Search results for: molecular evolution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3769

Search results for: molecular evolution

3769 A Geometrical Perspective on the Insulin Evolution

Authors: Yuhei Kunihiro, Sorin V. Sabau, Kazuhiro Shibuya

Abstract:

We study the molecular evolution of insulin from the metric geometry point of view. In mathematics, and particularly in geometry, distances and metrics between objects are of fundamental importance. Using a weaker notion than the classical distance, namely the weighted quasi-metrics, one can study the geometry of biological sequences (DNA, mRNA, or proteins) space. We analyze from the geometrical point of view a family of 60 insulin homologous sequences ranging on a large variety of living organisms from human to the nematode C. elegans. We show that the distances between sequences provide important information about the evolution and function of insulin.

Keywords: metric geometry, evolution, insulin, C. elegans

Procedia PDF Downloads 301
3768 Phylogenetic Analysis Based On the Internal Transcribed Spacer-2 (ITS2) Sequences of Diadegma semiclausum (Hymenoptera: Ichneumonidae) Populations Reveals Significant Adaptive Evolution

Authors: Ebraheem Al-Jouri, Youssef Abu-Ahmad, Ramasamy Srinivasan

Abstract:

The parasitoid, Diadegma semiclausum (Hymenoptera: Ichneumonidae) is one of the most effective exotic parasitoids of diamondback moth (DBM), Plutella xylostella in the lowland areas of Homs, Syria. Molecular evolution studies are useful tools to shed light on the molecular bases of insect geographical spread and adaptation to new hosts and environment and for designing better control strategies. In this study, molecular evolution analysis was performed based on the 42 nuclear internal transcribed spacer-2 (ITS2) sequences representing the D. semiclausum and eight other Diadegma spp. from Syria and worldwide. Possible recombination events were identified by RDP4 program. Four potential recombinants of the American D. insulare and D. fenestrale (Jeju) were detected. After detecting and removing recombinant sequences, the ratio of non-synonymous (dN) to synonymous (dS) substitutions per site (dN/dS=ɷ) has been used to identify codon positions involved in adaptive processes. Bayesian techniques were applied to detect selective pressures at a codon level by using five different approaches including: fixed effects likelihood (FEL), internal fixed effects likelihood (IFEL), random effects method (REL), mixed effects model of evolution (MEME) and Program analysis of maximum liklehood (PAML). Among the 40 positively selected amino acids (aa) that differed significantly between clades of Diadegma species, three aa under positive selection were only identified in D. semiclausum. Additionally, all D. semiclausum branches tree were highly found under episodic diversifying selection (EDS) at p≤0.05. Our study provide evidence that both recombination and positive selection have contributed to the molecular diversity of Diadegma spp. and highlights the significant contribution of D. semiclausum in adaptive evolution and influence the fitness in the DBM parasitoid.

Keywords: diadegma sp, DBM, ITS2, phylogeny, recombination, dN/dS, evolution, positive selection

Procedia PDF Downloads 387
3767 In-Depth Analysis on Sequence Evolution and Molecular Interaction of Influenza Receptors (Hemagglutinin and Neuraminidase)

Authors: Dong Tran, Thanh Dac Van, Ly Le

Abstract:

Hemagglutinin (HA) and Neuraminidase (NA) play an important role in host immune evasion across influenza virus evolution process. The correlation between HA and NA evolution in respect to epitopic evolution and drug interaction has yet to be investigated. In this study, combining of sequence to structure evolution and statistical analysis on epitopic/binding site specificity, we identified potential therapeutic features of HA and NA that show specific antibody binding site of HA and specific binding distribution within NA active site of current inhibitors. Our approach introduces the use of sequence variation and molecular interaction to provide an effective strategy in establishing experimental based distributed representations of protein-protein/ligand complexes. The most important advantage of our method is that it does not require complete dataset of complexes but rather directly inferring feature interaction from sequence variation and molecular interaction. Using correlated sequence analysis, we additionally identified co-evolved mutations associated with maintaining HA/NA structural and functional variability toward immunity and therapeutic treatment. Our investigation on the HA binding specificity revealed unique conserved stalk domain interacts with unique loop domain of universal antibodies (CR9114, CT149, CR8043, CR8020, F16v3, CR6261, F10). On the other hand, NA inhibitors (Oseltamivir, Zaninamivir, Laninamivir) showed specific conserved residue contribution and similar to that of NA substrate (sialic acid) which can be exploited for drug design. Our study provides an important insight into rational design and identification of novel therapeutics targeting universally recognized feature of influenza HA/NA.

Keywords: influenza virus, hemagglutinin (HA), neuraminidase (NA), sequence evolution

Procedia PDF Downloads 131
3766 Fundamental Theory of the Evolution Force: Gene Engineering utilizing Synthetic Evolution Artificial Intelligence

Authors: L. K. Davis

Abstract:

The effects of the evolution force are observable in nature at all structural levels ranging from small molecular systems to conversely enormous biospheric systems. However, the evolution force and work associated with formation of biological structures has yet to be described mathematically or theoretically. In addressing the conundrum, we consider evolution from a unique perspective and in doing so we introduce the “Fundamental Theory of the Evolution Force: FTEF”. We utilized synthetic evolution artificial intelligence (SYN-AI) to identify genomic building blocks and to engineer 14-3-3 ζ docking proteins by transforming gene sequences into time-based DNA codes derived from protein hierarchical structural levels. The aforementioned served as templates for random DNA hybridizations and genetic assembly. The application of hierarchical DNA codes allowed us to fast forward evolution, while dampening the effect of point mutations. Natural selection was performed at each hierarchical structural level and mutations screened using Blosum 80 mutation frequency-based algorithms. Notably, SYN-AI engineered a set of three architecturally conserved docking proteins that retained motion and vibrational dynamics of native Bos taurus 14-3-3 ζ.

Keywords: 14-3-3 docking genes, synthetic protein design, time-based DNA codes, writing DNA code from scratch

Procedia PDF Downloads 83
3765 Molecular Identification and Evolutionary Status of Lucilia bufonivora: An Obligate Parasite of Amphibians in Europe

Authors: Gerardo Arias, Richard Wall, Jamie Stevens

Abstract:

Lucilia bufonivora Moniez, is an obligate parasite of toads and frogs widely distributed in Europe. Its sister taxon Lucilia silvarum Meigen behaves mainly as a carrion breeder in Europe, however it has been reported as a facultative parasite of amphibians. These two closely related species are morphologically almost identical, which has led to misidentification, and in fact, it has been suggested that the amphibian myiasis cases by L. silvarum reported in Europe should be attributed to L. bufonivora. Both species remain poorly studied and their taxonomic relationships are still unclear. The identification of the larval specimens involved in amphibian myiasis with molecular tools and phylogenetic analysis of these two closely related species may resolve this problem. In this work seventeen unidentified larval specimens extracted from toad myiasis cases of the UK, the Netherlands and Switzerland were obtained, their COX1 (mtDNA) and EF1-α (Nuclear DNA) gene regions were amplified and then sequenced. The 17 larval samples were identified with both molecular markers as L. bufonivora. Phylogenetic analysis was carried out with 10 other blowfly species, including L. silvarum samples from the UK and USA. Bayesian Inference trees of COX1 and a combined-gene dataset suggested that L. silvarum and L. bufonivora are separate sister species. However, the nuclear gene EF1-α does not appear to resolve their relationships, suggesting that the rates of evolution of the mtDNA are much faster than those of the nuclear DNA. This work provides the molecular evidence for successful identification of L. bufonivora and a molecular analysis of the populations of this obligate parasite from different locations across Europe. The relationships with L. silvarum are discussed.

Keywords: calliphoridae, molecular evolution, myiasis, obligate parasitism

Procedia PDF Downloads 202
3764 Cyclic Evolution of a Two Fluid Diffusive Universe

Authors: Subhayan Maity

Abstract:

Complete scenario of cosmic evolution from emergent phase to late time acceleration (i.e. non-singular ever expanding Universe) is a popular preference in the recent cosmology. Yet one can’t exclude the idea that other type of evolution pattern of the Universe may also be possible. Especially, the bouncing scenario is becoming a matter of interest now a days. The present work is an exhibition of such a different pattern of cosmic evolution where the evolution of Universe has been shown as a cyclic thermodynamic process. Under diffusion mechanism (non-equilibrium thermodynamic process), the cosmic evolution has been modelled as [ emergent - accelerated expansion - decelerated expansion - decelerated contraction - accelerated contraction - emergent] .

Keywords: non-equilibrium thermodynamics, non singular evolution of universe, cyclic evolution, diffusive fluid

Procedia PDF Downloads 111
3763 Selection Effects on the Molecular and Abiotic Evolution of Antibiotic Resistance

Authors: Abishek Rajkumar

Abstract:

Antibiotic resistance can occur naturally given the selective pressure placed on antibiotics. Within a large population of bacteria, there is a significant chance that some of those bacteria can develop resistance via mutations or genetic recombination. However, a growing public health concern has arisen over the fact that antibiotic resistance has increased significantly over the past few decades. This is because humans have been over-consuming and producing antibiotics, which has ultimately accelerated the antibiotic resistance seen in these bacteria. The product of all of this is an ongoing race between scientists and the bacteria as bacteria continue to develop resistance, which creates even more demand for an antibiotic that can still terminate the newly resistant strain of bacteria. This paper will focus on a myriad of aspects of antibiotic resistance in bacteria starting with how it occurs on a molecular level and then focusing on the antibiotic concentrations and how they affect the resistance and fitness seen in bacteria.

Keywords: antibiotic, molecular, mutation, resistance

Procedia PDF Downloads 294
3762 Proteome-Wide Convergent Evolution on Vocal Learning Birds Reveals Insight into cAMP-Based Learning Pathway

Authors: Chul Lee, Seoae Cho, Erich D. Jarvis, Heebal Kim

Abstract:

Vocal learning, the ability to imitate vocalizations based on auditory experience, is a homoplastic character state observed in different independent lineages of animals such as songbirds, parrots, hummingbirds and human. It has now become possible to perform genome-wide molecular analyses across vocal learners and vocal non-learners with the recent expansion of avian genome data. It was analyzed the whole genomes of human and 48 avian species including those belonging to the three avian vocal learning lineages, to determine if behavior and neural convergence are associated with molecular convergence in divergent species of vocal learners. Analyses of 8295 orthologous genes across bird species revealed 141 genes with amino acid substitutions specific to vocal learners. Out of these, 25 genes have vocal learner specific genetic homoplasies, and their functions were enriched for learning. Several sites in these genes are estimated under convergent evolution and positive selection. A potential role for a subset of these genes in vocal learning was supported by associations with gene expression profiles in vocal learning brain regions of songbirds and human disease that cause language dysfunctions. The key candidate gene with multiple independent lines of the evidences specific to vocal learners was DRD5. Our findings suggest cAMP-based learning pathway in avian vocal learners, indicating molecular homoplastic changes associated with a complex behavioral trait, vocal learning.

Keywords: amino acid substitutions, convergent evolution, positive selection, vocal learning

Procedia PDF Downloads 302
3761 Molecular Interaction of Acetylcholinesterase with Flavonoids Involved in Neurodegenerative Diseases

Authors: W. Soufi, F. Boukli Hacene, S. Ghalem

Abstract:

Alzheimer's disease (AD) is a neurodegenerative disease that leads to a progressive and permanent deterioration of nerve cells. This disease is progressively accompanied by an intellectual deterioration leading to psychological manifestations and behavioral disorders that lead to a loss of autonomy. It is the most frequent of degenerative dementia. Alzheimer's disease (AD), which affects a growing number of people, has become a major public health problem in a few years. In the context of the study of the mechanisms governing the evolution of AD disease, we have found that natural flavonoids are good acetylcholinesterase inhibitors that reduce the rate of ßA secretion in neurons. This work is to study the inhibition of acetylcholinesterase (AChE) which is an enzyme involved in Alzheimer's disease, by methods of molecular modeling. These results will probably help in the development of an effective therapeutic tool in the fight against the development of Alzheimer's disease. Our goal of the research is to study the inhibition of acetylcholinesterase (AChE) by molecular modeling methods.

Keywords: Alzheimer's disease, acetylcholinesterase, flavonoids, molecular modeling

Procedia PDF Downloads 72
3760 Coding Considerations for Standalone Molecular Dynamics Simulations of Atomistic Structures

Authors: R. O. Ocaya, J. J. Terblans

Abstract:

The laws of Newtonian mechanics allow ab-initio molecular dynamics to model and simulate particle trajectories in material science by defining a differentiable potential function. This paper discusses some considerations for the coding of ab-initio programs for simulation on a standalone computer and illustrates the approach by C language codes in the context of embedded metallic atoms in the face-centred cubic structure. The algorithms use velocity-time integration to determine particle parameter evolution for up to several thousands of particles in a thermodynamical ensemble. Such functions are reusable and can be placed in a redistributable header library file. While there are both commercial and free packages available, their heuristic nature prevents dissection. In addition, developing own codes has the obvious advantage of teaching techniques applicable to new problems.

Keywords: C language, molecular dynamics, simulation, embedded atom method

Procedia PDF Downloads 271
3759 Thick Disc Molecular Gas Fraction in NGC 6946

Authors: Narendra Nath Patra

Abstract:

Several recent studies reinforce the existence of a thick molecular disc in galaxies along with the dynamically cold thin disc. Assuming a two-component molecular disc, we model the disc of NGC 6946 as a four-component system consists of stars, HI, thin disc molecular gas, and thick disc molecular gas in vertical hydrostatic equilibrium. Following, we set up the joint Poisson-Boltzmann equation of hydrostatic equilibrium and solve it numerically to obtain a three-dimensional density distribution of different baryonic components. Using the density solutions and the observed rotation curve, we further build a three-dimensional dynamical model of the molecular disc and consecutively produce simulated CO spectral cube and spectral width profile. We find that the simulated spectral width profiles distinguishably differs for different assumed thick disc molecular gas fraction. Several CO spectral width profiles are then produced for different assumed thick disc molecular gas fractions and compared with the observed one to obtain the best fit thick disc molecular gas fraction profile. We find that the thick disc molecular gas fraction in NGC 6946 largely remains constant across its molecular disc with a mean value of 0.70 +/- 0.09. We also estimate the amount of extra-planar molecular gas in NGC 6946. We find 60% of the total molecular gas is extra-planar at the central region, whereas this fraction reduces to ~ 35% at the edge of the molecular disc. With our method, for the first time, we estimate the thick disc molecular gas fraction as a function of radius in an external galaxy with sub-kpc resolution.

Keywords: galaxies: kinematics and dynamic, galaxies: spiral, galaxies: structure , ISM: molecules, molecular data

Procedia PDF Downloads 103
3758 Molecular Clustering and Velocity Increase in Converging-Diverging Nozzle in Molecular Dynamics Simulation

Authors: Jeoungsu Na, Jaehawn Lee, Changil Hong, Suhee Kim

Abstract:

A molecular dynamics simulation in a converging-diverging nozzle was performed to study molecular collisions and their influence to average flow velocity according to a variety of vacuum levels. The static pressures and the dynamic pressure exerted by the molecule collision on the selected walls were compared to figure out the intensity variances of the directional flows. With pressure differences constant between the entrance and the exit of the nozzle, the numerical experiment was performed for molecular velocities and directional flows. The result shows that the velocities increased at the nozzle exit as the vacuum level gets higher in that area because less molecular collisions.

Keywords: cavitation, molecular collision, nozzle, vacuum, velocity increase

Procedia PDF Downloads 405
3757 Complex Fuzzy Evolution Equation with Nonlocal Conditions

Authors: Abdelati El Allaoui, Said Melliani, Lalla Saadia Chadli

Abstract:

The objective of this paper is to study the existence and uniqueness of Mild solutions for a complex fuzzy evolution equation with nonlocal conditions that accommodates the notion of fuzzy sets defined by complex-valued membership functions. We first propose definition of complex fuzzy strongly continuous semigroups. We then give existence and uniqueness result relevant to the complex fuzzy evolution equation.

Keywords: Complex fuzzy evolution equations, nonlocal conditions, mild solution, complex fuzzy semigroups

Procedia PDF Downloads 239
3756 Clostridium Difficile in Western Australian Native Animals: Prevalence and Molecular Epidemiology

Authors: Karla Cautivo, Thomas Riley, Daniel Knight

Abstract:

Clostridium difficile infection (CDI) is the most common cause of infectious diarrhea in hospitalised humans. C. difficile colonises the gastrointestinal tract, causes disease in a variety of animal species and can persist as a spore in diverse environments. Genetic overlap between C. difficile strains from human, animal and environmental sources suggests CDI has a zoonotic or foodborne aetiology. In Australia, C. difficile PCR ribotype RT014 (MLST clade 1) and several ST11 (MLST clade 5) RTs are found commonly in livestock. The high prevalence and diversity of ST11 strains in Australian production animals indicates Australia might be the ancestral home for this lineage. This project describes for the first time the ecology of C. difficile in Australian native animals, providing insights into the prevalence, molecular epidemiology and evolution of C. difficile in this unique environment and a possible role in CDI in humans and animals in Australia. Faecal samples were collected from wild/captive reptiles (n=37), mammals (n=104) and birds (n=102) in Western Australia in 2020/21. Anaerobic enrichment culture was performed, and C. difficile isolates were characterised by PCR ribotyping and toxin gene profiling. Seventy isolates of C. difficile were recovered (prevalence of C. difficile in faecal samples 28%, n=68/243); 27 unique RTs were identified, 5 were novel. The prevalence of C. difficile was similar for reptiles and mammals, 46% (n=17/37) and 43%(n=45/104), respectively, but significantly lower in birds (7.8%, n=8/102; p<0.00001 for both reptiles and mammals). Of the 57 isolates available for typing, RT237 (clade 5) and RT002 (clade 2) were the most prevalent, 15.8% (n=9/57) and 14% (n=8/57), respectively. The high prevalence of C. difficile in reptiles and mammals, particularly clade 5 strains, supported by previous studies of C. difficile in Australian soils, suggest that Australia might be the ancestral home of MLST clade 5.

Keywords: Clostridium difficile, zoonosis, molecular epidemiology, ecology and evolution

Procedia PDF Downloads 164
3755 Multi-Scale Urban Spatial Evolution Analysis Based on Space Syntax: A Case Study in Modern Yangzhou, China

Authors: Dai Zhimei, Hua Chen

Abstract:

The exploration of urban spatial evolution is an important part of urban development research. Therefore, the evolutionary modern Yangzhou urban spatial texture was taken as the research object, and Spatial Syntax was used as the main research tool, this paper explored Yangzhou spatial evolution law and its driving factors from the urban street network scale, district scale and street scale. The study has concluded that at the urban scale, Yangzhou urban spatial evolution is the result of a variety of causes, including physical and geographical condition, policy and planning factors, and traffic conditions, and the evolution of space also has an impact on social, economic, environmental and cultural factors. At the district and street scales, changes in space will have a profound influence on the history of the city and the activities of people. At the end of the article, the matters needing attention during the evolution of urban space were summarized.

Keywords: block, space syntax and methodology, street, urban space, Yangzhou

Procedia PDF Downloads 145
3754 Metagenomics-Based Molecular Epidemiology of Viral Diseases

Authors: Vyacheslav Furtak, Merja Roivainen, Olga Mirochnichenko, Majid Laassri, Bella Bidzhieva, Tatiana Zagorodnyaya, Vladimir Chizhikov, Konstantin Chumakov

Abstract:

Molecular epidemiology and environmental surveillance are parts of a rational strategy to control infectious diseases. They have been widely used in the worldwide campaign to eradicate poliomyelitis, which otherwise would be complicated by the inability to rapidly respond to outbreaks and determine sources of the infection. The conventional scheme involves isolation of viruses from patients and the environment, followed by their identification by nucleotide sequences analysis to determine phylogenetic relationships. This is a tedious and time-consuming process that yields definitive results when it may be too late to implement countermeasures. Because of the difficulty of high-throughput full-genome sequencing, most such studies are conducted by sequencing only capsid genes or their parts. Therefore the important information about the contribution of other parts of the genome and inter- and intra-species recombination to viral evolution is not captured. Here we propose a new approach based on the rapid concentration of sewage samples with tangential flow filtration followed by deep sequencing and reconstruction of nucleotide sequences of viruses present in the samples. The entire nucleic acids content of each sample is sequenced, thus preserving in digital format the complete spectrum of viruses. A set of rapid algorithms was developed to separate deep sequence reads into discrete populations corresponding to each virus and assemble them into full-length consensus contigs, as well as to generate a complete profile of sequence heterogeneities in each of them. This provides an effective approach to study molecular epidemiology and evolution of natural viral populations.

Keywords: poliovirus, eradication, environmental surveillance, laboratory diagnosis

Procedia PDF Downloads 246
3753 Engineering Optimization Using Two-Stage Differential Evolution

Authors: K. Y. Tseng, C. Y. Wu

Abstract:

This paper employs a heuristic algorithm to solve engineering problems including truss structure optimization and optimal chiller loading (OCL) problems. Two different type algorithms, real-valued differential evolution (DE) and modified binary differential evolution (MBDE), are successfully integrated and then can obtain better performance in solving engineering problems. In order to demonstrate the performance of the proposed algorithm, this study adopts each one testing case of truss structure optimization and OCL problems to compare the results of other heuristic optimization methods. The result indicates that the proposed algorithm can obtain similar or better solution in comparing with previous studies.

Keywords: differential evolution, Truss structure optimization, optimal chiller loading, modified binary differential evolution

Procedia PDF Downloads 131
3752 Molecular Junctions between Graphene Strips: Electronic and Transport Properties

Authors: Adel Belayadi, Ahmed Mougari, Boualem Bourahla

Abstract:

Molecular junctions are currently considered a promising style in the miniaturization of electronic devices. In this contribution, we provide a tight-binding model to investigate the quantum transport properties across-molecular junctions sandwiched between 2D-graphene nanoribbons in the zigzag direction. We investigate, in particular, the effect of embedded atoms such as Gold and Silicon across the molecular junction. The results exhibit a resonance behavior in terms of incident Fermi levels, depending on the molecular junction type. Additionally, the transport properties under a perpendicular magnetic field exhibit an oscillation for the transmittance versus the magnetic field strength.

Keywords: molecular junction, 2D-graphene nanoribbons, quantum transport properties, magnetic field

Procedia PDF Downloads 63
3751 Phylogenetic Relationships between the Whole Sets of Individual Flow Sorted U, M, S and C Chromosomes of Aegilops and Wheat as Revealed by COS Markers

Authors: András Farkas, István Molnár, Jan Vrána, Veronika Burešová, Petr Cápal, András Cseh, Márta Molnár-Láng, Jaroslav Doležel

Abstract:

Species of Aegilops played a central role in the evolution of wheat and are sources of traits related to yield quality and tolerance against biotic and abiotic stresses. These wild genes and alleles are desirable to use in crop improvement programs via introgressive hybridization. However, the success of chromosome mediated gene transfer to wheat are hampered by the pour knowledge on the genome structure of Aegilops relative to wheat and by the low number of cost-effective molecular markers specific for Aegilops chromosomes. The COS markers specific for genes conserved throughout evolution in both sequence and copy number between Triticeae/Aegilops taxa and define orthologous regions, thus enabling the comparison of regions on the chromosomes of related species. The present study compared individual chromosomes of Aegilops umbellulata (UU), Ae. comosa (MM), Ae. speltoides (SS) and Ae. caudata (CC) purified by flourescent labelling with oligonucleotid SSR repeats and biparametric flow cytometry with wheat by identifying orthologous chromosomal regions by COS markers. The linear order of bin-mapped COS markers along the wheat D chromosomes was identified by the use of chromosome-specific sequence data and virtual gene order. Syntenic regions of wheat identifying genome rearrangements differentiating the U, M, S or C genomes from the D genome of wheat were detected. The conserved orthologous set markers assigned to Aegilops chromosomes promise to accelerate gene introgression by facilitating the identification of alien chromatin. The syntenic relationships between the Aegilops species and wheat will facilitate the targeted development of new markers specific for U, M, S and C genomic regions and will contribute to the understanding of molecular processes related to the evolution of Aegilops.

Keywords: Aegilops, cos-markers, flow-sorting, wheat

Procedia PDF Downloads 467
3750 A Survey of Grammar-Based Genetic Programming and Applications

Authors: Matthew T. Wilson

Abstract:

This paper covers a selection of research utilizing grammar-based genetic programming, and illustrates how context-free grammar can be used to constrain genetic programming. It focuses heavily on grammatical evolution, one of the most popular variants of grammar-based genetic programming, and the way its operators and terminals are specialized and modified from those in genetic programming. A variety of implementations of grammatical evolution for general use are covered, as well as research each focused on using grammatical evolution or grammar-based genetic programming on a single application, or to solve a specific problem, including some of the classically considered genetic programming problems, such as the Santa Fe Trail.

Keywords: context-free grammar, genetic algorithms, genetic programming, grammatical evolution

Procedia PDF Downloads 153
3749 Allelic Diversity of Productive, Reproductive and Fertility Traits Genes of Buffalo and Cattle

Authors: M. Moaeen-ud-Din, G. Bilal, M. Yaqoob

Abstract:

Identification of genes of importance regarding production traits in buffalo is impaired by a paucity of genomic resources. Choice to fill this gap is to exploit data available for cow. The cross-species application of comparative genomics tools is potential gear to investigate the buffalo genome. However, this is dependent on nucleotide sequences similarity. In this study gene diversity between buffalo and cattle was determined by using 86 gene orthologues. There was about 3% difference in all genes in term of nucleotide diversity; and 0.267±0.134 in amino acids indicating the possibility for successfully using cross-species strategies for genomic studies. There were significantly higher non synonymous substitutions both in cattle and buffalo however, there was similar difference in term of dN – dS (4.414 vs 4.745) in buffalo and cattle respectively. Higher rate of non-synonymous substitutions at similar level in buffalo and cattle indicated a similar positive selection pressure. Results for relative rate test were assessed with the chi-squared test. There was no significance difference on unique mutations between cattle and buffalo lineages at synonymous sites. However, there was a significance difference on unique mutations for non synonymous sites indicating ongoing mutagenic process that generates substitutional mutation at approximately the same rate at silent sites. Moreover, despite of common ancestry, our results indicate a different divergent time among genes of cattle and buffalo. This is the first demonstration that variable rates of molecular evolution may be present within the family Bovidae.

Keywords: buffalo, cattle, gene diversity, molecular evolution

Procedia PDF Downloads 456
3748 Promoted Thermoelectric Properties of Polymers through Controlled Tie-Chain Incorporation

Authors: Wenjin Zhu, Ian E. Jacobs, Henning Sirringhaus

Abstract:

We have demonstrated a model system for the controlled incorporation of tie-chains into semicrystalline conjugated polymers using blends of different molecular weights that leads to a significant increase in electrical conductivity. Through careful assessment of the microstructural evolution upon tie chain incorporation we have demonstrated that no major changes in phase morphology or structural order in the crystalline domains occur and that the observed enhancement in electrical conductivity can only be explained consistently by tie chains facilitating the transport across grain boundaries between the crystalline domains. Here we studied the thermoelectric properties of aligned, ion exchange-doped ribbon phase PBTTT with blends of different molecular weight components. We demonstrate that in blended films higher electrical conductivities (up to 4810.1 S/cm), Seebeck coefficients and thermoelectric power factors of up to 172.6 μW m-1 K-2 can be achieved than in films with single component molecular weights. We investigate the underpinning thermoelectric transport physics, including structural and spectroscopic characterization, to better understand how controlled tie chain incorporation can be used to enhance the thermoelectric performance of aligned conjugated polymers.

Keywords: organic electronics, thermoelectrics, conjugated polymers, tie chain

Procedia PDF Downloads 29
3747 Molecular Docking Assessment of Pesticides Binding to Bacterial Chitinases

Authors: Diana Larisa Vladoiu, Vasile Ostafe, Adriana Isvoran

Abstract:

Molecular docking calculations reveal that pesticides provide favorable interactions with the bacterial chitinases. Pesticides interact with both hydrophilic and aromatic residues involved in the active site of the enzymes, their positions partially overlapping the substrate and the inhibitors locations. Molecular docking outcomes, in correlation with experimental literature data, suggest that the pesticides may be degraded or having an inhibitor effect on the activity of these enzymes, depending of the application dose and rate.

Keywords: chitinases, inhibition, molecular docking, pesticides

Procedia PDF Downloads 514
3746 Computational Experiment on Evolution of E-Business Service Ecosystem

Authors: Xue Xiao, Sun Hao, Liu Donghua

Abstract:

E-commerce is experiencing rapid development and evolution, but traditional research methods are difficult to fully demonstrate the relationship between micro factors and macro evolution in the development process of e-commerce, which cannot provide accurate assessment for the existing strategies and predict the future evolution trends. To solve these problems, this paper presents the concept of e-commerce service ecosystem based on the characteristics of e-commerce and business ecosystem theory, describes e-commerce environment as a complex adaptive system from the perspective of ecology, constructs a e-commerce service ecosystem model by using Agent-based modeling method and Java language in RePast simulation platform and conduct experiment through the way of computational experiment, attempt to provide a suitable and effective researching method for the research on e-commerce evolution. By two experiments, it can be found that system model built in this paper is able to show the evolution process of e-commerce service ecosystem and the relationship between micro factors and macro emergence. Therefore, the system model constructed by Agent-based method and computational experiment provides proper means to study the evolution of e-commerce ecosystem.

Keywords: e-commerce service ecosystem, complex system, agent-based modeling, computational experiment

Procedia PDF Downloads 314
3745 Identified Transcription Factors and Gene Regulation in Scient Biosynthesis in Ophrys Orchids

Authors: Chengwei Wang, Shuqing Xu, Philipp M. Schlüter

Abstract:

The genus Ophrys is remarkable for its mimicry, flower-lip closely resembling pollinator females in a species-specific manner. Therefore, floral traits associated with pollinator attraction, especially scent, are suitable models for investigating the molecular basis of adaption, speciation, and evolution. Within the two Ophrys species groups: O. sphegodes (S) and O. fusca (F), pollinator shifts among the same insect species have taken place. Preliminary data suggest that they involve a comparable hydrocarbon profile in their scent, which is mainly composed of alkanes and alkenes. Genes encoding stearoyl-acyl carrier protein desaturases (SAD) involved in alkene biosynthesis have been identified in the S group. This study aims to investigate the control and parallel evolution of ecologically significant alkene production in Ophrys. Owing to the central role those SAD genes play in determining positioning of the alkene double-bonds, a detailed understanding of their functional mechanism and of regulatory aspects is of utmost importance. We have identified 5 transcription factors potentially related to SAD expression in O. sphegodes which belong to the MYB, GTE, WRKY, and MADS families. Ultimately, our results will contribute to understanding genes important in the regulatory control of floral scent synthesis.

Keywords: floral traits, transcription factors, biosynthesis, parallel evolution

Procedia PDF Downloads 64
3744 Effect of Plasticizer Additives on the Mechanical Properties of Cement Composite: A Molecular Dynamics Analysis

Authors: R. Mohan, V. Jadhav, A. Ahmed, J. Rivas, A. Kelkar

Abstract:

Cementitious materials are an excellent example of a composite material with complex hierarchical features and random features that range from nanometer (nm) to millimeter (mm) scale. Multi-scale modeling of complex material systems requires starting from fundamental building blocks to capture the scale relevant features through associated computational models. In this paper, molecular dynamics (MD) modeling is employed to predict the effect of plasticizer additive on the mechanical properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown molecular configuration of CSH, a representative configuration widely accepted in the field of mineral Jennite is employed. The effectiveness of the Molecular Dynamics modeling to understand the predictive influence of material chemistry changes based on molecular/nanoscale models is demonstrated.

Keywords: cement composite, mechanical properties, molecular dynamics, plasticizer additives

Procedia PDF Downloads 415
3743 Metric Suite for Schema Evolution of a Relational Database

Authors: S. Ravichandra, D. V. L. N. Somayajulu

Abstract:

Requirement of stakeholders for adding more details to the database is the main cause of the schema evolution in the relational database. Further, this schema evolution causes the instability to the database. Hence, it is aimed to define a metric suite for schema evolution of a relational database. The metric suite will calculate the metrics based on the features of the database, analyse the queries on the database and measures the coupling, cohesion and component dependencies of the schema for existing and evolved versions of the database. This metric suite will also provide an indicator for the problems related to the stability and usability of the evolved database. The degree of change in the schema of a database is presented in the forms of graphs that acts as an indicator and also provides the relations between various parameters (metrics) related to the database architecture. The acquired information is used to defend and improve the stability of database architecture. The challenges arise in incorporating these metrics with varying parameters for formulating a suitable metric suite are discussed. To validate the proposed metric suite, an experimentation has been performed on publicly available datasets.

Keywords: cohesion, coupling, entropy, metric suite, schema evolution

Procedia PDF Downloads 417
3742 Co₂Fe LDH on Aromatic Acid Functionalized N Doped Graphene: Hybrid Electrocatalyst for Oxygen Evolution Reaction

Authors: Biswaranjan D. Mohapatra, Ipsha Hota, Swarna P. Mantry, Nibedita Behera, Kumar S. K. Varadwaj

Abstract:

Designing highly active and low-cost oxygen evolution (2H₂O → 4H⁺ + 4e⁻ + O₂) electrocatalyst is one of the most active areas of advanced energy research. Some precious metal-based electrocatalysts, such as IrO₂ and RuO₂, have shown excellent performance for oxygen evolution reaction (OER); however, they suffer from high-cost and low abundance which limits their applications. Recently, layered double hydroxides (LDHs), composed of layers of divalent and trivalent transition metal cations coordinated to hydroxide anions, have gathered attention as an alternative OER catalyst. However, LDHs are insulators and coupled with carbon materials for the electrocatalytic applications. Graphene covalently doped with nitrogen has been demonstrated to be an excellent electrocatalyst for energy conversion technologies such as; oxygen reduction reaction (ORR), oxygen evolution reaction (OER) & hydrogen evolution reaction (HER). However, they operate at high overpotentials, significantly above the thermodynamic standard potentials. Recently, we reported remarkably enhanced catalytic activity of benzoate or 1-pyrenebutyrate functionalized N-doped graphene towards the ORR in alkaline medium. The molecular and heteroatom co-doping on graphene is expected to tune the electronic structure of graphene. Therefore, an innovative catalyst architecture, in which LDHs are anchored on aromatic acid functionalized ‘N’ doped graphene may presumably boost the OER activity to a new benchmark. Herein, we report fabrication of Co₂Fe-LDH on aromatic acid (AA) functionalized ‘N’ doped reduced graphene oxide (NG) and studied their OER activities in alkaline medium. In the first step, a novel polyol method is applied for synthesis of AA functionalized NG, which is well dispersed in aqueous medium. In the second step, Co₂Fe LDH were grown on AA functionalized NG by co-precipitation method. The hybrid samples are abbreviated as Co₂Fe LDH/AA-NG, where AA is either Benzoic acid or 1, 3-Benzene dicarboxylic acid (BDA) or 1, 3, 5 Benzene tricarboxylic acid (BTA). The crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). These studies confirmed the growth of layered single phase LDH. The electrocatalytic OER activity of these hybrid materials was investigated by rotating disc electrode (RDE) technique on a glassy carbon electrode. The linear sweep voltammetry (LSV) on these catalyst samples were taken at 1600rpm. We observed significant OER performance enhancement in terms of onset potential and current density on Co₂Fe LDH/BTA-NG hybrid, indicating the synergic effect. This exploration of molecular functionalization effect in doped graphene and LDH system may provide an excellent platform for innovative design of OER catalysts.

Keywords: π-π functionalization, layered double hydroxide, oxygen evolution reaction, reduced graphene oxide

Procedia PDF Downloads 170
3741 Molecular Characterization and Phylogenetic Analysis of Capripoxviruses from Outbreak in Iran 2021

Authors: Maryam Torabi, Habibi, Abdolahi, Mohammadi, Hassanzadeh, Darban Maghami, Baghi

Abstract:

Sheeppox Virus (SPPV) and goatpox virus (GTPV) are considerable diseases of sheep, and goats, caused by viruses of the Capripoxvirus (CaPV) genus. They are responsible for economic losses. Animal mortality, morbidity, cost of vaccinations, and restrictions in animal products’ trade are the reasons of economic losses. Control and eradication of CaPV depend on early detection of outbreaks so that molecular detection and genetic analysis could be effective to this aim. This study was undertaken to molecularly characterize SPPV and GTPV strains that have been circulating in Iran. 120 skin papules and nodule biopsies were collected from different regions of Iran and were examined for SPPV, GTPV viruses using TaqMan Real -Time PCR. Some of these amplified genes were sequenced, and phylogenetic trees were constructed. Out of the 120 samples analysed, 98 were positive for CaPV by Real- Time PCR (81.6%), and most of them wereSPPV. then 10 positive samples were sequenced and characterized by amplifying the ORF 103CaPV gene. sequencing and phylogenetic analysis for these positive samples revealed a high percentage of identity with SPPV isolated from different countries in Middle East. In conclusions, molecular characterization revealed nearly complete identity with all recent SPPVs strains in local countries that requires further studies to monitor the virus evolution and transmission pathways to better understand the virus pathobiology that will help for SPPV control.

Keywords: molecular epidemiology, Real-Time PCR, phylogenetic analysis, capripoxviruses

Procedia PDF Downloads 109
3740 The Evolution of the Simulated and Observed Star Formation Rates of Galaxies for the Past 13 Billion Years

Authors: Antonios Katsianis

Abstract:

I present the evolution of the galaxy Star Formation Rate Function (SFRF), star formation rate-stellar mass relation (SFR-M*) and Cosmic Star Formation Rate Density (CSFRD) of z = 0-8 galaxies employing both the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulations and a compilation of UV, Ha, radio and IR data. While I present comparisons between the above, I evaluate the effect and importance of supernovae/active galactic nuclei feedback. The relation between the star formation rate and stellar mass of galaxies represents a fundamental constraint on galaxy formation, and has been studied extensively both in observations and cosmological hydrodynamic simulations. However, a tension between the above is reported in the literature. I present the evolution of the SFR-M* relation and demonstrate the inconsistencies between observations that are retrieved using different methods. I employ cosmological hydrodynamic simulations combined with radiative transfer methods and compare these with a range of observed data in order to investigate further the root of this tension. Last, I present insights about the scatter of the SFR-M* relation and investigate which mechanisms (e.g. feedback) drive its shape and evolution.

Keywords: cosmological simulations, galaxy formation and evolution, star formation rate, stellar masses

Procedia PDF Downloads 113