The aquifer recharge areas are extremely important for the sustainable social, economic and environmental development of societies. The understanding of hydrodynamics in relation to the functioning of the ferruginous and hydromorphic lateritic soils system in the savanna environment is a subject rarely explored in the literature, especially its understanding through the joint application of geoprocessing by UAV (Unmanned Aerial Vehicle) and electrical tomography. The objective of this work is to understand the hydrogeological dynamics in a wetland (with an area of 426.064 m²), in the Brazilian savanna,as well as the understanding of the subsurface architecture of hydromorphic depressions in relation to the recharge of aquifers. The wetland was compartmentalized in three different regions, according to the geoprocessing. Hydraulic conductivity studies were performed in each of these three portions. Electrical tomography was performed on 9 lines of 80 meters in length and spaced 10 meters apart (direction N45), and a line with 80 meters perpendicular to all others. With the data, it was possible to generate a 3D cube. The integrated analysis showed that the area behaves like a natural seasonal reservoir in the months of greater precipitation (December – 289mm; January – 277,9mm; February – 213,2mm), because the hydraulic conductivity is very low in all areas. In the aerial images, geotag correction of the images was performed, that is, the correction of the coordinates of the images by means of the corrected coordinates of the Positioning by Precision Point of the Brazilian Institute of Geography and Statistics (IBGE-PPP). Later, the orthomosaic and the digital surface model (DSM) were generated, which with specific geoprocessing generated the volume of water that the wetland can contain - 780,922m³ in total, 265,205m³ in the region with intermediate flooding and 49,140m³ in the central region, where a greater accumulation of water was observed. Through the electrical tomography it was possible to identify that up to the depth of 6 meters the water infiltrates vertically in the central region. From the 8 meters depth, the water encounters a more resistive layer and the infiltration begins to occur horizontally - tending to concentrate the recharge of the aquifer to the northeast and southwest of the wetland. The hydrodynamics of the area is complex and has many challenges in its understanding. The next step is to relate hydrodynamics to the evolution of the landscape, with the enrichment of high-alumina clays, and to propose a management model for the seasonal reservoir.

Keywords: electrical tomography, hydropedology, unmanned aerial vehicle, water resources management

Procedia PDF Downloads 115
688 Preparation of Fe3Si/Ferrite Micro-and Nano-Powder Composite

Authors: Radovan Bures, Madgalena Streckova, Maria Faberova, Pavel Kurek

Abstract:

Composite material based on Fe3Si micro-particles and Mn-Zn nano-ferrite was prepared using powder metallurgy technology. The sol-gel followed by autocombustion process was used for synthesis of Mn0.8Zn0.2Fe2O4 ferrite. 3 wt.% of mechanically milled ferrite was mixed with Fe3Si powder alloy. Mixed micro-nano powder system was homogenized by the Resonant Acoustic Mixing using ResodynLabRAM Mixer. This non-invasive homogenization technique was used to preserve spherical morphology of Fe3Si powder particles. Uniaxial cold pressing in the closed die at pressure 600 MPa was applied to obtain a compact sample. Microwave sintering of green compact was realized at 800°C, 20 minutes, in air. Density of the powders and composite was measured by Hepycnometry. Impulse excitation method was used to measure elastic properties of sintered composite. Mechanical properties were evaluated by measurement of transverse rupture strength (TRS) and Vickers hardness (HV). Resistivity was measured by 4 point probe method. Ferrite phase distribution in volume of the composite was documented by metallographic analysis. It has been found that nano-ferrite particle distributed among micro- particles of Fe3Si powder alloy led to high relative density (~93%) and suitable mechanical properties (TRS >100 MPa, HV ~1GPa, E-modulus ~140 GPa) of the composite. High electric resistivity (R~6.7 ohm.cm) of prepared composite indicate their potential application as soft magnetic material at medium and high frequencies.

Keywords: micro- and nano-composite, soft magnetic materials, microwave sintering, mechanical and electric properties

Procedia PDF Downloads 337
687 Law, Regulatory Transformations and Evolving Paradigm: The Case of Corporate Social Responsibility in India

Authors: Shuchi Bharti

Abstract:

This article intends to analyse the transforming nature of state and corporate sector relationship in the light of evolving regulatory and institutional aspects pertaining to Corporate Social Responsibility (CSR) in India. The focus is on evaluating the accounts of law and decentred discourses, relevant within the changing regulatory and institutional paradigm that substantially goes ahead of formal legal control of state towards corporate actors. At this vantage point, it is important to understand the state’s posture towards a changing scenario particularly as the tone is set by regulatory parameters pertaining to CSR to drive process of engagement with the stakeholders. The tripartite framework of the article intends to focus on finding on the vital interconnected aspects of the CSR provisions (Section 135) of The Companies Act 2013 (The Act), rise of new institutions and the emergence of the decentred regulatory space. Thus is earmarked in a neo-liberal paradigm; state is witnessed to perform a responsive function in engendering enhanced public role for the corporate sector. In this overarching framework the aim is to undertake a causal, exploratory and relational analysis of aspects pertaining law, regulation and institutional transformations. Firstly, focus is drawn on to investigate the relational facets of the advent of law and regulatory framework of CSR. Secondly, in the light of the historical evolution, a causal connection is attempted between globalization, emergence of international soft law framework and the Indian case of CSR. Finally, I look into how the new Companies Act mandates CSR expenditure vis- a -vis multiple parameters and guidelines.

Keywords: corporate social responsibility, stakeholders, soft law, decentred regulation

Procedia PDF Downloads 273
686 Effect of Leachate Presence on Shear Strength Parameters of Bentonite-Amended Zeolite Soil

Authors: R. Ziaie Moayed, H. Keshavarz Hedayati

Abstract:

Over recent years, due to increased population and increased waste production, groundwater protection has become more important, therefore, designing engineered barrier systems such as landfill liners to prevent the entry of leachate into groundwater should be done with greater accuracy. These measures generally involve the application of low permeability soils such as clays. Bentonite is a natural clay with low permeability which makes it a suitable soil for using in liners. Also zeolite with high cation exchange capacity can help to reduce of hazardous materials risk. Bentonite expands when wet, absorbing as much as several times its dry mass in water. This property may effect on some structural properties of soil such as shear strength. In present study, shear strength parameters are determined by both leachates polluted and not polluted bentonite-amended zeolite soil with mixing rates (B/Z) of 5%-10% and 20% with unconfined compression test to obtain the differences. It is shown that leachate presence causes reduction in resistance in general.

Keywords: bentonite, leachate, shear strength parameters, unconfined compression test

Procedia PDF Downloads 85
685 A Rural Journey of Integrating Interprofessional Education to Foster Trust

Authors: Julia Wimmers Klick

Abstract:

Interprofessional Education (IPE) is widely recognized as a valuable approach in healthcare education, despite the challenges it presents. This study explores IP surface anatomy lab sessions, with a focus on fostering trust and collaboration among healthcare students. The research is conducted within the context of rural healthcare settings in British Columbia (BC), where a medical school and a physical therapy (PT) program operate under the Faculty of Medicine at the University of British Columbia (UBC). While IPE sessions addressing soft skills have been implemented, the integration of hard skills, such as Anatomy, remains limited. To address this gap, a pilot feasibility study was conducted with a positive outcome, a follow-up study involved these IPE sessions aimed at exploring the influence of bonding and trust between medical and PT students. Data were collected through focus groups comprising participating students and faculty members, and a structured SWOC (Strengths, Weaknesses, Opportunities, and Challenges) analysis was conducted. The IPE sessions, 3 in total, consisted of a 2.5-hour lab on surface anatomy, where PT students took on the teaching role, and medical students were newly exposed to surface anatomy. The focus of the study was on the relationship-building process and trust development between the two student groups, rather than assessing the acquisition of surface anatomy skills. Results indicated that the surface anatomy lab served as a suitable tool for the application and learning of soft skills. Faculty members observed positive outcomes, including productive interaction between students, reversed hierarchy with PT students teaching medical students, practicing active listening skills, and using a mutual language of anatomy. Notably, there was no grade assessment or external pressure to perform. The students also reported an overall positive experience; however, the specific impact on the development of soft skill competencies could not be definitively determined. Participants expressed a sense of feeling respected, welcomed, and included, all of which contributed to feeling safe. Within the small group environment, students experienced becoming a part of a community of healthcare providers that bonded over a shared interest in health professions education. They enjoyed sharing diverse experiences related to learning across their varied contexts, without fear of judgment and reprisal that were often intimidating in single professional contexts. During a joint Christmas party for both cohorts, faculty members observed students mingling, laughing, and forming bonds. This emphasized the importance of early bonding and trust development among healthcare colleagues, particularly in rural settings. In conclusion, the findings emphasize the potential of IPE sessions to enhance trust and collaboration among healthcare students, with implications for their future professional lives in rural settings. Early bonding and trust development are crucial in rural settings, where healthcare professionals often rely on each other. Future research should continue to explore the impact of content-concentrated IPE on the development of soft skill competencies.

Keywords: interprofessional education, rural healthcare settings, trust, surface anatomy

Procedia PDF Downloads 45
684 A Simple Device for in-Situ Direct Shear and Sinkage Tests

Authors: A. Jerves, H. Ling, J. Gabaldon, M. Usoltceva, C. Couste, A. Agarwal, R. Hurley, J. Andrade

Abstract:

This work introduces a simple device designed to perform in-situ direct shear and sinkage tests on granular materials as sand, clays, or regolith. It consists of a box nested within a larger box. Both have open bottoms, allowing them to be lowered into the material. Afterwards, two rotating plates on opposite sides of the outer box will rotate outwards in order to clear regolith on either side, providing room for the inner box to move relative to the plates and perform a shear test without the resistance of the surrounding soil. From this test, Coulomb parameters, including cohesion and internal friction angle, as well as, Bekker parameters can be in erred. This device has been designed for a laboratory setting, but with few modi cations, could be put on the underside of a rover for use in a remote location. The goal behind this work is to ultimately create a compact, but accurate measuring tool to put onto a rover or any kind of exploratory vehicle to test for regolith properties of celestial bodies.

Keywords: simple shear, friction angle, Bekker parameters, device, regolith

Procedia PDF Downloads 481
683 Study of Phase Separation Behavior in Flexible Polyurethane Foam

Authors: El Hatka Hicham, Hafidi Youssef, Saghiri Khalid, Ittobane Najim

Abstract:

Flexible polyurethane foam (FPUF) is a low-density cellular material generally used as a cushioning material in many applications such as furniture, bedding, packaging, etc. It is commercially produced during a continuous process, where a reactive mixture of foam chemicals is poured onto a moving conveyor. FPUFs are produced by the catalytic balancing of two reactions involved, the blowing reaction (isocyanate-water) and the gelation reaction (isocyanate-polyol). The microstructure of FPUF is generally composed of soft phases (polyol phases) and rigid domains that separate into two domains of different sizes: the rigid polyurea microdomains and the macrodomains (larger aggregates). The morphological features of FPUF are strongly influenced by the phase separation morphology that plays a key role in determining the global FPUF properties. This phase-separated morphology results from a thermodynamic incompatibility between soft segments derived from aliphatic polyether and hard segments derived from the commonly used aromatic isocyanate. In order to improve the properties of FPUF against the different stresses faced by this material during its use, we report in this work a study of the phase separation phenomenon in FPUF that has been examined using SAXS WAXS and FTIR. Indeed, we have studied with these techniques the effect of water, isocyanates, and alkaline chlorides on the phase separation behavior. SAXS was used to study the morphology of the microphase separated, WAXS to examine the nature of the hard segment packing, and FTIR to investigate the hydrogen bonding characteristics of the materials studied. The prepared foams were shown to have different levels of urea phase connectivity; the increase in water content in the FPUF formulation leads to an increase in the amount of urea formed and consequently the increase of the size of urea aggregates formed. Alkali chlorides (NaCl, KCl, and LiCl) incorporated into FPUF formulations show that is the ability to prevent hydrogen bond formation and subsequently alter the rigid domains. FPUFs prepared by different isocyanate structures showed that urea aggregates are difficult to be formed in foams prepared by asymmetric diisocyanate, while are more easily formed in foams prepared by symmetric and aliphatic diisocyanate.

Keywords: flexible polyurethane foam, hard segments, phase separation, soft segments

Procedia PDF Downloads 123
682 Preparation of New Organoclays and Applications for Adsorption of Telon Dyes in Aqueous Solutions

Authors: Benamar Makhoukhi

Abstract:

Clay ion-exchange using bismidazolium salts (MBIM) could provide organophilic clays materials that allow effective retention of polluting dyes. The present investigations deal with bentonite (Bt) modification using (ortho, meta and para) bisimidazolium cations and attempts to remove a synthetic textile dyes, such as (Telon-Orange, Telon-Red and Telon-Blue) by adsorption, from aqueous solutions. The surface modification of MBIM–Bt was examined using infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Adsorption tests applied to Telon dyes revealed a significant increase of the maximum adsorption capacity from ca. 21-28 to 88-108 mg.g-1 after intercalation. The highest adsorption level was noticed for Telon-Orange dye on the p-MBIM–Bt, presumably due higher interlayer space and better diffusion. The pseudo-first order rate equation was able to provide the best description of adsorption kinetics data for all three dyestuffs. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were also determined. The results show that MBIM–Bt could be employed as low-cost material for the removal of Telon dyes from effluents.

Keywords: Bentonite, Organoclay, Bisimidazolium, Dyes, Isotherms, Adsorption

Procedia PDF Downloads 412
681 Tuning of Indirect Exchange Coupling in FePt/Al₂O₃/Fe₃Pt System

Authors: Rajan Goyal, S. Lamba, S. Annapoorni

Abstract:

The indirect exchange coupled system consists of two ferromagnetic layers separated by non-magnetic spacer layer. The type of exchange coupling may be either ferro or anti-ferro depending on the thickness of the spacer layer. In the present work, the strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt has been investigated by varying the thickness of the spacer layer Al₂O₃. The FePt/Al₂O₃/Fe₃Pt trilayer structure is fabricated on Si <100> single crystal substrate using sputtering technique. The thickness of FePt and Fe₃Pt is fixed at 60 nm and 2 nm respectively. The thickness of spacer layer Al₂O₃ was varied from 0 to 16 nm. The normalized hysteresis loops recorded at room temperature both in the in-plane and out of plane configuration reveals that the orientation of easy axis lies along the plane of the film. It is observed that the hysteresis loop for ts=0 nm does not exhibit any knee around H=0 indicating that the hard FePt layer and soft Fe₃Pt layer are strongly exchange coupled. However, the insertion of Al₂O₃ spacer layer of thickness ts = 0.7 nm results in appearance of a minor knee around H=0 suggesting the weakening of exchange coupling between FePt and Fe₃Pt. The disappearance of knee in hysteresis loop with further increase in thickness of the spacer layer up to 8 nm predicts the co-existence of ferromagnetic (FM) and antiferromagnetic (AFM) exchange interaction between FePt and Fe₃Pt. In addition to this, the out of plane hysteresis loop also shows an asymmetry around H=0. The exchange field Hex = (Hc↑-HC↓)/2, where Hc↑ and Hc↓ are the coercivity estimated from lower and upper branch of hysteresis loop, increases from ~ 150 Oe to ~ 700 Oe respectively. This behavior may be attributed to the uncompensated moments in the hard FePt layer and soft Fe₃Pt layer at the interface. A better insight into the variation in indirect exchange coupling has been investigated using recoil curves. It is observed that the almost closed recoil curves are obtained for ts= 0 nm up to a reverse field of ~ 5 kOe. On the other hand, the appearance of appreciable open recoil curves at lower reverse field ~ 4 kOe for ts = 0.7 nm indicates that uncoupled soft phase undergoes irreversible magnetization reversal at lower reverse field suggesting the weakening of exchange coupling. The openness of recoil curves decreases with increase in thickness of the spacer layer up to 8 nm. This behavior may be attributed to the competition between FM and AFM exchange interactions. The FM exchange coupling between FePt and Fe₃Pt due to porous nature of Al₂O₃ decreases much slower than the weak AFM coupling due to interaction between Fe ions of FePt and Fe₃Pt via O ions of Al₂O₃. The hysteresis loop has been simulated using Monte Carlo based on Metropolis algorithm to investigate the variation in strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt trilayer system.

Keywords: indirect exchange coupling, MH loop, Monte Carlo simulation, recoil curve

Procedia PDF Downloads 167
680 Integrated Geotechnical and Geophysical Investigation of a Proposed Construction Site at Mowe, Southwestern Nigeria

Authors: Kayode Festus Oyedele, Sunday Oladele, Adaora Chibundu Nduka

Abstract:

The subsurface of a proposed site for building development in Mowe, Nigeria, using Standard Penetration Test (SPT) and Cone Penetrometer Test (CPT) supplemented with Horizontal Electrical Profiling (HEP) was investigated with the aim of evaluating the suitability of the strata for foundation materials. Four SPT and CPT were implemented using 10 tonnes hammer. HEP utilizing Wenner array were performed with inter-electrode spacing of 10 – 60 m along four traverses coincident with each of the SPT and CPT. The HEP data were processed using DIPRO software and textural filtering of the resulting resistivity sections was implemented to enable delineation of hidden layers. Sandy lateritic clay, silty lateritic clay, clay, clayey sand and sand horizons were delineated. The SPT “N” value defined very soft to soft sandy lateritic (<4), stiff silty lateritic clay (7 – 12), very stiff silty clay (12 - 15), clayey sand (15- 20) and sand (27 – 37). Sandy lateritic clay (5-40 kg/cm2) and silty lateritic clay (25 - 65 kg/cm2) were defined from the CPT response. Sandy lateritic clay (220-750 Ωm), clay (< 50 Ωm) and sand (415-5359 Ωm) were delineated from the resistivity sections with two thin layers of silty lateritic clay and clayey sand defined in the texturally filtered resistivity sections. This study concluded that the presence of incompetent thick clayey materials (18 m) beneath the study area makes it unsuitable for shallow foundation. Deep foundation involving piling through the clayey layers to the competent sand at 20 m depth was recommended.

Keywords: cone penetrometer, foundation, lithologic texture, resistivity section, standard penetration test

Procedia PDF Downloads 228
679 Comparison of the Curvizigzag Incision with Transverse Stewart Incision in Women Undergoing Modified Radical Mastectomy for Carcinoma Breast

Authors: John Joseph S. Martis, Rohanchandra R. Gatty, Aaron Jose Fernandes, Rahul P. Nambiar

Abstract:

Introduction: Surgery for breast cancer is either mastectomy or breast conservation surgery. The most commonly used incision for modified radical mastectomy is the transverse Stewart incision. But this incision may have the disadvantage of causing disparity between the closure lines of superior and inferior skin flaps in mastectomy and can cause overhanging of soft tissue below and behind the axilla. The curvizigzag incision, on principle, may help in this regard and can prevent scar migration beyond the anterior axillary line. This study aims to compare the two incisions in this regard. Methods: 100 patients with cancer of breast were included in the study after satisfying inclusion and exclusion criteria. They underwent surgery at Father Muller Medical College, Mangalore, India, between November 2019 to September 2021. The patients were divided into two groups. Group A patients were subjected to modified radical mastectomy with curvizigzag incision and group B patients with transverse Stewart incision. Results: Seroma on postoperative day1, day 2 was 0% in both the groups. Seroma on postoperative day 30 was present in 14% of patients in group B. 60% of patients in group B had sag of soft tissue below and behind the axilla, and none of the patients in group A had this problem. In 64% of the patients in group B, the incision crossed the anterior axillary fold, 64% of the patients in group B had tension in the incision site while approximation of the skin flaps. Conclusion: Curvizigzag incision is statistically better with lesser complications when compared to the transverse Stewart incision for modified radical mastectomy for carcinoma breast.

Keywords: breast cancer, curvizigzag incision, transverse Stewart incision, seroma, modified radical mastectomy

Procedia PDF Downloads 67
678 Evaluation of Pile Performance in Different Layers of Soil

Authors: Orod Zarrin, Mohesn Ramezan Shirazi, Hassan Moniri

Abstract:

The use of pile foundations technique is developed to support structures and buildings on soft soil. The most important dynamic load that can affect the pile structure is earthquake vibrations. Pile foundations during earthquake excitation indicate that piles are subject to damage by affecting the superstructure integrity and serviceability. During an earthquake, two types of stresses can damage the pile head, inertial load that is caused by superstructure and deformation which caused by the surrounding soil. Soil deformation and inertial load are associated with the acceleration developed in an earthquake. The acceleration amplitude at the ground surface depends on the magnitude of earthquakes, soil properties and seismic source distance. According to the investigation, the damage is between the liquefiable and non-liquefiable layers and also soft and stiff layers. This damage crushes the pile head by increasing the inertial load which is applied by the superstructure. On the other hand, the cracks on the piles due to the surrounding soil are directly related to the soil profile and causes cracks from small to large. However, the large cracks reason have been listed such as liquefaction, lateral spreading, and inertial load. In the field of designing, elastic response of piles is always a challenge for designer in liquefaction soil, by allowing deflection at top of piles. Moreover, absence of plastic hinges in piles should be insured, because the damage in the piles is not observed directly. In this study, the performance and behavior of pile foundations during liquefaction and lateral spreading are investigated. In addition, emphasize on the soil behavior in the liquefiable and non-liquefiable layers by different aspect of piles damage such as ranking, location and degree of damage are going to discuss.

Keywords: pile, earthquake, liquefaction, non-liquefiable, damage

Procedia PDF Downloads 280
677 Behavior of Clay effect on Electrical Parameter of Reservoir Rock Using Global Hydraulic Elements (GHEs) Approach

Authors: Noreddin Mousa

Abstract:

The main objective of this study is to estimate which type of clay minerals that more effect on saturation exponent using Global Hydraulic Elements (GHEs) approach to estimating the distribution of saturation exponent factor. Two wells and seven core samples have been selected from various (GHEs) for detailed study. There are many factors affecting saturation exponent such as wettability, grain pattern pressure of certain authigenic clays, which may promote oil wet characteristics of history of fluid displacement. The saturation exponent is related to the texture and affected by wettability and clay minerals. Capillary pressure (mercury injection) has been used to confirm GHEs which are selected to define rock types; the porous plate method is used to derive the saturation exponent in the laboratory. The petrography is very important in order to study the mineralogy and texture. In this study the results showing excellent relation between saturation exponent and the type of clay minerals which was observed that the Global Hydraulic Elements GHE-2 and GHE-5 which are containing Chlorite is more affect on saturation exponent comparing with the other GHE’s.

Keywords: GHEs, wettability, global hydraulic elements, petrography

Procedia PDF Downloads 281
676 Malaysian's Shale Formation Characterizations: Geochemical Properties, Mineralogy, Adsorption and Desorption Behavior

Authors: Ahmed M. Al-Mutarreb, Shiferaw R. Jufar

Abstract:

Global shale gas resource assessment is still in its preliminary stage in most of the countries including the development of shale gas reservoirs in Malaysia. This project presents the main geochemical and mineral characteristics of few Malaysian’s shale samples which contribute on evaluating shale gas reserve world resource evaluations. Three shale samples from the western part of Peninsular Malaysia (Batu-Caja, Kuala Lumpur, and Johor Baru shale formations) were collected for this study. Total organic carbon wt.%, thermal maturity, kerogen type, mineralogy and adsorption/desorption characteristics are measured at Universiti Teknologi PETRONAS laboratories. Two samples show good potential in TOC results exhibited > 2wt.% exceeding the minimum values of Shale gas potential, while the third revealed < 1.5wt. Mineralogical compositions for the three samples are within the acceptable range percentage% of quartz and clays compared to shale plays in USA. This research’s results are promising and recommend to continue exploring and assessing unconventional shale gas reserves values in these areas.

Keywords: shale gas characterizations, geochemical properties, Malaysia, shale gas reserve

Procedia PDF Downloads 288
675 Effects of Polydispersity on the Glass Transition Dynamics of Aqueous Suspensions of Soft Spherical Colloidal Particles

Authors: Sanjay K. Behera, Debasish Saha, Paramesh Gadige, Ranjini Bandyopadhyay

Abstract:

The zero shear viscosity (η₀) of a suspension of hard sphere colloids characterized by a significant polydispersity (≈10%) increases with increase in volume fraction (ϕ) and shows a dramatic increase at ϕ=ϕg with the system entering a colloidal glassy state. Fragility which is the measure of the rapidity of approach of these suspensions towards the glassy state is sensitive to its size polydispersity and stiffness of the particles. Soft poly(N-isopropylacrylamide) (PNIPAM) particles deform in the presence of neighboring particles at volume fraction above the random close packing volume fraction of undeformed monodisperse spheres. Softness, therefore, enhances the packing efficiency of these particles. In this study PNIPAM particles of a nearly constant swelling ratio and with polydispersities varying over a wide range (7.4%-48.9%) are synthesized to study the effects of polydispersity on the dynamics of suspensions of soft PNIPAM colloidal particles. The size and polydispersity of these particles are characterized using dynamic light scattering (DLS) and scanning electron microscopy (SEM). As these particles are deformable, their packing in aqueous suspensions is quantified in terms of effective volume fraction (ϕeff). The zero shear viscosity (η₀) data of these colloidal suspensions, estimated from rheometric experiments as a function of the effective volume fraction ϕeff of the suspensions, increases with increase in ϕeff and shows a dramatic increase at ϕeff = ϕ₀. The data for η₀ as a function of ϕeff fits well to the Vogel-Fulcher-Tammann equation. It is observed that increasing polydispersity results in increasingly fragile supercooled liquid-like behavior, with the parameter ϕ₀, extracted from the fits to the VFT equation shifting towards higher ϕeff. The observed increase in fragility is attributed to the prevalence of dynamical heterogeneities (DHs) in these polydisperse suspensions, while the simultaneous shift in ϕ₀ is ascribed to the decoupling of the dynamics of the smallest and largest particles. Finally, it is observed that the intrinsic nonlinearity of these suspensions, estimated at the third harmonic near ϕ₀ in Fourier transform oscillatory rheological experiments, increases with increase in polydispersity. These results are in agreement with theoretical predictions and simulation results for polydisperse hard sphere colloidal glasses and clearly demonstrate that jammed suspensions of polydisperse colloidal particles can be effectively fluidized with increasing polydispersity. Suspensions of these particles are therefore excellent candidates for detailed experimental studies of the effects of polydispersity on the dynamics of glass formation.

Keywords: dynamical heterogeneity, effective volume fraction, fragility, intrinsic nonlinearity

Procedia PDF Downloads 140
674 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data

Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann

Abstract:

Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.

Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers

Procedia PDF Downloads 176