Search results for: sediment flushing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 429

Search results for: sediment flushing

189 Water Reclamation from Synthetic Winery Wastewater Using a Fertiliser Drawn Forward Osmosis System Evaluating Aquaporin-Based Biomimetic and Cellulose Triacetate Forward Osmosis Membranes

Authors: Robyn Augustine, Irena Petrinic, Claus Helix-Nielsen, Marshall S. Sheldon

Abstract:

This study examined the performance of two commercial forward osmosis (FO) membranes; an aquaporin (AQP) based biomimetic membrane, and cellulose triacetate (CTA) membrane in a fertiliser is drawn forward osmosis (FDFO) system for the reclamation of water from synthetic winery wastewater (SWW) operated over 24 hr. Straight, 1 M KCl and 1 M NH₄NO₃ fertiliser solutions were evaluated as draw solutions in the FDFO system. The performance of the AQP-based biomimetic and CTA FO membranes were evaluated in terms of permeate water flux (Jw), reverse solute flux (Js) and percentage water recovery (Re). The average water flux and reverse solute flux when using 1 M KCl as a draw solution against controlled feed solution, deionised (DI) water, was 11.65 L/m²h and 3.98 g/m²h (AQP) and 6.24 L/m²h and 2.89 g/m²h (CTA), respectively. Using 1 M NH₄NO₃ as a draw solution yielded average water fluxes and reverse solute fluxes of 10.73 L/m²h and 1.31 g/m²h (AQP) and 5.84 L/m²h and 1.39 g/m²h (CTA), respectively. When using SWW as the feed solution and 1 M KCl and 1 M NH₄NO₃ as draw solutions, respectively, the average water fluxes observed were 8.15 and 9.66 L/m²h (AQP) and 5.02 and 5.65 L/m²h (CTA). Membrane water flux decline was the result of a combined decrease in the effective driving force of the FDFO system, reverse solute flux and organic fouling. Permeate water flux recoveries of between 84-98%, and 83-89% were observed for the AQP-based biomimetic and CTA membrane, respectively after physical cleaning by flushing was employed. The highest water recovery rate of 49% was observed for the 1 M KCl fertiliser draw solution with AQP-based biomimetic membrane and proved superior in the reclamation of water from SWW.

Keywords: aquaporin biomimetic membrane, cellulose triacetate membrane, forward osmosis, reverse solute flux, synthetic winery wastewater and water flux

Procedia PDF Downloads 135
188 Investigation of Fluid-Structure-Seabed Interaction of Gravity Anchor Under Scour, and Anchor Transportation and Installation (T&I)

Authors: Vinay Kumar Vanjakula, Frank Adam

Abstract:

The generation of electricity through wind power is one of the leading renewable energy generation methods. Due to abundant higher wind speeds far away from shore, the construction of offshore wind turbines began in the last decades. However, the installation of offshore foundation-based (monopiles) wind turbines in deep waters are often associated with technical and financial challenges. To overcome such challenges, the concept of floating wind turbines is expanded as the basis of the oil and gas industry. For such a floating system, stabilization in harsh conditions is a challenging task. For that, a robust heavy-weight gravity anchor is needed. Transportation of such anchor requires a heavy vessel that increases the cost. To lower the cost, the gravity anchor is designed with ballast chambers that allow the anchor to float while towing and filled with water when lowering to the planned seabed location. The presence of such a large structure may influence the flow field around it. The changes in the flow field include, formation of vortices, turbulence generation, waves or currents flow breaking and pressure differentials around the seabed sediment. These changes influence the installation process. Also, after installation and under operating conditions, the flow around the anchor may allow the local seabed sediment to be carried off and results in Scour (erosion). These are a threat to the structure's stability. In recent decades, rapid developments of research work and the knowledge of scouring on fixed structures (bridges and monopiles) in rivers and oceans have been carried out, and very limited research work on scouring around a bluff-shaped gravity anchor. The objective of this study involves the application of different numerical models to simulate the anchor towing under waves and calm water conditions. Anchor lowering involves the investigation of anchor movements at certain water depths under wave/current. The motions of anchor drift, heave, and pitch is of special focus. The further study involves anchor scour, where the anchor is installed in the seabed; the flow of underwater current around the anchor induces vortices mainly at the front and corners that develop soil erosion. The study of scouring on a submerged gravity anchor is an interesting research question since the flow not only passes around the anchor but also over the structure that forms different flow vortices. The achieved results and the numerical model will be a basis for the development of other designs and concepts for marine structures. The Computational Fluid Dynamics (CFD) numerical model will build in OpenFOAM and other similar software.

Keywords: anchor lowering, anchor towing, gravity anchor, computational fluid dynamics, scour

Procedia PDF Downloads 138
187 Treatment of Dredged Marine Sediments for Their Reuse in Road Construction

Authors: F. Ben Abdelghani, W. Maherezi

Abstract:

Dredging operations generate, each year, a great quantity of marine sediments. These raw materials can not be used in road construction without a specific treatment process. Sediments suitability tests has shown that most of studied sediments are not suitable to be used in road construction. In order to improve their compacity and their mechanical performance, addition of a granular material is recommended. The use of a dredged sand, to improve the granular mixture containing sediments, allows a better management of the two types of dredge materials (sand and sediment). In this study, a new road material containing dredged marine sediments and dredged sand is formulated and treated by adding various binders. Mechanical performance investigation of different mixtures by measuring Proctor-IPI values and simple compressive strengths is realized.

Keywords: dredged sediments, suitability tests, road construction, hydraulic binder, mechanical performance

Procedia PDF Downloads 338
186 An Integrated Framework for Wind-Wave Study in Lakes

Authors: Moien Mojabi, Aurelien Hospital, Daniel Potts, Chris Young, Albert Leung

Abstract:

The wave analysis is an integral part of the hydrotechnical assessment carried out during the permitting and design phases for coastal structures, such as marinas. This analysis aims in quantifying: i) the Suitability of the coastal structure design against Small Craft Harbour wave tranquility safety criterion; ii) Potential environmental impacts of the structure (e.g., effect on wave, flow, and sediment transport); iii) Mooring and dock design and iv) Requirements set by regulatory agency’s (e.g., WSA section 11 application). While a complex three-dimensional hydrodynamic modelling approach can be applied on large-scale projects, the need for an efficient and reliable wave analysis method suitable for smaller scale marina projects was identified. As a result, Tetra Tech has developed and applied an integrated analysis framework (hereafter TT approach), which takes the advantage of the state-of-the-art numerical models while preserving the level of simplicity that fits smaller scale projects. The present paper aims to describe the TT approach and highlight the key advantages of using this integrated framework in lake marina projects. The core of this methodology is made by integrating wind, water level, bathymetry, and structure geometry data. To respond to the needs of specific projects, several add-on modules have been added to the core of the TT approach. The main advantages of this method over the simplified analytical approaches are i) Accounting for the proper physics of the lake through the modelling of the entire lake (capturing real lake geometry) instead of a simplified fetch approach; ii) Providing a more realistic representation of the waves by modelling random waves instead of monochromatic waves; iii) Modelling wave-structure interaction (e.g. wave transmission/reflection application for floating structures and piles amongst others); iv) Accounting for wave interaction with the lakebed (e.g. bottom friction, refraction, and breaking); v) Providing the inputs for flow and sediment transport assessment at the project site; vi) Taking in consideration historical and geographical variations of the wind field; and vii) Independence of the scale of the reservoir under study. Overall, in comparison with simplified analytical approaches, this integrated framework provides a more realistic and reliable estimation of wave parameters (and its spatial distribution) in lake marinas, leading to a realistic hydrotechnical assessment accessible to any project size, from the development of a new marina to marina expansion and pile replacement. Tetra Tech has successfully utilized this approach since many years in the Okanagan area.

Keywords: wave modelling, wind-wave, extreme value analysis, marina

Procedia PDF Downloads 53
185 Electrokinetic Remediation of Uranium Contaminated Soil by Ion Exchange Membranes

Authors: Z. H. Shi, T. J. Dou, H. Zhang, H. X. Huang, N. Zeng

Abstract:

The contamination of significant quantities of soils and sediments with uranium and other actinide elements as a result of nuclear activity poses many environmental risks. The electrokinetic process is one of the most promising remediation techniques for sludge, sediment, and saturated or unsaturated soils contaminated with heavy metals and radionuclides. However, secondary waste is a major concern for soil contaminated with nuclides. To minimize the generation of secondary wastes, this study used the anion and cation exchange membranes to improve the performance of the experimental apparatus. Remediation experiments of uranium-contaminated soil were performed with different agents. The results show that using acetic acid and EDTA as chelating agents clearly enhances the migration ability of the uranium. The ion exchange membranes (IEMs) used in the experiments not only reduce secondary wastes, but also, keep the soil pH stable.

Keywords: electrokinetic remediation, ion exchange membranes, soil, uranium

Procedia PDF Downloads 320
184 Mass Flux and Forensic Assessment: Informed Remediation Decision Making at One of Canada’s Most Polluted Sites

Authors: Tony R. Walker, N. Devin MacAskill, Andrew Thalhiemer

Abstract:

Sydney Harbour, Nova Scotia, Canada has long been subject to effluent and atmospheric inputs of contaminants, including thousands of tons of PAHs from a large coking and steel plant which operated in Sydney for nearly a century. Contaminants comprised of coal tar residues which were discharged from coking ovens into a small tidal tributary, which became known as the Sydney Tar Ponds (STPs), and subsequently discharged into Sydney Harbour. An Environmental Impact Statement concluded that mobilization of contaminated sediments posed unacceptable ecological risks, therefore immobilizing contaminants in the STPs using solidification and stabilization was identified as a primary source control remediation option to mitigate against continued transport of contaminated sediments from the STPs into Sydney Harbour. Recent developments in contaminant mass flux techniques focus on understanding “mobile” vs. “immobile” contaminants at remediation sites. Forensic source evaluations are also increasingly used for understanding origins of PAH contaminants in soils or sediments. Flux and forensic source evaluation-informed remediation decision-making uses this information to develop remediation end point goals aimed at reducing off-site exposure and managing potential ecological risk. This study included reviews of previous flux studies, calculating current mass flux estimates and a forensic assessment using PAH fingerprint techniques, during remediation of one of Canada’s most polluted sites at the STPs. Historically, the STPs was thought to be the major source of PAH contamination in Sydney Harbour with estimated discharges of nearly 800 kg/year of PAHs. However, during three years of remediation monitoring only 17-97 kg/year of PAHs were discharged from the STPs, which was also corroborated by an independent PAH flux study during the first year of remediation which estimated 119 kg/year. The estimated mass efflux of PAHs from the STPs during remediation was in stark contrast to ~2000 kg loading thought necessary to cause a short term increase in harbour sediment PAH concentrations. These mass flux estimates during remediation were also between three to eight times lower than PAHs discharged from the STPs a decade prior to remediation, when at the same time, government studies demonstrated on-going reduction in PAH concentrations in harbour sediments. Flux results were also corroborated using forensic source evaluations using PAH fingerprint techniques which found a common source of PAHs for urban soils, marine and aquatic sediments in and around Sydney. Coal combustion (from historical coking) and coal dust transshipment (from current coal transshipment facilities), are likely the principal source of PAHs in these media and not migration of PAH laden sediments from the STPs during a large scale remediation project.

Keywords: contaminated sediment, mass flux, forensic source evaluations, remediation

Procedia PDF Downloads 215
183 Evaluation of River Meander Geometry Using Uniform Excess Energy Theory and Effects of Climate Change on River Meandering

Authors: Youssef I. Hafez

Abstract:

Since ancient history rivers have been the fostering and favorite place for people and civilizations to live and exist along river banks. However, due to floods and droughts, especially sever conditions due to global warming and climate change, river channels are completely evolving and moving in the lateral direction changing their plan form either through straightening of curved reaches (meander cut-off) or increasing meandering curvature. The lateral shift or shrink of a river channel affects severely the river banks and the flood plain with tremendous impact on the surrounding environment. Therefore, understanding the formation and the continual processes of river channel meandering is of paramount importance. So far, in spite of the huge number of publications about river-meandering, there has not been a satisfactory theory or approach that provides a clear explanation of the formation of river meanders and the mechanics of their associated geometries. In particular two parameters are often needed to describe meander geometry. The first one is a scale parameter such as the meander arc length. The second is a shape parameter such as the maximum angle a meander path makes with the channel mean down path direction. These two parameters, if known, can determine the meander path and geometry as for example when they are incorporated in the well known sine-generated curve. In this study, a uniform excess energy theory is used to illustrate the origin and mechanics of formation of river meandering. This theory advocates that the longitudinal imbalance between the valley and channel slopes (with the former is greater than the second) leads to formation of curved meander channel in order to reduce the excess energy through its expenditure as transverse energy loss. Two relations are developed based on this theory; one for the determination of river channel radius of curvature at the bend apex (shape parameter) and the other for the determination of river channel sinuosity. The sinuosity equation tested very well when applied to existing available field data. In addition, existing model data were used to develop a relation between the meander arc length and the Darcy-Weisback friction factor. Then, the meander wave length was determined from the equations of the arc length and the sinuosity. The developed equation compared well with available field data. Effects of the transverse bed slope and grain size on river channel sinuosity are addressed. In addition, the concept of maximum channel sinuosity is introduced in order to explain the changes of river channel plan form due to changes in flow discharges and sediment loads induced by global warming and climate changes.

Keywords: river channel meandering, sinuosity, radius of curvature, meander arc length, uniform excess energy theory, transverse energy loss, transverse bed slope, flow discharges, sediment loads, grain size, climate change, global warming

Procedia PDF Downloads 194
182 Mean Velocity Modeling of Open-Channel Flow with Submerged Vegetation

Authors: Mabrouka Morri, Amel Soualmia, Philippe Belleudy

Abstract:

Vegetation affects the mean and turbulent flow structure. It may increase flood risks and sediment transport. Therefore, it is important to develop analytical approaches for the bed shear stress on vegetated bed, to predict resistance caused by vegetation. In the recent years, experimental and numerical models have both been developed to model the effects of submerged vegetation on open-channel flow. In this paper, different analytic models are compared and tested using the criteria of deviation, to explore their capacity for predicting the mean velocity and select the suitable one that will be applied in real case of rivers. The comparison between the measured data in vegetated flume and simulated mean velocities indicated, a good performance, in the case of rigid vegetation, whereas, Huthoff model shows the best agreement with a high coefficient of determination (R2=80%) and the smallest error in the prediction of the average velocities.

Keywords: analytic models, comparison, mean velocity, vegetation

Procedia PDF Downloads 245
181 Effects of Coastal Structure Construction on Ecosystem

Authors: Afshin Jahangirzadeh, Shatirah Akib, Keyvan Kimiaei, Hossein Basser

Abstract:

Coastal defense structures were built to protect part of shore from beach erosion and flooding by sea water. Effects of coastal defense structures can be negative or positive. Some of the effects are beneficial in socioeconomic aspect, but environment matters should be given more concerns because it can bring bad consequences to the earth landscape and make the ecosystem be unbalanced. This study concerns on the negative impacts as they are dominant. Coastal structures can extremely impact the shoreline configuration. Artificial structures can influence sediment transport, split the coastal space, etc. This can result in habitats loss and lead to noise and visual disturbance of birds. There are two types of coastal defense structures, hard coastal structure and soft coastal structure. Both coastal structures have their own impacts. The impacts are induced during the construction, maintaining, and operation of the structures.

Keywords: ecosystem, environmental impact, hard coastal structures, soft coastal structures

Procedia PDF Downloads 456
180 Reliability Analysis of Dam under Quicksand Condition

Authors: Manthan Patel, Vinit Ahlawat, Anshh Singh Claire, Pijush Samui

Abstract:

This paper focuses on the analysis of quicksand condition for a dam foundation. The quicksand condition occurs in cohesion less soil when effective stress of soil becomes zero. In a dam, the saturated sediment may appear quite solid until a sudden change in pressure or shock initiates liquefaction. This causes the sand to form a suspension and lose strength hence resulting in failure of dam. A soil profile shows different properties at different points and the values obtained are uncertain thus reliability analysis is performed. The reliability is defined as probability of safety of a system in a given environment and loading condition and it is assessed as Reliability Index. The reliability analysis of dams under quicksand condition is carried by Gaussian Process Regression (GPR). Reliability index and factor of safety relating to liquefaction of soil is analysed using GPR. The results of reliability analysis by GPR is compared to that of conventional method and it is demonstrated that on applying GPR the probabilistic analysis reduces the computational time and efforts.

Keywords: factor of safety, GPR, reliability index, quicksand

Procedia PDF Downloads 456
179 Heavy Metals Estimation in Coastal Areas Using Remote Sensing, Field Sampling and Classical and Robust Statistic

Authors: Elena Castillo-López, Raúl Pereda, Julio Manuel de Luis, Rubén Pérez, Felipe Piña

Abstract:

Sediments are an important source of accumulation of toxic contaminants within the aquatic environment. Bioassays are a powerful tool for the study of sediments in relation to their toxicity, but they can be expensive. This article presents a methodology to estimate the main physical property of intertidal sediments in coastal zones: heavy metals concentration. This study, which was developed in the Bay of Santander (Spain), applies classical and robust statistic to CASI-2 hyperspectral images to estimate heavy metals presence and ecotoxicity (TOC). Simultaneous fieldwork (radiometric and chemical sampling) allowed an appropriate atmospheric correction to CASI-2 images.

Keywords: remote sensing, intertidal sediment, airborne sensors, heavy metals, eTOCoxicity, robust statistic, estimation

Procedia PDF Downloads 383
178 Hydraulic Characteristics of the Tidal River Dongcheon in Busan City

Authors: Young Man Cho, Sang Hyun Kim

Abstract:

Even though various management practices such as sediment dredging were attempted to improve water quality of Dongcheon located in Busan, the environmental condition of this stream was deteriorated. Therefore, Busan metropolitan city had pumped and diverted sea water to upstream of Dongcheon for several years. This study explored hydraulic characteristics of Dongcheon to configure the best management practice for ecological restoration and water quality improvement of a man-made urban stream. Intensive field investigation indicates that average flow velocities at depths of 20% and 80% from the water surface ranged 5 to 10 cm/s and 2 to 5 cm/s, respectively. Concentrations of dissolved oxygen for all depths were less than 0.25 mg/l during low tidal period. Even though density difference can be found along stream depth, density current seems rarely generated in Dongcheon. Short period of high tidal portion and shallow depths are responsible for well-mixing nature of Doncheon.

Keywords: hydraulic, tidal river, density current, sea water

Procedia PDF Downloads 193
177 Near Bottom Concentrations of Krill in Two Arctic Fjords, Spitsbergen

Authors: Kajetan Deja, Katarzyna Draganska-Deja, Mateusz Ormanczyk, Michał Procajlo

Abstract:

Two glaciated fjords on Spitsbergen (Hornsund 77°N) and Kongsfjorden (79°N) were studied for the occurrence of macroplankton (mostly euphausids, hyperiids, chaetognaths) with the use of drop down the camera. The underwater imagery demonstrates that closer to the glacier front, where turbid and freshwater occurs, most of the macroplankters leave the upper water column and descends to the bottom (about 100m depth). Concentrations of macroplankton in the immediate vicinity of the sediment reach over 500 specimens per m² - what corresponds to the biomass of 10g C/m³. Such concentrations of macroplankton are of prime interest for fish, seals and other carnivores. Conditions in the near-bottom waters are in many respects better than in the upper water column- better oxygenated, cold, fully saline and transparent waters with rich food deposited on the seabed from the surface (sinking microplankton). We suggest that near bottom occurrence of macroplankton is related to the increase of glacier melt and freshwater discharge intensity.

Keywords: arctic, ecosystem, fjords, Krill

Procedia PDF Downloads 243
176 Effects of PAHs on Blood Thyroidal Hormones of Liza klunzingeri in the Northern Part of Hormuz Strait (Persian Gulf)

Authors: Fateme Afkhami, Mohsen Ehsanpour, Maryam Ehsanpour, Majid Afkhami

Abstract:

This study was conducted to determine the effects of polycyclic aromatic hydrocarbons (PAHs) on thyroidal hormones of Liza klunzingeri and to monitor marine pollution from northern part of Hormuz strait (Persian Gulf). Results showed the highest total PAHs levels (268.56 µg/kg) were in the fish samples and the lowest are obtained from water samples (3.12 µg/kg). Also, highest of PAHs levels in fish, sediment and water were found in St3. There was a positive correlation between T3 and T4, with PAHs results. T4 had a significant positive correlation (P<0.05).

Keywords: PAHs, thyroidal hormones, Liza klunzingeri, Hormuz Strait, Persian Gulf

Procedia PDF Downloads 671
175 Utilization and Characterizations of Olive Oil Industry By-Products

Authors: Sawsan Dacrory, Hussein Abou-Yousef, Samir Kamel, Ragab E. Abou-Zeid, Mohamed S. Abdel-Aziz, Mohamed Elbadry

Abstract:

A considerable amount of lignocellulosic by-product could be obtained from olive pulp during olive oil extraction industry. The major constituents of the olive pulp are husks and seeds. The separation of each portion of olive pulp (seeds and husks) was carried out by water flotation where seeds were sediment in the bottom. Both seeds and husks were dignified by 15% NaOH followed by complete lignin removal by using sodium chlorite in acidic medium. The isolated holocellulose, α-cellulose, hydrogel and CMC which prepared from cellulose of both seeds and husk fractions were characterized by FTIR and SEM. The present study focused on the investigation of the chemical components of the lignocellulosic fraction of olive pulp. Biofunctionlization of hydrogel was achieved through loading of silver nanoparticles AgNPs in to the prepared hydrogel. The antimicrobial activity of the loaded silver hydrogel against G-ve, and G+ve, and candida was demonstrated.

Keywords: cellulose, carboxymethyle cellulose, olive pulp, hydrogel

Procedia PDF Downloads 431
174 Adsorption of Acetone Vapors by SBA-16 and MCM-48 Synthesized from Rice Husk Ash

Authors: Wanting Zeng, Hsunling Bai

Abstract:

Silica was extracted from agriculture waste rice husk ash (RHA) and was used as the silica source for synthesis of RMCM-48 and RSBA-16. An alkali fusion process was utilized to separate silicate supernatant and the sediment effectively. The CTAB/Si and F127/Si molar ratio was employed to control the structure properties of the obtained RMCM-48 and RSBA-16 materials. The N2 adsorption-desorption results showed the micro-mesoporous RSBA-16 possessed high specific surface areas (662-1001 m2/g). All the obtained RSBA-16 materials were applied as the adsorbents for acetone adsorption. And the breakthrough tests clearly revealed that the RSBA-16(0.004) materials could achieve the highest acetone adsorption capacity of 186 mg/g under 1000 ppmv acetone vapor concentration at 25oC, which was also superior to ZSM-5 (71mg/g) and MCM-41 (157mg/g) under same test conditions. This can help to reduce the solid waste and the high adsorption performance of the obtained materials could consider as potential adsorbents for acetone adsorption.

Keywords: acetone, adsorption, micro-mesoporous material, rice husk ash (RHA), RSBA-16

Procedia PDF Downloads 314
173 A Research About to Determination the Quality of Feed Oils Used as Mixedfeed Raw Material from Some Feed Factories in Konya-Turkey

Authors: Gülşah Kanbur, Veysel Ayhan

Abstract:

Feed oil samples which are used as mixed feed raw material were taken from six different feed factories in March, May and July. All factories make production in Konya, Turkey and all of the samples were which taken are crude soybean oil. Some physical and chemical analysis, free radical scavenger effect and total phenol content were determined on these oil samples. Moisture content was found between 0.10-22.23 %, saponification number was determined 143.13 to 167.93 KOH/kg, free fatty acidity was varied 0.73 to 35.00 % , peroxide value was found between 1.53 and 28.43 meq/kg , unsaponifiable matter was determined from 0.40 to 17.10 % , viscosity was found between 34.30 and 625.67 mPas, sediment amount was determined between 0.60-18.16 % , free radical scavenger effect was varied 20.7 to 43.04 % inhibition of the extract and total phenol content was found between 1.20 and 2.69 mg/L extract. Different results were found between months and factories.

Keywords: crude soybean oil, feed oils, mixed feed, Konya

Procedia PDF Downloads 281
172 Using Sea Cucumber for Mitigation of Marine Pollution

Authors: A. Al-Yaqout, A. Al-Alawi, T. Al-Said, E. Al-Enezi, M. Al-Roumi

Abstract:

Kuwait’s marine environment suffers from increased organic pollution. Sea cucumbers play an important role in the marine environment. They create a healthier environment for many types of benthic micro-organisms through their slow movement and feeding mechanism on micro-organisms and organic material. A preliminary study has been conducted in Kuwait Institute for Scientific Research to assess the possibility of using sea cucumbers for mitigation of the coastal pollution. Sediments were collected from locations identified to be heavily loaded with organic pollutants. Ten aquaria glass tanks, 65x 40x 30cm will be supplied with 10 cm height (14 kg) of the sediments added in each tank and filled with 70 L of filtered seawater. Two species were used in this study, Stichopus hermanni, and Holothuria atra. Water and sediment samples were analyzed weekly. The results showed promising possibility for using sea cucumber to lower the organic load in sediments.

Keywords: organic pollution, sea cucumbers, mitigation, Stichopus hermanni, Holothuria atra

Procedia PDF Downloads 278
171 Maintenance Dredging at Port of Townsville

Authors: Mohamed Jaditager, Julie Lovisa, Nagaratnam Sivakugan

Abstract:

The Port of Townsville conducts regular annual maintenance dredging to maintain depths of its harbor basin and approach channels for the navigational safety of the vessels against the natural accumulation of marine sediments. In addition to the regular maintenance dredging, the port undertakes emergency dredging in cases where large quantities of sediments are mobilized and deposited in port waters by cyclone or major flood events. The maintenance dredging material derived from the port may be disposed at sea or on land in accordance with relevant state and commonwealth regulations. For the land disposal, the dredged mud slurry is hydraulically placed into containment ponds and left to undergo sedimentation and self-weight consolidation to form fill material for land reclamation. This paper provides an overview of the maintenance dredging at the Port of Townsville and emphasis on maintenance dredging requirements, sediment quality, bathymetry, dredging methods used, and dredged material disposal options.

Keywords: consolidation, dredged material, maintenance dredging, marine sediments, sedimentation

Procedia PDF Downloads 417
170 Potential of Dredged Material for CSEB in Building Structure

Authors: BoSheng Liu

Abstract:

The research goal is to re-image a locally-sourced waste product as abuilding material. The author aims to contribute to the compressed stabilized earth block (CSEB) by investigating the promising role of dredged material as an alternative building ingredient in the production of bricks and tiles. Dredged material comes from the sediment deposited near the shore or downstream, where the water current velocity decreases. This sediment needs to be dredged to provide water transportation; thus, there are mounds of the dredged material stored at bay. It is the interest of this research to reduce the filtered un-organic soil in the production of CSEB and replace it with locally dredged material from the Atchafalaya River in Morgan City, Louisiana. Technology and mechanical innovations have evolved the traditional adobe production method, which mixes the soil and natural fiber into molded bricks, into chemically stabilized CSEB made by compressing the clay mixture and stabilizer in a compression chamber with particular loads. In the case of dredged material CSEB (DM-CSEB), cement plays an essential role as the bending agent contributing to the unit strength while sustaining the filtered un-organic soil. Each DM-CSEB unit is made in a compression chamber with 580 PSI (i.e., 4 MPa) force. The research studied the cement content from 5% to 10% along with the range of dredged material mixtures, which differed from 20% to 80%. The material mixture content affected the DM-CSEB's strength and workability during and after its compression. Results indicated two optimal workabilities of the mixture: 27% fine clay content and 63% dredged material with 10% cement, or 28% fine clay content, and 67% dredged material with 5% cement. The final product of DM-CSEB emitted between 10 to 13 times fewer carbon emissions compared to the conventional fired masonry structure. DM-CSEB satisfied the strength requirement given by the ASTM C62 and ASTM C34 standards for construction material. One of the final evaluations tested and validated the material performance by designing and constructing an architectural, conical tile-vault prototype that was 28" by 40" by 24." The vault utilized a computational form-finding approach to generate the form's geometry, which optimized the correlation between the vault geometry and structural load distribution. A series of scaffolding was deployed to create the framework for the tile-vault construction. The final tile-vault structure was made from 2 layers of DM-CSEB tiles jointed by mortar, and the construction of the structure used over 110 tiles. The tile-vault prototype was capable of carrying over 400 lbs of live loads, which further demonstrated the dredged material feasibility as a construction material. The presented case study of Dredged Material Compressed Stabilized Earth Block (DM-CSEB) provides the first impression of dredged material in the clayey mixture process, structural performance, and construction practice. Overall, the approach of integrating dredged material in building material can be feasible, regionally sourced, cost-effective, and environment-friendly.

Keywords: dredged material, compressed stabilized earth block, tile-vault, regionally sourced, environment-friendly

Procedia PDF Downloads 92
169 Channel Characteristics and Morphometry of a Part of Umtrew River, Meghalaya

Authors: Pratyashi Phukan, Ranjan Saikia

Abstract:

Morphometry incorporates quantitative study of the area ,altitude,volume, slope profiles of a land and drainage basin characteristics of the area concerned.Fluvial geomorphology includes the consideration of linear,areal and relief aspects of a fluvially originated drainage basin. The linear aspect deals with the hierarchical orders of streams, numbers, and lenghts of stream segments and various relationship among them.The areal aspect includes the analysis of basin perimeters,basin shape, basin area, and related morphometric laws. The relief aspect incorporates besides hypsometric, climographic and altimetric analysis,the study of absolute and relative reliefs, relief ratios, average slope, etc. In this paper we have analysed the relationship among stream velocity, channel shape,sediment load,channel width,channel depth, etc.

Keywords: morphometry, hydraulic geometry, Umtrew river, Meghalaya

Procedia PDF Downloads 425
168 Engineering Parameters and Classification of Marly Soils of Tabriz

Authors: Amirali Mahouti, Hooshang Katebi

Abstract:

Enlargement of Tabriz metropolis to the east and north-east caused urban construction to be built on Marl layers and because of increase in excavations depth, further information of this layer is inescapable. Looking at geotechnical investigation shows there is not enough information about Tabriz Marl and this soil has been classified only by color. Tabriz Marl is lacustrine carbonate sediment outcrops, surrounds eastern, northern and southern region of city in the East Azerbaijan Province of Iran and is known as bed rock of city under alluvium sediments. This investigation aims to characterize geotechnical parameters of this soil to identify and set it in classification system of carbonated soils. For this purpose, specimens obtained from 80 locations over the city and subjected to physical and mechanical tests, such as Atterberg limits, density, moisture content, unconfined compression, direct shear and consolidation. CaCO3 content, organic content, PH, XRD, XRF, TGA and geophysical downhole tests also have been done on some of them.

Keywords: carbonated soils, classification of soils, mineralogy, physical and mechanical tests for Marls, Tabriz Marl

Procedia PDF Downloads 296
167 Phytoremediation: An Ecological Solution to Heavy-Metal-Polluted Soil

Authors: Nasreen Jeelani, Huining Shi , Di An, Lu Xia, Shuqing An

Abstract:

Heavy metals contamination in aquatic ecosystem is a major environmental problem since its accumulation along the food chain pose public health risk. The concentration of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) in soil and plants species collected from different streams of Suoxu River, China was investigated. This aim was to define the level of pollutants in Suoxu River, find which plant species exhibits the greatest accumulation and to evaluate whether these species could be useful for phytoremediation. While total soil Cd, Cr, Cu, Ni, Pb, and Zn concentrations varied, respectively, from 0.09 to 0.23 , 58.6 to 98, 9.72 to 80.5, 15.3 to 41, 15.2 to 27.3 and 35 to 156 (mg-kg-1), those in plants ranged from 0.035 to 0.49, 2.91 to 75.6, 4.79 to 32.4, 1.27 to 16.1, 0.62 to10.2, 18.9 to 84.6 (mg-kg-1), respectively. Based on BCFs and TFs values, most of the studied species have potential for phytostabilization. The plants with most effective in the accumulation of metals in shoots are Phragmatis australis (TF=2.29) and Iris tectorum (TF =2.07) for Pb. While Chenopodium album, (BCF =3.55), Ranunculus sceleratus, (BCF= 3.0), Polygonum hydropiper (BCF =2.46) for Cd and Iris tectorum (BCF=2.0) for Cu was suitable for phytostabilization. Among the plant species screened for Cd, Cr, Cu, Ni, Pb and Zn, most of the species were efficient to take up more than one heavy metal in roots. Our study showed that the native plant species growing on contaminated sites may have the potential uses for phytoremediation.

Keywords: heavy metals, huaihe river catchments, sediment, plants

Procedia PDF Downloads 325
166 Quantification of Effects of Shape of Basement Topography below the Circular Basin on the Ground Motion Characteristics and Engineering Implications

Authors: Kamal, Dinesh Kumar, J. P. Narayan, Komal Rani

Abstract:

This paper presents the effects of shape of basement topography on the characteristics of the basin-generated surface (BGS) waves and associated average spectral amplification (ASA) in the 3D basins having circular surface area. Seismic responses were computed using a recently developed 3D fourth-order spatial accurate time-domain finite-difference (FD) algorithm based on parsimonious staggered-grid approximation of 3D viscoelastic wave equations. An increase of amplitude amplification and ASA towards the centre of different considered basins was obtained. Further, it may be concluded that ASA in basin very much depends on the impedance contrast, exposure area of basement to the incident wave front, edge-slope, focusing of the BGS-waves and sediment-damping. There is an urgent need of incorporation of a map of differential ground motion (DGM) caused by the BGS-waves as one of the output maps of the seismic microzonation.

Keywords: 3D viscoelastic simulation, basin-generated surface waves, maximum displacement, average spectral amplification

Procedia PDF Downloads 265
165 Study of the Potential of Raw Sediments and Sediments Treated with Lime or Cement for Use in a Foundation Layer and the Base Layer of a Roadway

Authors: Nor-Edine Abriak, Mahfoud Benzerzour, Mouhamadou Amar, Abdeljalil Zri

Abstract:

In this work, firstly we have studied the potential of raw sediments and sediments treated with lime or cement for use in a foundation layer and the base layer of a roadway. Secondly, we have examined mineral changes caused by the addition of lime or cement in order to explain the mechanical performance of stabilized sediments. After determining the amount of lime and cement required stabilizing the sediments, the compaction characteristics and Immediate Bearing Capacity (IBI) were studied using the Modified Proctor method. Then, the evolution of the three parameters, which are optimum water content, maximum dry density and IBI, were determined. Mechanical performances can be evaluated through resistance to compression, resistance under traction and the elasticity modulus. The resistances of the formulations treated with ROLAC®645 increase with the amount of ROLAC®645. Traction resistance and the elastic modulus were used to evaluate the potential of the formulations as road construction materials using the classification diagram. The results show that all the other formulations with ROLAC®645 can be used in subgrades and foundation layers for roads.

Keywords: sediment, lime, cement, roadway

Procedia PDF Downloads 238
164 Remediation of Heavy Metal Contaminated Soil with Vivianite Nanoparticles

Authors: Shinen B., Bavor J., Dorjkhand B., Suvd B., Maitsetseg B.

Abstract:

A number of remediation techniques are available for the treatment of soils and sediments contaminated by heavy metals. However, some of these techniques are expensive and environmentally disruptive. Nanomaterials are used in the environment as environmental catalysts to convert toxic substances from water, soil, and sediment into environmentally benign compounds. This study was carried out to scrutinize the feasibility of vivianite nanoparticles for remediation of soils contaminated with heavy metals. Column experiments were performed in the laboratory to examine nanoparticle sequestration of metal in soil amended with vivianite nanoparticle suspension. The effect of environmental parameters such as temperature, pH and redox potential on metal leachability and bioavailability of soil amended with nanoparticle suspension was examined and compared with non-amended soils. The vivianite was effective in reducing the leachability of metals in soils. It is suggested that vivianite nanoparticles could be applied for the remediation of contaminated sites polluted by heavy metals due to mining activities, particularly in Mongolia, where mining industries have been developing rapidly in the last decade.

Keywords: bioavailability, heavy metals, nanoparticles, remediation

Procedia PDF Downloads 150
163 Molecular Characterization and Arsenic Mobilization Properties of a Novel Strain IIIJ3-1 Isolated from Arsenic Contaminated Aquifers of Brahmaputra River Basin, India

Authors: Soma Ghosh, Balaram Mohapatra, Pinaki Sar, Abhijeet Mukherjee

Abstract:

Microbial role in arsenic (As) mobilization in the groundwater aquifers of Brahmaputra river basin (BRB) in India, severely threatened by high concentrations of As, remains largely unknown. The present study, therefore, is a molecular and ecophysiological characterization of an indigenous bacterium strain IIIJ3-1 isolated from As contaminated groundwater of BRB and application of this strain in several microcosm set ups differing in their organic carbon (OC) source and terminal electron acceptors (TEA), to understand its role in As dissolution under aerobic and anaerobic conditions. Strain IIIJ3-1 was found to be a new facultative anaerobic, gram-positive, endospore-forming strain capable of arsenite (As3+) oxidation and dissimilatory arsenate (As5+) reduction. The bacterium exhibited low genomic (G+C)% content (45 mol%). Although, its 16S rRNA gene sequence revealed a maximum similarity of 99% with Bacillus cereus ATCC 14579(T) but the DNA-DNA relatedness of their genomic DNAs was only 49.9%, which remains well below the value recommended to delimit different species. Abundance of fatty acids iC17:0, iC15:0 and menaquinone (MK) 7 though corroborates its taxonomic affiliation with B. cereus sensu-lato group, presence of hydroxy fatty acids (HFAs), C18:2, MK5 and MK6 marked its uniqueness. Besides being highly As resistant (MTC=10mM As3+, 350mM As5+), metabolically diverse, efficient aerobic As3+ oxidizer; it exhibited near complete dissimilatory reduction of As5+ (1 mM). Utilization of various carbon sources with As5+ as TEA revealed lactate to serve as the best electron donor. Aerobic biotransformation assay yielded a lower Km for As3+ oxidation than As5+ reduction. Arsenic homeostasis was found to be conferred by the presence of arr, arsB, aioB, and acr3(1) genes. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) analysis of this bacterium revealed reduction in cell size upon exposure to As and formation of As-rich electron opaque dots following growth with As3+. Incubation of this strain with sediment (sterilised) collected from BRB aquifers under varying OC, TEA and redox conditions revealed that the strain caused highest As mobilization from solid to aqueous phase under anaerobic condition with lactate and nitrate as electron donor and acceptor, respectively. Co-release of highest concentrations of oxalic acid, a well known bioweathering agent, considerable fold increase in viable cell counts and SEM-EDX and X-ray diffraction analysis of the sediment after incubation under this condition indicated that As release is consequent to microbial bioweathering of the minerals. Co-release of other elements statistically proves decoupled release of As with Fe and Zn. Principle component analysis also revealed prominent role of nitrate under aerobic and/or anaerobic condition in As release by strain IIIJ3-1. This study, therefore, is the first to isolate, characterize and reveal As mobilization property of a strain belonging to the Bacillus cereus sensu lato group isolated from highly As contaminated aquifers of Brahmaputra River Basin.

Keywords: anaerobic microcosm, arsenic rich electron opaque dots, Arsenic release, Bacillus strain IIIJ3-1

Procedia PDF Downloads 106
162 Benthic Foraminiferal Responses to Coastal Pollution for Some Selected Sites along Red Sea, Egypt

Authors: Ramadan M. El-Kahawy, M. A. El-Shafeiy, Mohamed Abd El-Wahab, S. A. Helal, Nabil Aboul-Ela

Abstract:

Due to the economic importance of Safaga Bay, Quseir harbor and Ras Gharib harbor , a multidisciplinary approach was adopted to invistigate 27 surfecial sediment samples from the three sites and 9 samples for each in order to use the benthic foraminifera as bio-indicators for characterization of the environmental variations. Grain size analyses indicate that the bottom facies in the inner part of quseir is muddy while the inner part of Ras Gharib and Safaga is silty sand and those close to the entrance of Safaga bay and Ras Gharib is sandy facies while quseir still also muddy facies. geochemical data show high concentration of heavy-metals mainly in Ras Gharib due to oil leakage from the hydrocarbon oil field and Safaga bay due to the phosphate mining while quseir is medium concentration due to anthropocentric effect.micropaelontological analyses indicate the boundaries of the highest concentration of heavy metals and those of low concentration as well.the dominant benthic foraminifera in these three sites are Ammonia beccarii, Amphistigina and sorites. the study highlights the worsening of environmental conditions and also show that the areas in need of a priority recovery.

Keywords: benthic foraminifera, Ras Gharib, Safaga, Quseir, Red Sea, Egypt

Procedia PDF Downloads 321
161 Identification and Characterization of Heavy Metal Resistant Bacteria from the Klip River

Authors: P. Chihomvu, P. Stegmann, M. Pillay

Abstract:

Pollution of the Klip River has caused microorganisms inhabiting it to develop protective survival mechanisms. This study isolated and characterized the heavy metal resistant bacteria in the Klip River. Water and sediment samples were collected from six sites along the course of the river. The pH, turbidity, salinity, temperature and dissolved oxygen were measured in-situ. The concentrations of six heavy metals (Cd, Cu, Fe, Ni, Pb, and Zn) of the water samples were determined by atomic absorption spectroscopy. Biochemical and antibiotic profiles of the isolates were assessed using the API 20E® and Kirby Bauer Method. Growth studies were carried out using spectrophotometric methods. The isolates were identified using 16SrDNA sequencing. The uppermost part of the Klip River with the lowest pH had the highest levels of heavy metals. Turbidity, salinity and specific conductivity increased measurably at Site 4 (Henley on Klip Weir). MIC tests showed that 16 isolates exhibited high iron and lead resistance. Antibiotic susceptibility tests revealed that the isolates exhibited multi-tolerances to drugs such as tetracycline, ampicillin, and amoxicillin.

Keywords: Klip River, heavy metals, resistance, 16SrDNA

Procedia PDF Downloads 297
160 Tidal Current Behaviors and Remarkable Bathymetric Change in the South-Western Part of Khor Abdullah, Kuwait

Authors: Ahmed M. Al-Hasem

Abstract:

A study of the tidal current behavior and bathymetric changes was undertaken in order to establish an information base for future coastal management. The average velocity for tidal current was 0.46 m/s and the maximum velocity was 1.08 m/s during ebb tide. During spring tides, maximum velocities range from 0.90 m/s to 1.08 m/s, whereas maximum velocities vary from 0.40 m/s to 0.60 m/s during neap tides. Despite greater current velocities during flood tide, the bathymetric features enhance the dominance of the ebb tide. This can be related to the abundance of fine sediments from the ebb current approaching the study area, and the relatively coarser sediment from the approaching flood current. Significant bathymetric changes for the period from 1985 to 1998 were found with dominance of erosion process. Approximately 96.5% of depth changes occurred within the depth change classes of -5 m to 5 m. The high erosion processes within the study area will subsequently result in high accretion processes, particularly in the north, the location of the proposed Boubyan Port and its navigation channel.

Keywords: bathymetric change, Boubyan island, GIS, Khor Abdullah, tidal current behavior

Procedia PDF Downloads 259