Search results for: negative emission technologies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9068

Search results for: negative emission technologies

9008 Composition Dependent Spectroscopic Studies of Sm3+-Doped Alkali Fluoro Tungsten Tellurite Glasses

Authors: K. Swapna, Sk. Mahamuda, Ch, Annapurna, A. Srinivasa Rao, G. Vijaya Prakash

Abstract:

Samarium ions doped Alkali Fluoro Tungsten Tellurite (AFTT) Glasses have been prepared by using the melt quenching technique and characterized through various spectroscopic techniques such as optical absorption, excitation, emission and decay spectral studies. From the measured absorption spectra of Sm3+ ions in AFTT glasses, the optical band gap and Urbach energies have been evaluated. The spectroscopic parameters such as oscillator strengths (f), Judd-Ofelt (J-O) intensity parameters (Ωλ), spontaneous emission probability (AR), branching ratios (βR) and radiative lifetimes (τR) of various excited levels have been determined from the absorption spectrum by using J-O analysis. A strong luminescence in the reddish-orange spectral region has been observed for all the Sm3+ ions doped AFTT glasses. It consisting four emission transitions occurring from the 4G5/2metastable state to the lower lying states 6H5/2, 6H7/2, 6H9/2 and 6H11/2 upon exciting the sample with a 478 nm line of an argon ion laser. The stimulated emission cross-sections (σe) and branching ratios (βmeas) were estimated from the emission spectra for all emission transitions. Correlation of the radiative lifetime with the experimental lifetime measured from the day curves allows us to measure the quantum efficiency of the prepared glasses. In order to know the colour emission of the prepared glasses under near UV excitation, the emission intensities were analyzed using CIE 1931 colour chromaticity diagram. The aforementioned spectral studies carried out on Sm3+ ions doped AFTT glasses allowed us to conclude that, these glasses are best suited for orange-red visible lasers.

Keywords: fluoro tungsten tellurite glasses, judd-ofelt intensity parameters, lifetime, stimulated emission cross-section

Procedia PDF Downloads 254
9007 Study of Buried Interfaces in Fe/Si Multilayer by Hard X-Ray Emission Spectroscopy

Authors: Hina Verma, Karine Le Guen, Renaud Dalaunay, Iyas Ismail, Vita Ilakovac, Jean Pascal Rueff, Yunlin Jacques Zheng, Philippe Jonnard

Abstract:

To the extent of our knowledge, X-ray emission spectroscopy (XES) has been applied in the soft x-ray region (photon energy ≤ 2 keV) to study the buried layers and interfaces of stacks of nanometer-thin films. Now we extend the methodology to study the buried interfaces in the hard X-ray region (i.e., ≥ five keV). The emission spectra allow us to study the interactions between elements in the buried layers from the analysis of their valence states, thereby providing sensitive information about the physical-chemical environment of the emitting element in multilayers. We exploit the chemical sensitivity of XES to study the interfaces between Fe and Si layers in the Fe/Si multilayer from the Fe Kβ₂,₅ emission spectra (7108 eV). The Fe Kβ₅ emission line results from the electronic transition from occupied 3d to 1s levels (i.e., valence to core transition) and is hence sensitive to the chemical state of emitting Fe atoms. The comparison of emission spectra recorded for Fe/Si multilayer with Fe and FeSi₂ references reveal the formation of FeSi₂ at the Fe-Si interfaces inside the multilayer stack. The interfacial thickness was calculated to be 1.4 ± 0.2 nm by taking into consideration the intensity of Fe atoms emitted from the interface and the Fe layer. The formation of FeSi₂ at the interface was further confirmed by the X-ray diffraction and X-ray photoelectron spectroscopy done on the Fe/Si multilayer. Hence, we can conclude that the XES in the hard X-ray range could be used to study multilayers and their interfaces and obtain information both qualitatively and quantitatively.

Keywords: buried interfaces, hard X-ray emission spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy

Procedia PDF Downloads 116
9006 Flexible Feedstock Concept in Gasification Process for Carbon-Negative Energy Technology: A Case Study in Malaysia

Authors: Zahrul Faizi M. S., Ali A., Norhuda A. M.

Abstract:

Emission of greenhouse gases (GHG) from solid waste treatment and dependency on fossil fuel to produce electricity are the major concern in Malaysia as well as global. Innovation in downdraft gasification with combined heat and power (CHP) systems has the potential to minimize solid waste and reduce the emission of anthropogenic GHG from conventional fossil fuel power plants. However, the efficiency and capability of downdraft gasification to generate electricity from various alternative fuels, for instance, agriculture residues (i.e., woodchip, coconut shell) and municipal solid waste (MSW), are still controversial, on top of the toxicity level from the produced bottom ash. Thus this study evaluates the adaptability and reliability of the 20 kW downdraft gasification system to generate electricity (while considering environmental sustainability from the bottom ash) using flexible local feedstock at 20, 40, and 60% mixed ratio of MSW: agriculture residues. Feedstock properties such as feed particle size, moisture, and ash contents are also analyzed to identify optimal characteristics for the combination of feedstock (feedstock flexibility) to obtain maximum energy generation. Results show that the gasification system is capable to flexibly accommodate different feedstock compositions subjected to specific particle size (less than 2 inches) at a moisture content between 15 to 20%. These values exhibit enhance gasifier performance and provide a significant effect to the syngas composition utilizes by the internal combustion engine, which reflects energy production. The result obtained in this study is able to provide a new perspective on the transition of the conventional gasification system to a future reliable carbon-negative energy technology. Subsequently, promoting commercial scale-up of the downdraft gasification system.

Keywords: carbon-negative energy, feedstock flexibility, gasification, renewable energy

Procedia PDF Downloads 104
9005 Metal Berthelot Tubes with Windows for Observing Cavitation under Static Negative Pressure

Authors: K. Hiro, Y. Imai, T. Sasayama

Abstract:

Cavitation under static negative pressure is not revealed well. The Berthelot method to generate such negative pressure can be a means to study cavitation inception. In this study, metal Berthelot tubes built in observation windows are newly developed and are checked whether high static negative pressure is generated or not. Negative pressure in the tube with a pair of a corundum plate and an aluminum gasket increased with temperature cycles. The trend was similar to that as reported before.

Keywords: Berthelot method, cavitation, negative pressure, observation

Procedia PDF Downloads 296
9004 Slope Effect in Emission Evaluation to Assess Real Pollutant Factors

Authors: G. Meccariello, L. Della Ragione

Abstract:

The exposure to outdoor air pollution causes lung cancer and increases the risk of bladder cancer. Because air pollution in urban areas is mainly caused by transportation, it is necessary to evaluate pollutant exhaust emissions from vehicles during their real-world use. Nevertheless their evaluation and reduction is a key problem, especially in the cities, that account for more than 50% of world population. A particular attention was given to the slope variability along the streets during each journey performed by the instrumented vehicle. In this paper we dealt with the problem of describing a quantitatively approach for the reconstruction of GPS coordinates and altitude, in the context of correlation study between driving cycles / emission / geographical location, during an experimental campaign realized with some instrumented cars. Finally the slope analysis can be correlated to the emission and consumption values in a specific road position, and it could be evaluated its influence on their behaviour.

Keywords: air pollution, driving cycles, GPS signal, slope, emission factor, fuel consumption

Procedia PDF Downloads 362
9003 Ethical Perspectives on Implementation of Computer Aided Design Curriculum in Architecture in Nigeria: A Case Study of Chukwuemeka Odumegwu Ojukwu University, Uli

Authors: Kelechi Ezeji

Abstract:

The use of Computer Aided Design (CAD) technologies has become pervasive in the Architecture, Engineering and Construction (AEC) industry. This has led to its inclusion as an important part of the training module in the curriculum for Architecture Schools in Nigeria. This paper examines the ethical questions that arise in the implementation of Computer Aided Design (CAD) Content of the curriculum for Architectural education. Using existing literature, it begins this scrutiny from the propriety of inclusion of CAD into the education of the architect and the obligations of the different stakeholders in the implementation process. It also examines the questions raised by the negative use of computing technologies as well as perceived negative influence of the use of CAD on design creativity. Survey methodology was employed to gather data from the Department of Architecture, Chukwuemeka Odumegwu Ojukwu University Uli, which has been used as a case study on how the issues raised are being addressed. The paper draws conclusions on what will make for successful ethical implementation.

Keywords: computer aided design, curriculum, education, ethics

Procedia PDF Downloads 385
9002 A Quantitative Plan for Drawing Down Emissions to Attenuate Climate Change

Authors: Terry Lucas

Abstract:

Calculations are performed to quantify the potential contribution of each greenhouse gas emission reduction strategy. This approach facilitates the visualisation of the relative benefits of each, and it provides a potential baseline for the development of a plan of action that is rooted in quantitative evaluation. Emissions reductions are converted to potential de-escalation of global average temperature. A comprehensive plan is then presented which shows the potential benefits all the way out to year 2100. A target temperature de-escalation of 2oC was selected, but the plan shows a benefit of only 1.225oC. This latter disappointing result is in spite of new and powerful technologies introduced into the equation. These include nuclear fusion and alternative nuclear fission processes. Current technologies such as wind, solar and electric vehicles show surprisingly small constributions to the whole.

Keywords: climate change, emissions, drawdown, energy

Procedia PDF Downloads 94
9001 A Simple Light-Outcoupling Enhancement Method for Organic Light-Emitting Diodes

Authors: Ho-Nyeon Lee

Abstract:

We propose to use a gradual-refractive-index dielectric (GRID) as a simple and efficient light-outcoupling method for organic light-emitting diodes (OLEDs). Using the simple GRIDs, we could improve the light outcoupling efficiency of OLEDs rather than relying on difficult nano-patterning processes. Through numerical simulations using a finite-difference time-domain (FDTD) method, the feasibility of the GRID structure was examined and the design parameters were extracted. The outcoupling enhancement effects due to the GRIDs were proved through severe experimental works. The GRIDs were adapted to bottom-emission OLEDs and top-emission OLEDs. For bottom-emission OLEDs, the efficiency was improved more than 20%, and for top-emission OLEDs, more than 40%. The detailed numerical and experimental results will be presented at the conference site.

Keywords: efficiency, GRID, light outcoupling, OLED

Procedia PDF Downloads 395
9000 Development of a Comprehensive Energy Model for Canada

Authors: Matthew B. Davis, Amit Kumar

Abstract:

With potentially dangerous impacts of climate change on the horizon, Canada has an opportunity to take a lead role on the international stage to demonstrate how energy use intensity and greenhouse gas emission intensity may be effectively reduced. Through bottom-up modelling of Canada’s energy sector using Long-range Energy Alternative Planning (LEAP) software, it can be determined where efforts should to be concentrated to produce the most positive energy management results. By analyzing a provincially integrated Canada, one can develop strategies to minimize the country’s economic downfall while transitioning to lower-emission energy technologies. Canada’s electricity sector plays an important role in accommodating these transitionary technologies as fossil-fuel based power production is prevalent in many parts of the country and is responsible for a large portion (17%) of Canada’s greenhouse gas emissions. Current findings incorporate an in-depth model of Canada’s current energy supply and demand sectors, as well as a business-as-usual scenario up to the year 2035. This allows for in-depth analysis of energy flow from resource potential, to extraction, to fuel and electricity production, to energy end use and emissions in Canada’s residential, transportation, commercial, institutional, industrial, and agricultural sectors. Bottom-up modelling techniques such as these are useful to critically analyze and compare the various possible scenarios of implementing sustainable energy measures. This work can aid government in creating effective energy and environmental policies, as well as guide industry to what technology or process changes would be most worthwhile to pursue.

Keywords: energy management, LEAP, energy end-use, GHG emissions

Procedia PDF Downloads 276
8999 Moment Estimators of the Parameters of Zero-One Inflated Negative Binomial Distribution

Authors: Rafid Saeed Abdulrazak Alshkaki

Abstract:

In this paper, zero-one inflated negative binomial distribution is considered, along with some of its structural properties, then its parameters were estimated using the method of moments. It is found that the method of moments to estimate the parameters of the zero-one inflated negative binomial models is not a proper method and may give incorrect conclusions.

Keywords: zero one inflated models, negative binomial distribution, moments estimator, non negative integer sampling

Procedia PDF Downloads 253
8998 The Effect of Global Value Chain Participation on Environment

Authors: Piyaphan Changwatchai

Abstract:

Global value chain is important for current world economy through foreign direct investment. Multinational enterprises' efficient location seeking for each stage of production lead to global production network and more global value chain participation of several countries. Global value chain participation has several effects on participating countries in several aspects including the environment. The effect of global value chain participation on the environment is ambiguous. As a result, this research aims to study the effect of global value chain participation on countries' CO₂ emission and methane emission by using quantitative analysis with secondary panel data of sixty countries. The analysis is divided into two types of global value chain participation, which are forward global value chain participation and backward global value chain participation. The results show that, for forward global value chain participation, GDP per capita affects two types of pollutants in downward bell curve shape. Forward global value chain participation negatively affects CO₂ emission and methane emission. As for backward global value chain participation, GDP per capita affects two types of pollutants in downward bell curve shape. Backward global value chain participation negatively affects methane emission only. However, when considering Asian countries, forward global value chain participation positively affects CO₂ emission. The recommendations of this research are that countries participating in global value chain should promote production with effective environmental management in each stage of value chain. The examples of policies are providing incentives to private sectors, including domestic producers and MNEs, for green production technology and efficient environment management and engaging in international agreements in terms of green production. Furthermore, government should regulate each stage of production in value chain toward green production, especially for Asia countries.

Keywords: CO₂ emission, environment, global value chain participation, methane emission

Procedia PDF Downloads 164
8997 Modeling of Thermo Acoustic Emission Memory Effect in Rocks of Varying Textures

Authors: Vladimir Vinnikov

Abstract:

The paper proposes a model of an inhomogeneous rock mass with initially random distribution of microcracks on mineral grain boundaries. It describes the behavior of cracks in a medium under the effect of thermal field, the medium heated instantaneously to a predetermined temperature. Crack growth occurs according to the concept of fracture mechanics provided that the stress intensity factor K exceeds the critical value of Kc. The modeling of thermally induced acoustic emission memory effects is based on the assumption that every event of crack nucleation or crack growth caused by heating is accompanied with a single acoustic emission event. Parameters of the thermally induced acoustic emission memory effect produced by cyclic heating and cooling (with the temperature amplitude increasing from cycle to cycle) were calculated for several rock texture types (massive, banded, and disseminated). The study substantiates the adaptation of the proposed model to humidity interference with the thermally induced acoustic emission memory effect. The influence of humidity on the thermally induced acoustic emission memory effect in quasi-homogeneous and banded rocks is estimated. It is shown that such modeling allows the structure and texture of rocks to be taken into account and the influence of interference factors on the distinctness of the thermally induced acoustic emission memory effect to be estimated. The numerical modeling can be used to obtain information about the thermal impacts on rocks in the past and determine the degree of rock disturbance by means of non-destructive testing.

Keywords: crack growth, cyclic heating and cooling, rock texture, thermo acoustic emission memory effect

Procedia PDF Downloads 246
8996 An Examination of the Effects of Implantable Technologies on the Practices of Governmentality

Authors: Benn Van Den Ende

Abstract:

Over the last three decades, there has been an exponential increase in developments in implantable technologies such as the cardiac pacemaker, bionic prosthesis, and implantable chips. The effect of these technologies has been well researched in many areas. However, there is a lack of critical research in security studies. This paper will provide preliminary findings to an ongoing research project which aims to examine how implantable technologies effect the practices of governmentality in the context of security. It will do this by looking at the practices and techniques of governmentality along with different implantable technologies which increase, change or otherwise affect governmental practices. The preliminary research demonstrates that implantable technologies have a profound effect on the practices of governmentality, while also paving the way for further research into a potential ‘new’ form of governmentality in relation to these implantable technologies.

Keywords: critical security studies, governmentality, security theory, political theory, Foucault

Procedia PDF Downloads 159
8995 Statistically Significant Differences of Carbon Dioxide and Carbon Monoxide Emission in Photocopying Process

Authors: Kiurski S. Jelena, Kecić S. Vesna, Oros B. Ivana

Abstract:

Experimental results confirmed the temporal variation of carbon dioxide and carbon monoxide concentration during the working shift of the photocopying process in a small photocopying shop in Novi Sad, Serbia. The statistically significant differences of target gases were examined with two-way analysis of variance without replication followed by Scheffe's post hoc test. The existence of statistically significant differences was obtained for carbon monoxide emission which is pointed out with F-values (12.37 and 31.88) greater than Fcrit (6.94) in contrary to carbon dioxide emission (F-values of 1.23 and 3.12 were less than Fcrit).  Scheffe's post hoc test indicated that sampling point A (near the photocopier machine) and second time interval contribute the most on carbon monoxide emission.

Keywords: analysis of variance, carbon dioxide, carbon monoxide, photocopying indoor, Scheffe's test

Procedia PDF Downloads 293
8994 Learning to Recommend with Negative Ratings Based on Factorization Machine

Authors: Caihong Sun, Xizi Zhang

Abstract:

Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction algorithm based on factorization machines that consider the effect of negative ratings inspired by Loss Aversion theory. The aim of this paper is to develop a concave and a convex negative disgust function to evaluate the negative ratings respectively. Experiments are conducted on MovieLens dataset. The experimental results demonstrate the effectiveness of the proposed methods by comparing with other four the state-of-the-art approaches. The negative ratings showed much importance in the accuracy of ratings predictions.

Keywords: factorization machines, feature engineering, negative ratings, recommendation systems

Procedia PDF Downloads 216
8993 Clean Technology: Hype or Need to Have

Authors: Dirk V. H. K. Franco

Abstract:

For many of us a lot of phenomena are considered a risk. Examples are: climate change, decrease of biodiversity, amount of available, clean water and the decreasing variety of living organism in the oceans. On the other hand a lot of people perceive the following trends as catastrophic: the sea level, the melting of the pole ice, the numbers of tornado’s, floods and forest fires, the national security and the potential of 192 million climate migrants in 2060. The interest for climate, health and the possible solutions is large and common. The 5th IPCC states that the last decades especially human activities (and in second order natural emissions) have caused large, mainly negative impacts on our ecological environments. Chris Stringer stated that we represent, nowadays after evolution, the only one version of the possible humanity. At this very moment we are faced with an (over) crowded planet together with global climate changes and a strong demand for energy and material resources. Let us hope that we can counter these difficulties either with better application of existing technologies or by inventing new (applications of) clean technologies together with new business models.

Keywords: clean technologies, catastrophic, climate, possible solutions

Procedia PDF Downloads 464
8992 Advances in Membrane Technologies for Wastewater Treatment

Authors: Deniz Sahin

Abstract:

This study provides a literature review of the special issue on wastewater treatment technologies, especially membrane technologies. Currently, wastewater is a serious and increasing worldwide problem with an adverse effect on the environment and living organisms. For this reason, many technologies have been developed to treat wastewater before discharging it to water bodies. We have been discussed membrane technologies to remove contaminants from wastewater such as heavy metals, dyes, pesticides, etc., which represent the main pollutants in wastewater. All the properties of these technologies including performance, economics, simplicity, and operability are also compared with other wastewater treatment technologies. The conventional water treatment technologies have the disadvantages of low separation efficiency, high energy consumption, and strict operating temperature. To overcome these difficulties, membrane technologies have been developed and used in wastewater treatment. Membrane technology uses a selectively permeable membrane to remove suspended and dissolved solids from water. This membrane is a very thin film of synthetic organic or inorganic materials, that can allow a very selective separation between a mixture and its components. Examples of membrane technologies include microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), electrodialysis (ED), gas separation, etc. Most of these technologies have been used extensively for the treatment of heavy metal wastewater. For instance, wastewater that contains Cu²⁺, Cd²⁺, Pb²⁺, Zn²⁺ was treated by ultrafiltration technology. It was shown that complete removal of metal ions could be achieved.

Keywords: industrial pollution, membrane technologies, metal ions, wastewater

Procedia PDF Downloads 161
8991 The impact of International Trade on Maritime Ecosystems: Evidence from the California Emission Control Area and the Kelp Forests

Authors: Fabien Candau, Florian Lafferrere

Abstract:

This article analyses how an emission policy for vessels (named California’s Ocean-Going Vessel Fuel Rule) was implemented in 2009 in California impacts trade and marine biodiversity. By studying the decrease in emission levels anticipated by the policy, we measure not only the consequences for port activities but also for one of the most important marine ecosystems of the California Coast: the Kelp forests. Using the Difference in Difference (DiD) approach at the Californian ports level, we find that this policy has led to a significant decrease in trade volume during this period. Therefore, we find a positive and significant effect of shipping policy on kelp canopy and biomass growth by controlling the specific climatic and environmental characteristics of California coastal areas.

Keywords: international trade, shipping, marine biodiversity, emission control area

Procedia PDF Downloads 39
8990 Global Analysis in a Growth Economic Model with Perfect-Substitution Technologies

Authors: Paolo Russu

Abstract:

The purpose of the present paper is to highlight some features of an economic growth model with environmental negative externalities, giving rise to a three-dimensional dynamic system. In particular, we show that the economy, which is based on a Perfect-Substitution Technologies function of production, has no neither indeterminacy nor poverty trap. This implies that equilibrium select by economy depends on the history (initial values of state variable) of the economy rather than on expectations of economies agents. Moreover, by contrast, we prove that the basin of attraction of locally equilibrium points may be very large, as they can extend up to the boundary of the system phase space. The infinite-horizon optimal control problem has the purpose of maximizing the representative agent’s instantaneous utility function depending on leisure and consumption.

Keywords: Hopf bifurcation, open-access natural resources, optimal control, perfect-substitution technologies, Poincarè compactification

Procedia PDF Downloads 146
8989 Generation of Waste Streams in Small Model Reactors

Authors: Sara Mostofian

Abstract:

The nuclear industry is a technology that can fulfill future energy needs but requires special attention to ensure safety and reliability while minimizing any environmental impact. To meet these expectations, the nuclear industry is exploring different reactor technologies for power production. Several designs are under development and the technical viability of these new designs is the subject of many ongoing studies. One of these studies considers the radioactive emissions and radioactive waste generated during the life of a nuclear power production plant to allow a successful license process. For all the modern technologies, a good understanding of the radioactivity generated in the process systems of the plant is essential. Some of that understanding may be gleaned from the performance of some prototype reactors of similar design that operated decades ago. This paper presents how, with that understanding, a model can be developed to estimate the emissions as well as the radioactive waste during the normal operation of a nuclear power plant. The model would predict the radioactive material concentrations in different waste streams. Using this information, the radioactive emission and waste generated during the life of these new technologies can be estimated during the early stages of the design of the plant.

Keywords: SMRs, activity transport, model, radioactive waste

Procedia PDF Downloads 67
8988 Effect of Supply Frequency on Pre-Breakdown and Breakdown Phenomena in Unbridged Vacuum Gaps

Authors: T.C. Balachandra, Habibuddin Shaik

Abstract:

This paper presents experimental results leading towards a better understanding of pre-breakdown and breakdown behavior of vacuum gaps under variable frequency alternating excitations. The frequency variation is in the range of 30 to 300 Hz in steps of 10 Hz for a fixed gap spacing of 0.5 mm. The results indicate that the pre-breakdown currents show an inverse relation with the breakdown voltage in general though erratic behavior was observed over a certain range of frequencies. A breakdown voltage peak was observed at 130 Hz. This was pronounced when the electrode pair was of stainless steel and less pronounced when copper and aluminum electrodes were used. The experimental results are explained based on F-N emission, I-F emission, and also thermal interaction due to quasi-continuous shower of anode micro-particles. Further, it is speculated that the ostensible cause for time delay between voltage and current peaks is due to the presence of neutral molecules in the gap.

Keywords: anode hot-spots, F-N emission, I-F emission, microparticle, neutral molecules, pre-breakdown conduction, vacuum breakdown

Procedia PDF Downloads 122
8987 A Comparative Study on the Impact of Global Warming of Applying Low Carbon Factor Concrete Products

Authors: Su-Hyun Cho, Chang-U Chae

Abstract:

Environmental impact assessment techniques have been developed as a result of the worldwide efforts to reduce the environmental impact of global warming. By using the quantification method in the construction industry, it is now possible to manage the greenhouse gas is to systematically evaluate the impact on the environment over the entire construction process. In particular, the proportion of greenhouse gas emissions at the production stage of construction material occupied is high, and efforts are needed in particular in the construction field. In this study, intended for concrete products for the construction materials, by using the LCA evaluation method, we compared the results of environmental impact assessment and carbon emissions of developing products that have been applied low-carbon technologies compared to existing products. As a results, by introducing a raw material of industrial waste, showed carbon reduction. Through a comparison of the carbon emission reduction effect of low-carbon technologies, it is intended to provide academic data for the evaluation of greenhouse gases in the construction sector and the development of low-carbon technologies of the future.

Keywords: CO₂ emissions, CO₂ reduction, ready-mixed concrete, environmental impact assessment

Procedia PDF Downloads 437
8986 The Environmental Benefits of the Adoption of Emission Control for Locomotives in Brazil

Authors: Rui de Abrantes, André Luiz Silva Forcetto

Abstract:

Air pollution is a big problem in many cities around the world. Brazilian big cities also have this problem, where millions of people are exposed daily to pollutants levels above the recommended by WHO. Brazil has taken several actions to reduce air pollution, among others, controlling the atmospheric emissions from vehicles, non-road mobile machinery, and motorcycles, but on the other side, there are no emissions controls for locomotives, which are exposing the population to tons of pollutants annually. The rail network is not homogeneously distributed in the national territory; it is denser near the big cities, and this way, the population is more exposed to pollutants; apart from that, the government intends to increase the rail network as one of the strategies for greenhouse gas mitigation, complying with the international agreements against the climate changes. This paper initially presents the estimated emissions from locomotive fleets with no emission control and with emission control equivalent to US Tier 3 from 2028 and for the next 20 years. However, we realized that a program equivalent to phase Tier 3 would not be effective, so we proposed a program in two steps that will avoid the release of more than 2.4 million tons of CO and 531,000 tons of hydrocarbons, 3.7 million tons of nitrogen oxides, and 102,000 tons of particulate matter in 20 years.

Keywords: locomotives, emission control, air pollution, pollutants emission

Procedia PDF Downloads 18
8985 Discrimination of Modes of Double- and Single-Negative Grounded Slab

Authors: R. Borghol, T. Aguili

Abstract:

In this paper, we investigate theoretically the waves propagation in a lossless double-negative grounded slab (DNG). This study is performed by the Transverse Resonance Method (TRM). The proper or improper nature of real and complex modes is observed. They are highly dependent on metamaterial parameters, i.e. ɛr-negative, µr-negative, or both. Numerical results provided that only the proper complex modes (i.e., leaky modes) exist in DNG slab, and only the improper complex modes exist in single-negative grounded slab.

Keywords: double negative grounded slab, real and complex modes, single negative grounded slab, transverse resonance method

Procedia PDF Downloads 241
8984 Real-World PM, PN and NOx Emission Differences among DOC+CDPF Retrofit Diesel-, Diesel- And Natural Gas-Fueled Bus

Authors: Zhiwen Yang, Jingyuan Li, Zhenkai Xie, Jian Ling, Jiguang Wang, Mengliang Li

Abstract:

To reflect the effects of different emission control strategies, such as retrofitting after-treatment system and replacing with natural gas-fueled vehicles, on particle number (PN), particle mass (PM) and nitrogen oxides (NOx) emissions emitted by urban bus, a portable emission measurement system (PEMS) was employed herein to conduct real-world driving emission measurements on a diesel oxidation catalytic converter (DOC) and catalyzed diesel particulate filter (CDPF) retrofitting China IV diesel bus, a China IV diesel bus, and a China V natural gas bus. The results show that both tested diesel buses possess markedly advantages in NOx emission control when compared to the lean-burn natural gas bus equipped without any NOx after-treatment system. As to PN and PM, only the DOC+CDPF retrofitting diesel bus exhibits enormous benefits on emission control relate to the natural gas bus, especially the normal diesel bus. Meanwhile, the differences in PM and PN emissions between retrofitted and normal diesel buses generally increase with the increase in vehicle-specific power (VSP). Furthermore, the differences in PM emissions, especially those in the higher VSP ranges, are more significant than those in PN. In addition, the maximum peak PN particle size (32 nm) of the retrofitted diesel bus was significantly lower than that of the normal diesel bus (100 nm). These phenomena indicate that the CDPF retrofitting can effectively reduce diesel bus exhaust particle emissions, especially those with large particle sizes.

Keywords: CDPF, diesel, natural gas, real-world emissions

Procedia PDF Downloads 259
8983 New Technique of Estimation of Charge Carrier Density of Nanomaterials from Thermionic Emission Data

Authors: Dilip K. De, Olukunle C. Olawole, Emmanuel S. Joel, Moses Emetere

Abstract:

A good number of electronic properties such as electrical and thermal conductivities depend on charge carrier densities of nanomaterials. By controlling the charge carrier densities during the fabrication (or growth) processes, the physical properties can be tuned. In this paper, we discuss a new technique of estimating the charge carrier densities of nanomaterials from the thermionic emission data using the newly modified Richardson-Dushman equation. We find that the technique yields excellent results for graphene and carbon nanotube.

Keywords: charge carrier density, nano materials, new technique, thermionic emission

Procedia PDF Downloads 284
8982 Modeling of Thermally Induced Acoustic Emission Memory Effects in Heterogeneous Rocks with Consideration for Fracture Develo

Authors: Vladimir A. Vinnikov

Abstract:

The paper proposes a model of an inhomogeneous rock mass with initially random distribution of microcracks on mineral grain boundaries. It describes the behavior of cracks in a medium under the effect of thermal field, the medium heated instantaneously to a predetermined temperature. Crack growth occurs according to the concept of fracture mechanics provided that the stress intensity factor K exceeds the critical value of Kc. The modeling of thermally induced acoustic emission memory effects is based on the assumption that every event of crack nucleation or crack growth caused by heating is accompanied by a single acoustic emission event. Parameters of the thermally induced acoustic emission memory effect produced by cyclic heating and cooling (with the temperature amplitude increasing from cycle to cycle) were calculated for several rock texture types (massive, banded, and disseminated). The study substantiates the adaptation of the proposed model to humidity interference with the thermally induced acoustic emission memory effect. The influence of humidity on the thermally induced acoustic emission memory effect in quasi-homogeneous and banded rocks is estimated. It is shown that such modeling allows the structure and texture of rocks to be taken into account and the influence of interference factors on the distinctness of the thermally induced acoustic emission memory effect to be estimated. The numerical modeling can be used to obtain information about the thermal impacts on rocks in the past and determine the degree of rock disturbance by means of non-destructive testing.

Keywords: degree of rock disturbance, non-destructive testing, thermally induced acoustic emission memory effects, structure and texture of rocks

Procedia PDF Downloads 235
8981 Temperature Calculation for an Atmospheric Pressure Plasma Jet by Optical Emission Spectroscopy

Authors: H. Lee, Jr., L. Bo-ot, R. Tumlos, H. Ramos

Abstract:

The objective of the study is to be able to calculate excitation and vibrational temperatures of a 2.45 GHz microwave-induced atmospheric pressure plasma jet. The plasma jet utilizes Argon gas as a primary working gas, while Nitrogen is utilized as a shroud gas for protecting the quartz tube from the plasma discharge. Through Optical Emission Spectroscopy (OES), various emission spectra were acquired from the plasma discharge. Selected lines from Ar I and N2 I emissions were used for the Boltzmann plot technique. The Boltzmann plots yielded values for the excitation and vibrational temperatures. The various values for the temperatures were plotted against varying parameters such as the gas flow rates.

Keywords: plasma jet, OES, Boltzmann plots, vibrational temperatures

Procedia PDF Downloads 683
8980 Creating Renewable Energy Investment Portfolio in Turkey between 2018-2023: An Approach on Multi-Objective Linear Programming Method

Authors: Berker Bayazit, Gulgun Kayakutlu

Abstract:

The World Energy Outlook shows that energy markets will substantially change within a few forthcoming decades. First, determined action plans according to COP21 and aim of CO₂ emission reduction have already impact on policies of countries. Secondly, swiftly changed technological developments in the field of renewable energy will be influential upon medium and long-term energy generation and consumption behaviors of countries. Furthermore, share of electricity on global energy consumption is to be expected as high as 40 percent in 2040. Electrical vehicles, heat pumps, new electronical devices and digital improvements will be outstanding technologies and innovations will be the testimony of the market modifications. In order to meet highly increasing electricity demand caused by technologies, countries have to make new investments in the field of electricity production, transmission and distribution. Specifically, electricity generation mix becomes vital for both prevention of CO₂ emission and reduction of power prices. Majority of the research and development investments are made in the field of electricity generation. Hence, the prime source diversity and source planning of electricity generation are crucial for improving the wealth of citizen life. Approaches considering the CO₂ emission and total cost of generation, are necessary but not sufficient to evaluate and construct the product mix. On the other hand, employment and positive contribution to macroeconomic values are important factors that have to be taken into consideration. This study aims to constitute new investments in renewable energies (solar, wind, geothermal, biogas and hydropower) between 2018-2023 under 4 different goals. Therefore, a multi-objective programming model is proposed to optimize the goals of minimizing the CO₂ emission, investment amount and electricity sales price while maximizing the total employment and positive contribution to current deficit. In order to avoid the user preference among the goals, Dinkelbach’s algorithm and Guzel’s approach have been combined. The achievements are discussed with comparison to the current policies. Our study shows that new policies like huge capacity allotment might be discussible although obligation for local production is positive. The improvements in grid infrastructure and re-design support for the biogas and geothermal can be recommended.

Keywords: energy generation policies, multi-objective linear programming, portfolio planning, renewable energy

Procedia PDF Downloads 216
8979 Environmental Evaluation of Alternative/Renewable Fuels Technology

Authors: Muhammad Hadi Ibrahim

Abstract:

The benefits of alternative/renewable fuels in general and a study of the environmental impacts of biofuels in particular have been reviewed in this paper. It is a known fact that, energy generation using fossil fuel produces many important pollutants including; nitrogen oxides, hydrocarbons, soot, dust, smoke and other particulate harmful matter. It’s believed that if carbon dioxide levels continue to increase drastically, the planet will become warmer and will most likely result in a variety of negative impacts including; sea-level rise, extreme and unpredictable weather events and an increased frequency of draughts in inland agricultural zones. Biofuels such as alcohols, biogas, etc. appear to be more viable alternatives, especially for use as fuels in diesel engines. The substitution of fossil fuel through increased utilization of biofuels produced in a sustainable manner, can contribute immensely towards a cleaner environment, reduction in greenhouse gas emissions and mitigation of climate change. Stakeholders in the energy sector can be sensitized by the findings of the research study and to consider the possible adverse effects in developing technologies for the production and combustion of biofuels.

Keywords: emission, energy, renewable/alternative fuel, environment, pollution

Procedia PDF Downloads 171