Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1886

Search results for: mood classification

1886 Mood Recognition Using Indian Music

Authors: Vishwa Joshi

Abstract:

The study of mood recognition in the field of music has gained a lot of momentum in the recent years with machine learning and data mining techniques and many audio features contributing considerably to analyze and identify the relation of mood plus music. In this paper we consider the same idea forward and come up with making an effort to build a system for automatic recognition of mood underlying the audio song’s clips by mining their audio features and have evaluated several data classification algorithms in order to learn, train and test the model describing the moods of these audio songs and developed an open source framework. Before classification, Preprocessing and Feature Extraction phase is necessary for removing noise and gathering features respectively.

Keywords: music, mood, features, classification

Procedia PDF Downloads 415
1885 Effective Parameter Selection for Audio-Based Music Mood Classification for Christian Kokborok Song: A Regression-Based Approach

Authors: Sanchali Das, Swapan Debbarma

Abstract:

Music mood classification is developing in both the areas of music information retrieval (MIR) and natural language processing (NLP). Some of the Indian languages like Hindi English etc. have considerable exposure in MIR. But research in mood classification in regional language is very less. In this paper, powerful audio based feature for Kokborok Christian song is identified and mood classification task has been performed. Kokborok is an Indo-Burman language especially spoken in the northeastern part of India and also some other countries like Bangladesh, Myanmar etc. For performing audio-based classification task, useful audio features are taken out by jMIR software. There are some standard audio parameters are there for the audio-based task but as known to all that every language has its unique characteristics. So here, the most significant features which are the best fit for the database of Kokborok song is analysed. The regression-based model is used to find out the independent parameters that act as a predictor and predicts the dependencies of parameters and shows how it will impact on overall classification result. For classification WEKA 3.5 is used, and selected parameters create a classification model. And another model is developed by using all the standard audio features that are used by most of the researcher. In this experiment, the essential parameters that are responsible for effective audio based mood classification and parameters that do not significantly change for each of the Christian Kokborok songs are analysed, and a comparison is also shown between the two above model.

Keywords: Christian Kokborok song, mood classification, music information retrieval, regression

Procedia PDF Downloads 119
1884 Adolescent-Parent Relationship as the Most Important Factor in Preventing Mood Disorders in Adolescents: An Application of Artificial Intelligence to Social Studies

Authors: Elżbieta Turska

Abstract:

Introduction: One of the most difficult times in a person’s life is adolescence. The experiences in this period may shape the future life of this person to a large extent. This is the reason why many young people experience sadness, dejection, hopelessness, sense of worthlessness, as well as losing interest in various activities and social relationships, all of which are often classified as mood disorders. As many as 15-40% adolescents experience depressed moods and for most of them they resolve and are not carried into adulthood. However, (5-6%) of those affected by mood disorders develop the depressive syndrome and as many as (1-3%) develop full-blown clinical depression. Materials: A large questionnaire was given to 2508 students, aged 13–16 years old, and one of its parts was the Burns checklist, i.e. the standard test for identifying depressed mood. The questionnaire asked about many aspects of the student’s life, it included a total of 53 questions, most of which had subquestions. It is important to note that the data suffered from many problems, the most important of which were missing data and collinearity. Aim: In order to identify the correlates of mood disorders we built predictive models which were then trained and validated. Our aim was not to be able to predict which students suffer from mood disorders but rather to explore the factors influencing mood disorders. Methods: The problems with data described above practically excluded using all classical statistical methods. For this reason, we attempted to use the following Artificial Intelligence (AI) methods: classification trees with surrogate variables, random forests and xgboost. All analyses were carried out with the use of the mlr package for the R programming language. Resuts: The predictive model built by classification trees algorithm outperformed the other algorithms by a large margin. As a result, we were able to rank the variables (questions and subquestions from the questionnaire) from the most to least influential as far as protection against mood disorder is concerned. Thirteen out of twenty most important variables reflect the relationships with parents. This seems to be a really significant result both from the cognitive point of view and also from the practical point of view, i.e. as far as interventions to correct mood disorders are concerned.

Keywords: mood disorders, adolescents, family, artificial intelligence

Procedia PDF Downloads 30
1883 EEG-Based Classification of Psychiatric Disorders: Bipolar Mood Disorder vs. Schizophrenia

Authors: Han-Jeong Hwang, Jae-Hyun Jo, Fatemeh Alimardani

Abstract:

An accurate diagnosis of psychiatric diseases is a challenging issue, in particular when distinct symptoms for different diseases are overlapped, such as delusions appeared in bipolar mood disorder (BMD) and schizophrenia (SCH). In the present study, we propose a useful way to discriminate BMD and SCH using electroencephalography (EEG). A total of thirty BMD and SCH patients (15 vs. 15) took part in our experiment. EEG signals were measured with nineteen electrodes attached on the scalp using the international 10-20 system, while they were exposed to a visual stimulus flickering at 16 Hz for 95 s. The flickering visual stimulus induces a certain brain signal, known as steady-state visual evoked potential (SSVEP), which is differently observed in patients with BMD and SCH, respectively, in terms of SSVEP amplitude because they process the same visual information in own unique way. For classifying BDM and SCH patients, machine learning technique was employed in which leave-one-out-cross validation was performed. The SSVEPs induced at the fundamental (16 Hz) and second harmonic (32 Hz) stimulation frequencies were extracted using fast Fourier transformation (FFT), and they were used as features. The most discriminative feature was selected using the Fisher score, and support vector machine (SVM) was used as a classifier. From the analysis, we could obtain a classification accuracy of 83.33 %, showing the feasibility of discriminating patients with BMD and SCH using EEG. We expect that our approach can be utilized for psychiatrists to more accurately diagnose the psychiatric disorders, BMD and SCH.

Keywords: bipolar mood disorder, electroencephalography, schizophrenia, machine learning

Procedia PDF Downloads 268
1882 Evaluating Classification with Efficacy Metrics

Authors: Guofan Shao, Lina Tang, Hao Zhang

Abstract:

The values of image classification accuracy are affected by class size distributions and classification schemes, making it difficult to compare the performance of classification algorithms across different remote sensing data sources and classification systems. Based on the term efficacy from medicine and pharmacology, we have developed the metrics of image classification efficacy at the map and class levels. The novelty of this approach is that a baseline classification is involved in computing image classification efficacies so that the effects of class statistics are reduced. Furthermore, the image classification efficacies are interpretable and comparable, and thus, strengthen the assessment of image data classification methods. We use real-world and hypothetical examples to explain the use of image classification efficacies. The metrics of image classification efficacy meet the critical need to rectify the strategy for the assessment of image classification performance as image classification methods are becoming more diversified.

Keywords: accuracy assessment, efficacy, image classification, machine learning, uncertainty

Procedia PDF Downloads 102
1881 Balancing the Need for Closure: A Requirement for Effective Mood Development in Flow

Authors: Cristian Andrei Nica

Abstract:

The state of flow relies on cognitive elements that sustain openness for information processing in order to promote goal attainment. However, the need for closure may create mental constraints, which can impact affectivity levels. This study aims to observe the extent in which need for closure moderates the interaction between flow and affectivity, taking into account the mediating role of the mood repair motivation in the interaction process between need for closure and affectivity. Using a non-experimental, correlational design, n=73 participants n=18 men and n=55 women, ages between 19-64 years (m= 28.02) (SD=9.22), completed the Positive Affectivity-Negative Affectivity Schedule, the need for closure scale-revised, the mood repair items and an adapted version of the flow state scale 2, in order to assess the trait aspects of flow. Results show that need for closure significantly moderates the flow-affectivity process, while the tolerance of ambiguity sub-scale is positively associated with negative affectivity and negatively to positive affectivity. At the same time, mood repair motivation significantly mediates the interaction between need for closure and positive affectivity, whereas the mediation process for negative affectivity is insignificant. Need for closure needs to be considered when promoting the development of positive emotions. It has been found that the motivation to repair one’s mood mediates the interaction between need for closure and positive affectivity. According to this study, flow can trigger positive emotions when the person is willing to engage in mood regulation strategies and approach meaningful experiences with an open mind.

Keywords: flow, mood regulation, mood repair motivation, need for closure, negative affectivity, positive affectivity

Procedia PDF Downloads 51
1880 Social Communication Problems, Social Anxiety, and Mood Problems among Students with Autism Spectrum Disorder from Teachers' Perspective

Authors: Naila Tallas Mahajna, Jamal Al Khateeb

Abstract:

This study examined the level of social communication problems, social anxiety, and mood problems among children with ASD (age 6-13 years) enrolled in special classes (n=46) and regular classes (n=36) from teachers' perspective in the schools of a part of Palestine. Teachers responded to three questionnaires - social communication problems, social anxiety and mood problems- that were used to answer the research questions. Results: social communication problems, social anxiety and mood problems were of medium rates for students with ASD enrolled in reguler and special classes. No significant differences in the level of social communication problems could be attributed to class type (Regular, Special) or the grade level-(1st – 3rd, 4th - 6th). There were significant differences in social anxiety levels that could be attributed to grade level in favor of the 4th - 6th grades but there were no significant differences according to class type (Regular, Special). There were statistically significant differences in mood problems levels that could be attributed to the class type in favor of special classes, but no differences were found according to grade level. There was a direct significant relationship between communication problems, social anxiety, and mood problems. Conclusion: social communication problems may be an important risk factor for the development of social anxiety and mood problems among students with ASD.

Keywords: social communication problems, social anxiety, mood problems, autism spectrum disorders

Procedia PDF Downloads 79
1879 When and Why Unhappy People Avoid Enjoyable Experiences

Authors: Hao Shen, Aparna Labroo

Abstract:

Across four studies, we show people in a negative mood avoid anticipated enjoyable experiences because of the subjective difficulty in simulating those experiences, and they misattribute these feelings of difficulty to reduced pleasantness of the anticipated experience. We observe the avoidance of enjoyable experiences only for anticipated experiences that involve smile-like facial-muscular simulation. When the need for facial-muscular simulation is attenuated, or when the anticipated experience relies on facial-muscular simulation to a lesser extent, people in a negative mood no longer avoid enjoyable experiences, but rather seek such experiences because they fit better with their ongoing mood-repair goals.

Keywords: emotion regulation, mood repair, embodiment, anticipated experiences

Procedia PDF Downloads 324
1878 Assessment of the Validity of Sentiment Analysis as a Tool to Analyze the Emotional Content of Text

Authors: Trisha Malhotra

Abstract:

Sentiment analysis is a recent field of study that computationally assesses the emotional nature of a body of text. To assess its test-validity, sentiment analysis was carried out on the emotional corpus of text from a personal 15-day mood diary. Self-reported mood scores varied more or less accurately with daily mood evaluation score given by the software. On further assessment, it was found that while sentiment analysis was good at assessing ‘global’ mood, it was not able to ‘locally’ identify and differentially score synonyms of various emotional words. It is further critiqued for treating the intensity of an emotion as universal across cultures. Finally, the software is shown not to account for emotional complexity in sentences by treating emotions as strictly positive or negative. Hence, it is posited that a better output could be two (positive and negative) affect scores for the same body of text.

Keywords: analysis, data, diary, emotions, mood, sentiment

Procedia PDF Downloads 195
1877 Urban Land Cover from GF-2 Satellite Images Using Object Based and Neural Network Classifications

Authors: Lamyaa Gamal El-Deen Taha, Ashraf Sharawi

Abstract:

China launched satellite GF-2 in 2014. This study deals with comparing nearest neighbor object-based classification and neural network classification methods for classification of the fused GF-2 image. Firstly, rectification of GF-2 image was performed. Secondly, a comparison between nearest neighbor object-based classification and neural network classification for classification of fused GF-2 was performed. Thirdly, the overall accuracy of classification and kappa index were calculated. Results indicate that nearest neighbor object-based classification is better than neural network classification for urban mapping.

Keywords: GF-2 images, feature extraction-rectification, nearest neighbour object based classification, segmentation algorithms, neural network classification, multilayer perceptron

Procedia PDF Downloads 248
1876 Arabic Text Representation and Classification Methods: Current State of the Art

Authors: Rami Ayadi, Mohsen Maraoui, Mounir Zrigui

Abstract:

In this paper, we have presented a brief current state of the art for Arabic text representation and classification methods. We decomposed Arabic Task Classification into four categories. First we describe some algorithms applied to classification on Arabic text. Secondly, we cite all major works when comparing classification algorithms applied on Arabic text, after this, we mention some authors who proposing new classification methods and finally we investigate the impact of preprocessing on Arabic TC.

Keywords: text classification, Arabic, impact of preprocessing, classification algorithms

Procedia PDF Downloads 361
1875 Meditation Aided with 40 Hz Binaural Beats Enhances the Cognitive Function and Mood State

Authors: Rubina Shakya, Srijana Dangol, Dil Islam Mansur

Abstract:

The exposure of constant stress stimuli in our daily lives is causing deterioration of neural connectivity in the brain. Interestingly, the improvement in larger-scale neural communication has been argued to rely on brain rhythms, which might be sensitive to binaural beats of particular frequency bands. The theoretical idea behind neural entrainment is that the rhythmic oscillatory activity within and between different brain regions can enhance cognitive function and mood state. So, we aimed to investigate whether the binaural beats of 40 Hz could enhance the cognition and the mood stability of the medical students at Kathmandu University of age 18-25 years old, which possibly, in the long run, might help to enhance their work productivity. The participants were asked to focus on the auditory stimuli of binaural beats with 200 Hz on the right side and 240 Hz on the left side of the headset for 15 minutes, every alternative day of three consecutive weeks. The Stroop’s test and the Brunel Mood Scale (BRUMS) were applied to assess the cognitive function and the mood state, respectively. The binaural beats significantly decreased the reaction time for the incoherent component of Stroop’s test in both male and female participants. For the mood state, scores of all positive emotions except ‘Calmness’ were significantly increased in the case of males. Whereas, scores of all positive emotions except ‘Vigor’ were significantly increased in the case of females. The results suggested that the meditation aided by binaural beats of 40 Hz helps in improving cognition and mood states to some extent.

Keywords: binaural beats, cognitive function, gamma neural oscillation, mood states

Procedia PDF Downloads 71
1874 Sensitive Analysis of the ZF Model for ABC Multi Criteria Inventory Classification

Authors: Makram Ben Jeddou

Abstract:

The ABC classification is widely used by managers for inventory control. The classical ABC classification is based on the Pareto principle and according to the criterion of the annual use value only. Single criterion classification is often insufficient for a closely inventory control. Multi-criteria inventory classification models have been proposed by researchers in order to take into account other important criteria. From these models, we will consider the ZF model in order to make a sensitive analysis on the composite score calculated for each item. In fact, this score based on a normalized average between a good and a bad optimized index can affect the ABC items classification. We will then focus on the weights assigned to each index and propose a classification compromise.

Keywords: ABC classification, multi criteria inventory classification models, ZF-model

Procedia PDF Downloads 397
1873 The Effect of Mood and Normative Conformity on Prosocial Behavior

Authors: Antoine Miguel Borromeo, Kristian Anthony Menez, Moira Louise Ordonez, David Carl Rabaya

Abstract:

This study aimed to test if induced mood and normative conformity have any effect specifically on prosocial behavior, which was operationalized as the willingness to donate to a non-government organization. The effect of current attitude towards the object of the prosocial behavior was also considered with a covariate test. Undergraduates taking an introductory course on psychology (N = 132) from the University of the Philippines Diliman were asked how much money they were willing to donate after being presented a video about coral reef destruction and a website that advocates towards saving the coral reefs. A 3 (Induced mood: Positive vs Fear and Sadness vs Anger, Contempt, and Disgust) x 2 (Normative conformity: Presence vs Absence) between-subjects analysis of covariance was used for experimentation. Prosocial behavior was measured by presenting a circumstance wherein participants were given money and asked if they were willing to donate an amount to the non-government organization. An analysis of covariance revealed that the mood induced has no significant effect on prosocial behavior, F(2,125) = 0.654, p > 0.05. The analysis also showed how normative conformity has no significant effect on prosocial behavior, F(1,125) = 0.238, p > 0.05, as well as their interaction F(2, 125) = 1.580, p > 0.05. However, the covariate, current attitude towards corals was revealed to be significant, F(1,125) = 8.778, p < 0.05. From this, we speculate that inherent attitudes of people have a greater effect on prosocial behavior than temporary factors such as mood and conformity.

Keywords: attitude, induced mood, normative conformity, prosocial behavior

Procedia PDF Downloads 159
1872 A Comparison of Transdiagnostic Components in Generalized Anxiety Disorder, Unipolar Mood Disorder and Nonclinical Population

Authors: Imaneh Abbasi, Ladan Fata, Majid Sadeghi, Sara Banihashemi, Abolfazl Mohammadee

Abstract:

Background: Dimensional and transdiagnostic approaches as a result of high comorbidity among mental disorders have captured researchers and clinicians interests for exploring the latent factors of development and maintenance of some psychological disorders. The goal of present study is to compare some of these common factors between generalized anxiety disorder and unipolar mood disorder. Methods: 27 patients with generalized anxiety disorder, 29 patients with depression disorder were recruited using SCID-I and 69 non-clinical population were selected using GHQ cut off point. MANCOVA was used for analyzing data. Results: The results show that worry, rumination, intolerance of uncertainty, maladaptive metacognitive beliefs, and experiential avoidance were all significantly different between GAD and unipolar mood disorder groups. However, there were not any significant differences in difficulties in emotion regulation and neuroticism between GAD and unipolar mood disorder groups. Discussion: Results indicate that although there are some transdiagnostic and common factors in GAD and unipolar mood disorder, there may be some specific vulnerability factors for each disorder. Further study is needed for answering these questions.

Keywords: transdiagnostic, depression, generalized anxiety disorder, emotion regulation

Procedia PDF Downloads 363
1871 A New Approach for Improving Accuracy of Multi Label Stream Data

Authors: Kunal Shah, Swati Patel

Abstract:

Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. Classification is used to predict class of unseen instance as accurate as possible. Multi label classification is a variant of single label classification where set of labels associated with single instance. Multi label classification is used by modern applications, such as text classification, functional genomics, image classification, music categorization etc. This paper introduces the task of multi-label classification, methods for multi-label classification and evolution measure for multi-label classification. Also, comparative analysis of multi label classification methods on the basis of theoretical study, and then on the basis of simulation was done on various data sets.

Keywords: binary relevance, concept drift, data stream mining, MLSC, multiple window with buffer

Procedia PDF Downloads 473
1870 Classification of Attacks Over Cloud Environment

Authors: Karim Abouelmehdi, Loubna Dali, Elmoutaoukkil Abdelmajid, Hoda Elsayed, Eladnani Fatiha, Benihssane Abderahim

Abstract:

The security of cloud services is the concern of cloud service providers. In this paper, we will mention different classifications of cloud attacks referred by specialized organizations. Each agency has its classification of well-defined properties. The purpose is to present a high-level classification of current research in cloud computing security. This classification is organized around attack strategies and corresponding defenses.

Keywords: cloud computing, classification, risk, security

Procedia PDF Downloads 417
1869 Narrative Family Therapy and the Treatment of Perinatal Mood and Anxiety Disorders

Authors: Jamie E. Banker

Abstract:

For many families, pregnancy and the postpartum time are filled with both anticipation and change. For some pregnant or postpartum women, this time is marked by the onset of a mood or anxiety disorder. Experiencing a mood or anxiety disorders during this time of life differs from depression or anxiety at other times of life. Not only because of the physical changes occurring in the mother’s body but also the mental and physical preparation necessary to redefine family roles, responsibilities, and develop new identities in the life transition. The presence of a mood or anxiety disorder can influence the way in which a mother defines herself and can complicate her understanding of her abilities and competencies as a mother. The complexity of experiencing a mood or anxiety disorder in the midst of these changes necessitates specific treatment interventions to match both the symptomatology and psychological adjustments. This study explores the use of narrative family therapy techniques when treating a mother who is experiencing postpartum depression. Externalization is a common technique used in narrative family therapy and can help client’s separate their identity from the problems they are experiencing. This is crucial to a new mom who is in the middle of defining her identity during her transition to parenthood. The goal of this study is to examine how the use of externalization techniques help postpartum women separate their mood and anxiety symptoms from their identity as a mother. An exploratory case study design was conducted in a single setting, private practice therapy office, and explored how a narrative family therapy approach can be used to treat perinatal mood and anxiety disorders. The therapy sessions were audio recorded and transcribed. Constructivism and narrative theory are used as theoretical frameworks and data from the therapy sessions, and a follow-up survey was triangulated and analyzed. During the course of the treatment, the participant reports using the new externalizing labels for her symptoms. Within one month of treatment, the participant reports that she could stop herself from thinking the harmful thoughts faster, and within three months, the harmful thoughts went away. The main themes in this study were building courage and less self-blame. This case highlights the role narrative family therapy can play in the treatment of perinatal mood and anxiety disorders and the importance of separating a women’s mood from her identity as a mother. This conceptual framework was beneficial to the postpartum mother when treating perinatal mood and anxiety disorder symptoms.

Keywords: externalizing techniques, narrative family therapy, perinatal mood and anxiety disorders, postpartum depression

Procedia PDF Downloads 117
1868 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.

Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction

Procedia PDF Downloads 381
1867 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics

Authors: Fabio Fabris, Alex A. Freitas

Abstract:

Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.

Keywords: algorithm recommendation, meta-learning, bioinformatics, hierarchical classification

Procedia PDF Downloads 184
1866 Review on Effective Texture Classification Techniques

Authors: Sujata S. Kulkarni

Abstract:

Effective and efficient texture feature extraction and classification is an important problem in image understanding and recognition. This paper gives a review on effective texture classification method. The objective of the problem of texture representation is to reduce the amount of raw data presented by the image, while preserving the information needed for the task. Texture analysis is important in many applications of computer image analysis for classification include industrial and biomedical surface inspection, for example for defects and disease, ground classification of satellite or aerial imagery and content-based access to image databases.

Keywords: compressed sensing, feature extraction, image classification, texture analysis

Procedia PDF Downloads 349
1865 Research on Ultrafine Particles Classification Using Hydrocyclone with Annular Rinse Water

Authors: Tao Youjun, Zhao Younan

Abstract:

The separation effect of fine coal can be improved by the process of pre-desliming. It was significantly enhanced when the fine coal was processed using Falcon concentrator with the removal of -45um coal slime. Ultrafine classification tests using Krebs classification cyclone with annular rinse water showed that increasing feeding pressure can effectively avoid the phenomena of heavy particles passing into overflow and light particles slipping into underflow. The increase of rinse water pressure could reduce the content of fine-grained particles while increasing the classification size. The increase in feeding concentration had a negative effect on the efficiency of classification, meanwhile increased the classification size due to the enhanced hindered settling caused by high underflow concentration. As a result of optimization experiments with response indicator of classification efficiency which based on orthogonal design using Design-Expert software indicated that the optimal classification efficiency reached 91.32% with the feeding pressure of 0.03MPa, the rinse water pressure of 0.02MPa and the feeding concentration of 12.5%. Meanwhile, the classification size was 49.99 μm which had a good agreement with the predicted value.

Keywords: hydrocyclone, ultrafine classification, slime, classification efficiency, classification size

Procedia PDF Downloads 86
1864 Transitivity, Mood and Modality Analysis in Malaysian News Headlines on Healthy Eating

Authors: Faith Fang Xi Ooi, Kam-Fong Lee

Abstract:

Headlines are generally the summary of the content of news articles. With the added influence of hectic lifestyles, readers may rely solely on the headlines for information. In the media, what is reported concerning health issues are government responses and community involvement. There is a need for a call to action to curb health issues and not just reporting on what the government is doing about these health-related issues. In other words, linguistic elements of persuasive communicative function should be realized when reporting on health issues. Hence, this paper aims at identifying and analyzing the transitivity, Mood and Modality systems in two hundred news headlines from two Malaysian online news portals, namely The Star Online and New Straits Times. This study employs the purposive sampling method to obtain the news headlines on healthy eating using the search keyword ‘healthy eating’ and is based on Halliday’s Systemic Functional Linguistics (SFL) framework. The results show that the Material process dominates the process types along with its participants of Scope and Goal. The mood type that constitutes most of the headlines in the two newspapers is the declarative mood. Moreover, for Modality, the median Probability constitutes the highest in the headlines on healthy eating. This study contributes to the implications of being a source of reference for news writers and producers in constructing news headlines and for health campaign strategists to realize the persuasive appeals to influence behaviors and attitudes of the public towards healthy eating.

Keywords: healthy eating, modality, mood, news headlines, SFL

Procedia PDF Downloads 88
1863 Radical Web Text Classification Using a Composite-Based Approach

Authors: Kolade Olawande Owoeye, George R. S. Weir

Abstract:

The widespread of terrorism and extremism activities on the internet has become a major threat to the government and national securities due to their potential dangers which have necessitated the need for intelligence gathering via web and real-time monitoring of potential websites for extremist activities. However, the manual classification for such contents is practically difficult or time-consuming. In response to this challenge, an automated classification system called composite technique was developed. This is a computational framework that explores the combination of both semantics and syntactic features of textual contents of a web. We implemented the framework on a set of extremist webpages dataset that has been subjected to the manual classification process. Therein, we developed a classification model on the data using J48 decision algorithm, this is to generate a measure of how well each page can be classified into their appropriate classes. The classification result obtained from our method when compared with other states of arts, indicated a 96% success rate in classifying overall webpages when matched against the manual classification.

Keywords: extremist, web pages, classification, semantics, posit

Procedia PDF Downloads 74
1862 The Effects of Collaborative Videogame Play on Flow Experience and Mood

Authors: Eva Nolan, Timothy Mcnichols

Abstract:

Gamers spend over 3 billion hours collectively playing video games a week, which is arguably not nearly enough time to indulge in the many benefits gaming has to offer. Much of the previous research on video gaming is centered on the effects of playing violent video games and the negative impacts they have on the individual. However, there is a dearth of research in the area of non-violent video games, specifically the emotional and cognitive benefits playing non-violent games can offer individuals. Current research in the area of video game play suggests there are many benefits to playing for an individual, such as decreasing symptoms of depression, decreasing stress, increasing positive emotions, inducing relaxation, decreasing anxiety, and particularly improving mood. One suggestion as to why video games may offer such benefits is that they possess ideal characteristics to create and maintain flow experiences, which in turn, is the subjective experience where an individual obtains a heightened and improved state of mind while they are engaged in a task where a balance of challenge and skill is found. Many video games offer a platform for collaborative gameplay, which can enhance the emotional experience of gaming through the feeling of social support and social inclusion. The present study was designed to examine the effects of collaborative gameplay and flow experience on participants’ perceived mood. To investigate this phenomenon, an in-between subjects design involving forty participants were randomly divided into two groups where they engaged in solo or collaborative gameplay. Each group represented an even number of frequent gamers and non-frequent gamers. Each participant played ‘The Lego Movie Videogame’ on the Playstation 4 console. The participant’s levels of flow experience and perceived mood were measured by the Flow State Scale (FSS) and the Positive and Negative Affect Schedule (PANAS). The following research hypotheses were investigated: (i.) participants in the collaborative gameplay condition will experience higher levels of flow experience and higher levels of mood than those in the solo gameplay condition; (ii.) participants who are frequent gamers will experience higher levels of flow experience and higher levels of mood than non-frequent gamers; and (iii.) there will be a significant positive relationship between flow experience and mood. If the estimated findings are supported, this suggests that engaging in collaborative gameplay can be beneficial for an individual’s mood and that experiencing a state of flow can also enhance an individual’s mood. Hence, collaborative gaming can be beneficial to promote positive emotions (higher levels of mood) through engaging an individual’s flow state.

Keywords: collaborative gameplay, flow experience, mood, games, positive emotions

Procedia PDF Downloads 263
1861 Hyperspectral Image Classification Using Tree Search Algorithm

Authors: Shreya Pare, Parvin Akhter

Abstract:

Remotely sensing image classification becomes a very challenging task owing to the high dimensionality of hyperspectral images. The pixel-wise classification methods fail to take the spatial structure information of an image. Therefore, to improve the performance of classification, spatial information can be integrated into the classification process. In this paper, the multilevel thresholding algorithm based on a modified fuzzy entropy function is used to perform the segmentation of hyperspectral images. The fuzzy parameters of the MFE function have been optimized by using a new meta-heuristic algorithm based on the Tree-Search algorithm. The segmented image is classified by a large distribution machine (LDM) classifier. Experimental results are shown on a hyperspectral image dataset. The experimental outputs indicate that the proposed technique (MFE-TSA-LDM) achieves much higher classification accuracy for hyperspectral images when compared to state-of-art classification techniques. The proposed algorithm provides accurate segmentation and classification maps, thus becoming more suitable for image classification with large spatial structures.

Keywords: classification, hyperspectral images, large distribution margin, modified fuzzy entropy function, multilevel thresholding, tree search algorithm, hyperspectral image classification using tree search algorithm

Procedia PDF Downloads 70
1860 Pose Normalization Network for Object Classification

Authors: Bingquan Shen

Abstract:

Convolutional Neural Networks (CNN) have demonstrated their effectiveness in synthesizing 3D views of object instances at various viewpoints. Given the problem where one have limited viewpoints of a particular object for classification, we present a pose normalization architecture to transform the object to existing viewpoints in the training dataset before classification to yield better classification performance. We have demonstrated that this Pose Normalization Network (PNN) can capture the style of the target object and is able to re-render it to a desired viewpoint. Moreover, we have shown that the PNN improves the classification result for the 3D chairs dataset and ShapeNet airplanes dataset when given only images at limited viewpoint, as compared to a CNN baseline.

Keywords: convolutional neural networks, object classification, pose normalization, viewpoint invariant

Procedia PDF Downloads 227
1859 Lean Models Classification: Towards a Holistic View

Authors: Y. Tiamaz, N. Souissi

Abstract:

The purpose of this paper is to present a classification of Lean models which aims to capture all the concepts related to this approach and thus facilitate its implementation. This classification allows the identification of the most relevant models according to several dimensions. From this perspective, we present a review and an analysis of Lean models literature and we propose dimensions for the classification of the current proposals while respecting among others the axes of the Lean approach, the maturity of the models as well as their application domains. This classification allowed us to conclude that researchers essentially consider the Lean approach as a toolbox also they design their models to solve problems related to a specific environment. Since Lean approach is no longer intended only for the automotive sector where it was invented, but to all fields (IT, Hospital, ...), we consider that this approach requires a generic model that is capable of being implemented in all areas.

Keywords: lean approach, lean models, classification, dimensions, holistic view

Procedia PDF Downloads 348
1858 Mood Choices and Modality Patterns in Donald Trump’s Inaugural Presidential Speech

Authors: Mary Titilayo Olowe

Abstract:

The controversies that trailed the political campaign and eventual choice of Donald Trump as the American president is so great that expectations are high as to what the content of his inaugural speech will portray. Given the fact that language is a dynamic vehicle of expressing intentions, the speech needs to be objectively assessed so as to access its content in the manner intended through the three strands of meaning postulated by the Systemic Functional Grammar (SFG): the ideational, the interpersonal and the textual. The focus of this paper, however, is on the interpersonal meaning which deals with how language exhibits social roles and relationship. This paper, therefore, attempts to analyse President Donald Trump’s inaugural speech to elicit interpersonal meaning in it. The analysis is done from the perspective of mood and modality which are housed in SFG. Results of the mood choice which is basically declarative, reveal an information-centered speech while the high option for the modal verb operator ‘will’ shows president Donald Trump’s ability to establish an equal and reliant relationship with his audience, i.e., the Americans. In conclusion, the appeal of the speech to different levels of Interpersonal meaning is largely responsible for its overall effectiveness. One can, therefore, understand the reason for the massive reaction it generates at the center of global discourse.

Keywords: interpersonal, modality, mood, systemic functional grammar

Procedia PDF Downloads 152
1857 Real-Time Classification of Marbles with Decision-Tree Method

Authors: K. S. Parlak, E. Turan

Abstract:

The separation of marbles according to the pattern quality is a process made according to expert decision. The classification phase is the most critical part in terms of economic value. In this study, a self-learning system is proposed which performs the classification of marbles quickly and with high success. This system performs ten feature extraction by taking ten marble images from the camera. The marbles are classified by decision tree method using the obtained properties. The user forms the training set by training the system at the marble classification stage. The system evolves itself in every marble image that is classified. The aim of the proposed system is to minimize the error caused by the person performing the classification and achieve it quickly.

Keywords: decision tree, feature extraction, k-means clustering, marble classification

Procedia PDF Downloads 300