Search results for: 14-3-3 docking genes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1076

Search results for: 14-3-3 docking genes

1076 Molecular Docking Assessment of Pesticides Binding to Bacterial Chitinases

Authors: Diana Larisa Vladoiu, Vasile Ostafe, Adriana Isvoran

Abstract:

Molecular docking calculations reveal that pesticides provide favorable interactions with the bacterial chitinases. Pesticides interact with both hydrophilic and aromatic residues involved in the active site of the enzymes, their positions partially overlapping the substrate and the inhibitors locations. Molecular docking outcomes, in correlation with experimental literature data, suggest that the pesticides may be degraded or having an inhibitor effect on the activity of these enzymes, depending of the application dose and rate.

Keywords: chitinases, inhibition, molecular docking, pesticides

Procedia PDF Downloads 520
1075 Uncovering Anti-Hypertensive Obesity Targets and Mechanisms of Metformin, an Anti-Diabetic Medication

Authors: Lu Yang, Keng Po Lai

Abstract:

Metformin, a well-known clinical drug against diabetes, is found with potential anti-diabetic and anti-obese benefits, as reported in increasing evidences. However, the current clinical and experimental investigations are not to reveal the detailed mechanisms of metformin-anti-obesity/hypertension. We have used the bioinformatics strategy, including network pharmacology and molecular docking methodology, to uncover the key targets and pathways of bioactive compounds against clinical disorders, such as cancers, coronavirus disease. Thus, in this report, the in-silico approach was utilized to identify the hug targets, pharmacological function, and mechanism of metformin against obesity and hypertension. The networking analysis identified 154 differentially expressed genes of obesity and hypertension, 21 interaction genes, and 6 hug genes of metformin treating hypertensive obesity. As a result, the molecular docking findings indicated the potent binding capability of metformin with the key proteins, including interleukin 6 (IL-6) and chemokine (C-C motif) Ligand 2 (CCL2), in hypertensive obesity. The metformin-exerted anti-hypertensive obesity action involved in metabolic regulation, inflammatory reaction. And the anti-hypertensive obesity mechanisms of metformin were revealed, including regulation of inflammatory and immunological signaling pathways for metabolic homeostasis in tissue and microenvironmental melioration in blood pressure. In conclusion, our identified findings with bioinformatics analysis have demonstrated the detailed hug and pharmacological targets, biological functions, and signaling pathways of metformin treating hypertensive obesity.

Keywords: metformin, obesity, hypertension, bioinformatics findings

Procedia PDF Downloads 96
1074 Scheduling of Cross-Docking Center: An Auction-Based Algorithm

Authors: Eldho Paul, Brijesh Paul

Abstract:

This work proposes an auction mechanism based solution methodology for the optimum scheduling of trucks in a cross-docking centre. The cross-docking centre is an important element of lean supply chain. It reduces the amount of storage and transportation costs in the distribution system compared to an ordinary warehouse. Better scheduling of trucks in a cross-docking center is the best way to reduce storage and transportation costs. Auction mechanism is commonly used for allocation of limited resources in different real-life applications. Here, we try to schedule inbound trucks by integrating auction mechanism with the functioning of a cross-docking centre. A mathematical model is developed for the optimal scheduling of inbound trucks based on the auction methodology. The determination of exact solution for problems involving large number of trucks was found to be computationally difficult, and hence a genetic algorithm based heuristic methodology is proposed in this work. A comparative study of exact and heuristic solutions is done using five classes of data sets. It is observed from the study that the auction-based mechanism is capable of providing good solutions to scheduling problem in cross-docking centres.

Keywords: auction mechanism, cross-docking centre, genetic algorithm, scheduling of trucks

Procedia PDF Downloads 384
1073 Fundamental Theory of the Evolution Force: Gene Engineering utilizing Synthetic Evolution Artificial Intelligence

Authors: L. K. Davis

Abstract:

The effects of the evolution force are observable in nature at all structural levels ranging from small molecular systems to conversely enormous biospheric systems. However, the evolution force and work associated with formation of biological structures has yet to be described mathematically or theoretically. In addressing the conundrum, we consider evolution from a unique perspective and in doing so we introduce the “Fundamental Theory of the Evolution Force: FTEF”. We utilized synthetic evolution artificial intelligence (SYN-AI) to identify genomic building blocks and to engineer 14-3-3 ζ docking proteins by transforming gene sequences into time-based DNA codes derived from protein hierarchical structural levels. The aforementioned served as templates for random DNA hybridizations and genetic assembly. The application of hierarchical DNA codes allowed us to fast forward evolution, while dampening the effect of point mutations. Natural selection was performed at each hierarchical structural level and mutations screened using Blosum 80 mutation frequency-based algorithms. Notably, SYN-AI engineered a set of three architecturally conserved docking proteins that retained motion and vibrational dynamics of native Bos taurus 14-3-3 ζ.

Keywords: 14-3-3 docking genes, synthetic protein design, time-based DNA codes, writing DNA code from scratch

Procedia PDF Downloads 87
1072 Synthesis and Molecular Docking of Isonicotinohydrazide Derivatives as Anti-Tuberculosis Candidates

Authors: Ruswanto Ruswanto, Richa Mardianingrum, Tita Nofianti, Nur Rahayuningsih

Abstract:

Tuberculosis (TB) is a chronic disease as a result of Mycobacterium tuberculosis. It can affect all age groups, and hence, is a global health problem that causes the death of millions of people every year. One of the drugs used in tuberculosis treatment is isonicotinohydrazide. In this study, N'-benzoylisonicotinohydrazide derivative compounds (a-l) were prepared using acylation reactions between isonicotinohydrazide and benzoyl chloride derivatives, through the reflux method. Molecular docking studies suggested that all of the compounds had better interaction with Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (InhA) than isonicotinohydrazide. It can be concluded that N'-benzoylisonicotinohydrazide derivatives (a-l) could be used as anti-tuberculosis candidates. From the docking results revealed that all of the compounds interact well with InhA, with compound g (N'-(3-nitrobenzoyl)isonicotinohydrazide) exhibiting the best interaction.

Keywords: anti-tuberculosis , docking, InhA, N'-benzoylisonicotinohydrazide, synthesis

Procedia PDF Downloads 277
1071 Molecular Docking Analysis of Flavonoids Reveal Potential of Eriodictyol for Breast Cancer Treatment

Authors: Nicole C. Valdez, Vincent L. Borromeo, Conrad C. Chong, Ahmad F. Mazahery

Abstract:

Breast cancer is the most prevalent cancer worldwide, where the majority of cases are estrogen-receptor positive and involve 2 receptor proteins. The binding of estrogen to estrogen receptor alpha (ERα) promotes breast cancer growth, while it's binding to estrogen-receptor beta (ERβ) inhibits tumor growth. While natural products have been a promising source of chemotherapeutic agents, the challenge remains in finding a bioactive compound that specifically targets cancer cells, minimizing side effects on normal cells. Flavonoids are natural products that act as phytoestrogens and induce the same response as estrogen. They are able to compete with estrogen for binding to ERα; however, it has a higher binding affinity for ERβ. Their abundance in nature and low toxicity make them a potential candidate for breast cancer treatment. This study aimed to determine which particular flavonoids can specifically recognize ERβ and potentially be used for breast cancer treatment through molecular docking. A total of 206 flavonoids comprised of 97 isoflavones and 109 flavanones were collected from ZINC15, while the 3D structures of ERβ and ERα were obtained from Protein Data Bank. These flavonoid subclasses were chosen as they bind more strongly to ERs due to their chemical structure. The structures of the flavonoid ligands were converted using Open Babel, while the estrogen receptor protein structures were prepared using Autodock MGL Tools. The optimal binding site was found using BIOVIA Discovery Studio Visualizer before docking all flavonoids on both ERβ and ERα through Autodock Vina. Genistein is a flavonoid that exhibits anticancer effects by binding to ERβ, so its binding affinity was used as a baseline. Eriodictyol and 4”,6”-Di-O-Galloylprunin both exceeded genistein’s binding affinity for ERβ and was lower than its binding affinity for ERα. Of the two, eriodictyol was pursued due to its antitumor properties on a lung cancer cell line and on glioma cells. It is able to arrest the cell cycle at the G2/M phase by inhibiting the mTOR/PI3k/Akt cascade and is able to induce apoptosis via the PI3K/Akt/NF-kB pathway. Protein pathway and gene analysis were also conducted using ChEMBL and PANTHER and it was shown that eriodictyol might induce anticancer effects through the ROS1, CA7, KMO, and KDM1A genes which are involved in cell proliferation in breast cancer, non-small cell lung cancer, and other diseases. The high binding affinity of eriodictyol to ERβ, as well as its potential affected genes and antitumor effects, therefore, make it a candidate for the development of new breast cancer treatment. Verification through in vitro experiments such as checking the upregulation and downregulation of genes through qPCR and checking cell cycle arrest using a flow cytometry assay is recommended.

Keywords: breast cancer, estrogen receptor, flavonoid, molecular docking

Procedia PDF Downloads 59
1070 Identifying Network Subgraph-Associated Essential Genes in Molecular Networks

Authors: Efendi Zaenudin, Chien-Hung Huang, Ka-Lok Ng

Abstract:

Essential genes play an important role in the survival of an organism. It has been shown that cancer-associated essential genes are genes necessary for cancer cell proliferation, where these genes are potential therapeutic targets. Also, it was demonstrated that mutations of the cancer-associated essential genes give rise to the resistance of immunotherapy for patients with tumors. In the present study, we focus on studying the biological effects of the essential genes from a network perspective. We hypothesize that one can analyze a biological molecular network by decomposing it into both three-node and four-node digraphs (subgraphs). These network subgraphs encode the regulatory interaction information among the network’s genetic elements. In this study, the frequency of occurrence of the subgraph-associated essential genes in a molecular network was quantified by using the statistical parameter, odds ratio. Biological effects of subgraph-associated essential genes are discussed. In summary, the subgraph approach provides a systematic method for analyzing molecular networks and it can capture useful biological information for biomedical research.

Keywords: biological molecular networks, essential genes, graph theory, network subgraphs

Procedia PDF Downloads 125
1069 Microbiological Activity and Molecular Docking Study of Selected Steroid Derivatives of Biomedical Importance

Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Sinisa Markov, Aleksandar Okljesa, Andrea Nikolic, Marija Sakac, Katarina Penov Gasi

Abstract:

This study considered the microbiological activity determination and molecular docking study for selected steroid derivatives of biomedical importance. Minimal inhibitory concentration (MIC) was determined for steroid derivatives against Staphylococcus aureus using macrodilution method. Some of the investigated steroid derivatives express bacteriostatic effect against Staphylococcus aureus. Molecular docking approaches are the most widely used techniques for predicting the binding mode of a ligand. Molecular docking study was done for steroid derivatives for androgen receptor negative prostate cancer cell line (PC-3) toward Human Cytochrome P450 CYP17A1. The molecules that had the smallest experimental IC50 values confirmed their ability to dock into active place using suitable molecular docking procedure. The binding disposition of those molecules was thoroughly investigated. Microbiological analysis and molecular docking study were conducted with aim to additionally characterize selected steroid derivatives for future investigation regarding their biological activity and to estimate the binding-affinities of investigated derivatives. This article is based upon work from COST Action (TD1305), supported by COST (European Cooperation and Science and Technology).

Keywords: binding affinity, minimal inhibitory concentration, molecular docking, pc-3 cell line, staphylococcus aureus, steroids

Procedia PDF Downloads 337
1068 An Inverse Docking Approach for Identifying New Potential Anticancer Targets

Authors: Soujanya Pasumarthi

Abstract:

Inverse docking is a relatively new technique that has been used to identify potential receptor targets of small molecules. Our docking software package MDock is well suited for such an application as it is both computationally efficient, yet simultaneously shows adequate results in binding affinity predictions and enrichment tests. As a validation study, we present the first stage results of an inverse-docking study which seeks to identify potential direct targets of PRIMA-1. PRIMA-1 is well known for its ability to restore mutant p53's tumor suppressor function, leading to apoptosis in several types of cancer cells. For this reason, we believe that potential direct targets of PRIMA-1 identified in silico should be experimentally screened for their ability to inhibitcancer cell growth. The highest-ranked human protein of our PRIMA-1 docking results is oxidosqualene cyclase (OSC), which is part of the cholesterol synthetic pathway. The results of two followup experiments which treat OSC as a possible anti-cancer target are promising. We show that both PRIMA-1 and Ro 48-8071, a known potent OSC inhibitor, significantly reduce theviability of BT-474 breast cancer cells relative to normal mammary cells. In addition, like PRIMA-1, we find that Ro 48-8071 results in increased binding of mutant p53 to DNA in BT- 474cells (which highly express p53). For the first time, Ro 48-8071 is shown as a potent agent in killing human breast cancer cells. The potential of OSC as a new target for developing anticancer therapies is worth further investigation.

Keywords: inverse docking, in silico screening, protein-ligand interactions, molecular docking

Procedia PDF Downloads 413
1067 Molecular Docking Study of Quinazoline and Quinoline Derivatives against EGFR

Authors: Asli Faiza, Khamouli Saida

Abstract:

With the development of computer tools over the past 20 years. Molecular modeling and, more precisely, molecular docking has very quickly entered field of pharmaceutical research. EGFR enzyme involved in cancer disease.Our work consists of studying the inhibition of EGFR (1M17) with deferent inhibitors derived from quinazoline and quinoline by molecular docking. The values of ligands L148 and L177 are the best ligands for inhibit the activity of 1M17 since it forms a stable complex with this enzyme by better binding to the active site. The results obtained show that the ligands L148 and L177 give weak interactions with the active site residues EGFR (1M17), which stabilize the complexes formed of this ligands, which gives a better binding at the level of the active site, and an RMSD of L148 [1,9563 Å] and of L177 [ 1,2483 Å]. [1, 9563, 1.2483] Å

Keywords: docking, EGFR, quinazoline, quinoliène, MOE

Procedia PDF Downloads 36
1066 QSAR, Docking and E-pharmacophore Approach on Novel Series of HDAC Inhibitors with Thiophene Linker as Anticancer Agents

Authors: Harish Rajak, Preeti Patel

Abstract:

HDAC inhibitors can reactivate gene expression and inhibit the growth and survival of cancer cells. The 3D-QSAR and Pharmacophore modeling studies were performed to identify important pharmacophoric features and correlate 3D-chemical structure with biological activity. The pharmacophore hypotheses were developed using e-pharmacophore script and phase module. Pharmacophore hypothesis represents the 3D arrangement of molecular features necessary for activity. A series of 55 compounds with well-assigned HDAC inhibitory activity was used for 3D-QSAR model development. Best 3D-QSAR model, which is a five PLS factor model with good statistics and predictive ability, acquired Q2 (0.7293), R2 (0.9811) and standard deviation (0.0952). Molecular docking were performed using Histone Deacetylase protein (PDB ID: 1t69) and prepared series of hydroxamic acid based HDAC inhibitors. Docking study of compound 43 show significant binding interactions Ser 276 and oxygen atom of dioxine cap region, Gly 151 and amino group and Asp 267 with carboxyl group of CONHOH, which are essential for anticancer activity. On docking, most of the compounds exhibited better glide score values between -8 to -10.5. We have established structure activity correlation using docking, energetic based pharmacophore modelling, pharmacophore and atom based 3D QSAR model. The results of these studies were further used for the design and testing of new HDAC analogs.

Keywords: Docking, e-pharmacophore, HDACIs, QSAR, Suberoylanilidehydroxamic acid.

Procedia PDF Downloads 269
1065 Modeling of a Stewart Platform for Analyzing One Directional Dynamics for Spacecraft Docking Operations

Authors: Leonardo Herrera, Shield B. Lin, Stephen J. Montgomery-Smith, Ziraguen O. Williams

Abstract:

A one-directional dynamic model of a Stewart Platform was developed to assist NASA in analyzing the dynamic response in spacecraft docking operations. A simplified mechanical drawing was created, capturing the physical structure's main features. A simplified schematic diagram was developed into a lumped mass model from the mechanical drawing. Three differential equations were derived according to the schematic diagram. A Simulink diagram was created using MATLAB to represent the three equations. System parameters, including spring constants and masses, are derived in detail from the physical system. The model can be used for further analysis via computer simulation in predicting dynamic response in its main docking direction, i.e., up-and-down motion.

Keywords: stewart platform, docking operation, spacecraft, spring constant

Procedia PDF Downloads 169
1064 Enzyme Inhibition Activity of Schiff Bases Against Mycobacterium Tuberculosis Using Molecular Docking

Authors: Imran Muhammad

Abstract:

The main cause of infectious disease in the modern world is Mycobacterium Tuberculosis (MT). To combat tuberculosis, new and efficient drugs are an urgent need in the modern world. Schif bases are potent for their biological pharmacophore activity. Thus we selected different Vanillin-based Schiff bases for their binding activity against target enzymes of Mycobacterium tuberculosis that is (DprE1 (decaprenyl phosphoryl-β-D-ribose 2′-epimerase), and DNA gyrase subunit-A), using molecular docking. We evaluate the inhibition potential, interaction, and binding mode of these compounds with the target enzymes.

Keywords: schiff bases, tuberculosis, DNA gyrase, DprE1, docking

Procedia PDF Downloads 47
1063 Docking, Pharmacophore Modeling and 3d QSAR Studies on Some Novel HDAC Inhibitors with Heterocyclic Linker

Authors: Harish Rajak, Preeti Patel

Abstract:

The application of histone deacetylase inhibitors is a well-known strategy in prevention of cancer which shows acceptable preclinical antitumor activity due to its ability of growth inhibition and apoptosis induction of cancer cell. Molecular docking were performed using Histone Deacetylase protein (PDB ID:1t69) and prepared series of hydroxamic acid based HDACIs. On the basis of docking study, it was predicted that compound 1 has significant binding interaction with HDAC protein and three hydrogen bond interactions takes place, which are essential for antitumor activity. On docking, most of the compounds exhibited better glide score values between -8 to -10 which is close to the glide score value of suberoylanilide hydroxamic acid. The pharmacophore hypotheses were developed using e-pharmacophore script and phase module. The 3D-QSAR models provided a good correlation between predicted and actual anticancer activity. Best QSAR model showed Q2 (0.7974), R2 (0.9200) and standard deviation (0.2308). QSAR visualization maps suggest that hydrogen bond acceptor groups at carbonyl group of cap region and hydrophobic groups at ortho, meta, para position of R9 were favorable for HDAC inhibitory activity. We established structure activity correlation using docking, pharmacophore modeling and atom based 3D QSAR model for hydroxamic acid based HDACIs.

Keywords: HDACIs, QSAR, e-pharmacophore, docking, suberoylanilide hydroxamic acid

Procedia PDF Downloads 266
1062 X-Ray Crystallographic, Hirshfeld Surface Analysis and Docking Study of Phthalyl Sulfacetamide

Authors: Sanjay M. Tailor, Urmila H. Patel

Abstract:

Phthalyl Sulfacetamide belongs to well-known member of antimicrobial sulfonamide family. It is a potent antitumor drug. Structural characteristics of 4-amino-N-(2quinoxalinyl) benzene-sulfonamides (Phthalyl Sulfacetamide), C14H12N4O2S has been studied by method of X-ray crystallography. The compound crystallizes in monoclinic space group P21/n with unit cell parameters a= 7.9841 Ǻ, b= 12.8208 Ǻ, c= 16.6607 Ǻ, α= 90˚, β= 93.23˚, γ= 90˚and Z=4. The X-ray based three-dimensional structure analysis has been carried out by direct methods and refined to an R-value of 0.0419. The crystal structure is stabilized by intermolecular N-H…N, N-H…O and π-π interactions. The Hirshfeld surfaces and consequently the fingerprint analysis have been performed to study the nature of interactions and their quantitative contributions towards the crystal packing. An analysis of Hirshfeld surfaces and fingerprint plots facilitates a comparison of intermolecular interactions, which are the key elements in building different supramolecular architectures. Docking is used for virtual screening for the prediction of the strongest binders based on various scoring functions. Docking studies are carried out on Phthalyl Sulfacetamide for better activity, which is important for the development of a new class of inhibitors.

Keywords: phthalyl sulfacetamide, crystal structure, hirshfeld surface analysis, docking

Procedia PDF Downloads 311
1061 Design of Data Management Software System Supporting Rendezvous and Docking with Various Spaceships

Authors: Zhan Panpan, Lu Lan, Sun Yong, He Xiongwen, Yan Dong, Gu Ming

Abstract:

The function of the two spacecraft docking network, the communication and control of a docking target with various spacecrafts is realized in the space lab data management system. In order to solve the problem of the complex data communication mode between the space lab and various spaceships, and the problem of software reuse caused by non-standard protocol, a data management software system supporting rendezvous and docking with various spaceships has been designed. The software system is based on CCSDS Spcecraft Onboard Interface Service(SOIS). It consists of Software Driver Layer, Middleware Layer and Appliaction Layer. The Software Driver Layer hides the various device interfaces using the uniform device driver framework. The Middleware Layer is divided into three lays, including transfer layer, application support layer and system business layer. The communication of space lab plaform bus and the docking bus is realized in transfer layer. Application support layer provides the inter tasks communitaion and the function of unified time management for the software system. The data management software functions are realized in system business layer, which contains telemetry management service, telecontrol management service, flight status management service, rendezvous and docking management service and so on. The Appliaction Layer accomplishes the space lab data management system defined tasks using the standard interface supplied by the Middleware Layer. On the basis of layered architecture, rendezvous and docking tasks and the rendezvous and docking management service are independent in the software system. The rendezvous and docking tasks will be activated and executed according to the different spaceships. In this way, the communication management functions in the independent flight mode, the combination mode of the manned spaceship and the combination mode of the cargo spaceship are achieved separately. The software architecture designed standard appliction interface for the services in each layer. Different requirements of the space lab can be supported by the use of standard services per layer, and the scalability and flexibility of the data management software can be effectively improved. It can also dynamically expand the number and adapt to the protocol of visiting spaceships. The software system has been applied in the data management subsystem of the space lab, and has been verified in the flight of the space lab. The research results of this paper can provide the basis for the design of the data manage system in the future space station.

Keywords: space lab, rendezvous and docking, data management, software system

Procedia PDF Downloads 344
1060 Detection of Viral-Plant Interaction Using Some Pathogenesis Related Protein Genes to Identify Resistant Genes against Potato LeafRoll Virus and Potato Virus Y in Egyptian Isolates

Authors: Dalia. G. Aseel, E. E. Hafez, S. M. Hammad

Abstract:

Viral RNAs of both potato leaf roll virus (PLRV) and potato virus Y (PVY) were extracted from infected potato leaves collected from different Egyptian regions. Differential Display Polymerase Chain Reaction (DD-PCR) using (Endogluconase, β-1,3-glucanases, Chitinase, Peroxidase and Polyphenol oxidase) primers (forward strand) for was performed. The obtained data revealed different banding patterns depending on the viral type and the region of infection. Regarding PLRV, a 58 up regulated and 19 down regulated genes were detected, while, 31 up regulated and 14 down regulated genes were observed in case of PVY. Based on the nucleotide sequencing, variable phylogenetic relationships were reported for the three sequenced genes coding for: Induced stolen tip protein, Disease resistance RPP-like protein and non-specific lipid-transfer protein. In a complementary approach, using the quantitative Real-time PCR, the expressions of PRs genes understudy were estimated in the infected leaves by PLRV and PVY of three potato cultivars (Spunta, Diamont and Cara). The infection with both viruses inhibited the expressions of the five PRs genes. On the contrary, infected leaves by PLRV or PVY elevated the expression of some defense genes. This interaction also may be enhanced and/or inhibited the expression of some genes responsible for the plant defense mechanisms.

Keywords: PLRV, PVY, PR genes, DD-PCR, qRT-PCR, sequencing

Procedia PDF Downloads 310
1059 Quantitative Structure Activity Relationship and Insilco Docking of Substituted 1,3,4-Oxadiazole Derivatives as Potential Glucosamine-6-Phosphate Synthase Inhibitors

Authors: Suman Bala, Sunil Kamboj, Vipin Saini

Abstract:

Quantitative Structure Activity Relationship (QSAR) analysis has been developed to relate antifungal activity of novel substituted 1,3,4-oxadiazole against Candida albicans and Aspergillus niger using computer assisted multiple regression analysis. The study has shown the better relationship between antifungal activities with respect to various descriptors established by multiple regression analysis. The analysis has shown statistically significant correlation with R2 values 0.932 and 0.782 against Candida albicans and Aspergillus niger respectively. These derivatives were further subjected to molecular docking studies to investigate the interactions between the target compounds and amino acid residues present in the active site of glucosamine-6-phosphate synthase. All the synthesized compounds have better docking score as compared to standard fluconazole. Our results could be used for the further design as well as development of optimal and potential antifungal agents.

Keywords: 1, 3, 4-oxadiazole, QSAR, multiple linear regression, docking, glucosamine-6-phosphate synthase

Procedia PDF Downloads 307
1058 Inhibition of Streptococcus Mutans Biofilm Development of Dental Caries In Vitro and In Vivo by Trachyspermum ammi Seeds: An Approach of Alternative Medicine

Authors: Mohd Adil, Rosina Khan, Danishuddin, Asad U. Khan

Abstract:

The aim of this study was to evaluate the influence of the crude and active solvent fraction of Trachyspermum ammi on S. mutans cariogenicity, effect on expression of genes involved in biofilm formation and caries development in rats. GC–MS was carried out to identify the major components present in the crude and the active fraction of T. ammi. The crude extract and the solvent fraction exhibiting least MIC were selected for further experiments. Scanning electron microscopy was carried out to observe the effect of the extracts on S. mutans biofilm. Comparative gene expression analysis was carried out for nine selected genes. 2-Isopropyl-5-methyl-phenol was found as major compound in crude and the active fraction. Binding site of this compound within the proteins involved in biofilm formation was mapped with the help of docking studies. Real-time RT-PCR analyses revealed significant suppression of the genes involved in biofilm formation. All the test groups showed reduction in caries (smooth surface as well as sulcal surface caries) in rats. Moreover, it also provides new insight to understand the mechanism influencing biofilm formation in S. mutans. Furthermore, the data suggest the putative cariostatic properties of T. Ammi and hence can be used as an alternative medicine to prevent caries infection.

Keywords: bio-film, Streptococcus mutans, dental caries, bio-informatic

Procedia PDF Downloads 450
1057 Molecular Docking and Synthesis of Nitrogen-Containing Bisphosphonates

Authors: S. Ghalem, M. Mesmoudi, I. Daoudand, H. Allali

Abstract:

The nitrogen-containing bisphosphonates (N-BPs) are well established as the treatments of choice for disorders of excessive bone resorption, myeloma and bone metastases, and osteoporosis. They inhibit farnesyl pyrophosphate synthase (FFPS), a key enzyme in the mevalonate pathway, resulting in inhibition of the prenylation of small GTP-binding proteins in osteoclasts and disruption of their cytoskeleton, adhesion/spreading, and invasion of cancer cells. A very few examples for synthesis of α-amino bisphosphonates based on several amino acids are known from the literature. In the present work, esters of aminoacid react with ketophsophonate (or their analog acid or acyl) to afford the desired products, α-iminophosphonates. The reaction of imine with dimethyl phosphate in the presence of catalytic amount of I2 give ester of α-aminobisphosphonate as sole product in good yield. Finally, we used computational docking methods to predict how several α-aminobisphosphonates bind to FPPS and how R and X influence. Pamidronate, β-aminobisphosphonate already marketed, was used as reference. These results are of interest since they represent a new and simple way to sythesize α-aminobisphosphonates with a free COOH group increased by R2 functionalisable and opening up the possibility of using the molecular docking to facilitate the design of other, novel FFPS inhibitors.

Keywords: drug research, cancer, α-amino bisphosphonates, molecular docking

Procedia PDF Downloads 244
1056 Profile of Cortisol in Bali's Crossbreed Cows for 120 Hours Shipping Using Traditional Vessel

Authors: Hindar Panguji, Nichlah Rifqiyah, Irkham Widiono, Pudji Astuti

Abstract:

Many transportations of livestock in Indonesia is still managed traditionally. Transportation involves several things that may cause stress, from a certain treatment or other factors, either externally or internally, that act as stressors. This study aimed to determine the profile of cortisol and IL-6 in female Bali breeding cattle transported for 120 hours using 100 GT traditional vessels with two floors and a capacity of 300-400 heads. Before transportation, all of the animals have got the vaccination. Blood samples from thirty cows were taken before transportation, during loading, during docking, and after transportation. ELISA method was used to analyze the concentration of cortisol and IL6. The averages of cortisol concentration before transportation, during loading, docking, and after transportation were 78.21±27.96 ng/mL, 90.78±30.91 ng/mL, 69.90±53.92 ng/mL and 69.34±32.03 ng/mL respectively. The average concentration of IL-6 before, during, docking and after transportation were 259.86±70.16 pg/mL, 315.41±64.21 pg/mL, 410.13±247.43 pg/mL dan 424.81±98.86 pg/mL. It was concluded there were no differences in cortisol concentrations and level of IL6 of each cow at different stages of transportation (p > 0.05) It would be possible that vaccination could reduce the fluctuation of cortisol.

Keywords: shipping, Bali's breed cows, vessel, cortisol, IL6

Procedia PDF Downloads 199
1055 Nutrigenetic and Bioinformatic Analysis of Rice Bran Bioactives for the Treatment of Lifestyle Related Disease Diabetes and Hypertension

Authors: Md. Alauddin, Md. Ruhul Amin, Md. Omar Faruque, Muhammad Ali Siddiquee, Zakir Hossain Howlader, Mohammad Asaduzzaman

Abstract:

Diabetes and hypertension are the major lifestyle related diseases. The α-amylase and angiotensin converting enzymes (ACE) are the key enzymes that regulate diabetes and hypertension. The aim was to develop a drug for the treatment of diabetes and hypertension. The Rice Bran (RB) sample (Oryza sativa; BRRI-Dhan-84) was collected from the Bangladesh Rice Research Institute (BRRI), and rice bran proteins were isolated and hydrolyzed by hydrolyzing enzyme alcalase and trypsin. In vivo experiment suggested that rice bran bioactives has an effect on regulating the expression of several key gluconeogenesis and lipogenesis-regulating genes, such as glucose-6-phosphatase, phosphoenolpyruvate carboxykinase, and fatty acid synthase. The above genes have a connection of regulating the glucose level, lipids profile as well as act as an anti-inflammatory agent. A molecular docking, bioinformatics and in vitro experiments were performed. We found rice bran protein hydrolysates significantly (<0.05) influence the peptide concentration in the case of trypsin, alcalase, and (trypsin + alcalase) digestion. The in vitro analysis found that protein hydrolysate significantly (<0.05) reduced diabetic and hypertension as well as oxidative stress. A molecular docking study showed that the YY and IP peptide have a significantly strong binding affinity to the active site of the ACE enzyme and α-amylase with -7.8Kcal/mol and -6.2Kcal/mol, respectively. The Molecular dynamics (MD) simulation and Swiss ADME data analysis showed that less toxicity risk, good physicochemical properties, pharmacokinetics, and drug-likeness with drug scores 0.45 and 0.55 of YY and IP peptides, respectively. Thus, rice bran bioactive could be a good candidate for the treatment of diabetes and hypertension.

Keywords: anti-hypertensive and anti-hyperglycemic, anti-oxidative, bioinformatics, in vitro study, rice bran proteins and peptides

Procedia PDF Downloads 35
1054 2-Thioimidazole Analogues: Synthesis, in silico Studies and in vitro Anticancer and Antiprotozoal Evaluation

Authors: Drashti G. Daraji, Rosa E. Moo-Puc, Hitesh D. Patel

Abstract:

Substituted 2-Thioimidazole analogues have been synthesized and confirmed by advanced spectroscopic techniques. Among them, ten compounds have been selected and evaluated for their in vitro anti-cancer activity at the National Cancer Institute (NCI) for testing against a panel of 60 different human tumor cell lines derived from nine neoplastic cancer types. Furthermore, synthesized compounds were tested for their in vitro antiprotozoal activity, and none of them exhibited significant potency against antiprotozoans. It was observed that the tested all compounds seem effective on the UACC-62 melanoma cancer cell line as compared to other cancer cell lines and also exhibited the least potent in the Non-Small Cell Lung Cancer cell line in one-dose screening. In silico studies of these derivatives were carried out by molecular docking techniques and Absorption, Distribution, Metabolism, and Excretion (ADME) using Schrödinger software to find potent B-Raf kinase inhibitor (PDB ID: 3OG7). All the compounds have been performed for docking study; Compound D4 has a good docking score for melanoma cancer as compared with other.

Keywords: anticancer activity, cancer cell line, 2-thio imidazole, one-dose assay, molecular docking

Procedia PDF Downloads 118
1053 Studies on Virulence Factors Analysis in Streptococcus agalactiae from the Clinical Isolates

Authors: Natesan Balasubramanian, Palpandi Pounpandi, Venkatraman Thamil Priya, Vellasamy Shanmugaiah, Karubbiah Balakrishnan, Mandayam Anandam Thirunarayan

Abstract:

Streptococcus agalactiae is commonly known as Group B Streptococcus (GBS) and it is the most common cause of life-threatening bacterial infection. GBS first considered as a veterinary pathogen causing mastitis in cattle later becomes a human pathogen for severe neonatal infections. In this present study, a total of 20 new clinical isolates of S. agalactiae were collected from male (6) and female patient (14) with different age group. The isolates were from Urinary tract infection (UTI), blood, pus and eye ulcer. All the 20 S. agalactiae isolates has clear hemolysis properties on blood agar medium and were identified by serogrouping and MALTI-TOF-MS analysis. Antibiotic susceptibility/resistance test was performed for 20 S. agalactiae isolates, further phenotypic resistance pattern was observed for tetracycline, vancomycin, ampicillin and penicillin. Genotypically we found two antibiotic resistance genes such as Betalactem antibiotic resistance gene (Tem) (70%) and tetracycline resistance gene Tet(O) 15% in our isolates. Six virulence factors encoding genes were performed by PCR in twenty GBS isolates, cfb gene (100%), followed by, cylE(90.47%), lmp(85.7%), bca(71.42%), rib (38%) and low frequency in bac gene (4.76%) were determined. Most of the S. agalactiae isolates produced strong biofilm in the polystyrene surface (hydrophobic), and low-level biofilm formation was found in glass tube (hydrophilic) surface. lytR is secreted protein and localized in bacterial cell wall, extra cellular membrane, and cytoplasm. In silico docking studies were performed for lytR protein with four antibiofilm compounds, including a peptide (PR39) with the docking study showed peptide has strong interaction followed by ellagic acid and interaction length is 2.95, 2.97 and 2.95 A°. In ligand EGCGO10 and O11 two atoms intract with lytR (Leu271), with binding bond affinity length is 3.24 and 3.14. The aminoacid Leu 271 is act as an impartant aminoacid, since ellagic acid and EGCG interact with same aminoacid.

Keywords: antibiotics, biofilms, clinical isolates, S. agalactiae, virulence

Procedia PDF Downloads 77
1052 Docking and Dynamic Molecular Study of Isoniazid Derivatives as Anti-Tuberculosis Drug Candidate

Authors: Richa Mardianingrum, Srie R. N. Endah

Abstract:

In this research, we have designed four isoniazid derivatives i.e., isonicotinohydrazide (1-isonicotinoyl semicarbazide, 1-thiosemi isonicotinoyl carbazide, N '-(1,3-dimethyl-1 h-pyrazole-5-carbonyl) isonicotino hydrazide, and N '-(1,2,3- 4-thiadiazole-carbonyl) isonicotinohydrazide. The docking and molecular dynamic have performed to them in order to study its interaction with Mycobacterium tuberculosis Enoyl-Acyl Carrier Protein Reductase (InhA). Based on this research, all of the compounds were predicted to have a stable interaction with Mycobacterium tuberculosis Enoyl-Acyl Carrier Protein Reductase (INHA) receptor, so they could be used as an anti-tuberculosis drug candidate.

Keywords: anti-tuberculosis, docking, Inhibin alpha subunit, InhA, inhibition, synthesis, isonicotinohydrazide

Procedia PDF Downloads 150
1051 Control of a Stewart Platform for Minimizing Impact Energy in Simulating Spacecraft Docking Operations

Authors: Leonardo Herrera, Shield B. Lin, Stephen J. Montgomery-Smith, Ziraguen O. Williams

Abstract:

Three control algorithms: Proportional-Integral-Derivative, Linear-Quadratic-Gaussian, and Linear-Quadratic-Gaussian with the shift, were applied to the computer simulation of a one-directional dynamic model of a Stewart Platform. The goal was to compare the dynamic system responses under the three control algorithms and to minimize the impact energy when simulating spacecraft docking operations. Equations were derived for the control algorithms and the input and output of the feedback control system. Using MATLAB, Simulink diagrams were created to represent the three control schemes. A switch selector was used for the convenience of changing among different controllers. The simulation demonstrated the controller using the algorithm of Linear-Quadratic-Gaussian with the shift resulting in the lowest impact energy.

Keywords: controller, Stewart platform, docking operation, spacecraft

Procedia PDF Downloads 9
1050 Computational Approach for Grp78–Nf-ΚB Binding Interactions in the Context of Neuroprotective Pathway in Brain Injuries

Authors: Janneth Gonzalez, Marco Avila, George Barreto

Abstract:

GRP78 participates in multiple functions in the cell during normal and pathological conditions, controlling calcium homeostasis, protein folding and unfolded protein response. GRP78 is located in the endoplasmic reticulum, but it can change its location under stress, hypoxic and apoptotic conditions. NF-κB represents the keystone of the inflammatory process and regulates the transcription of several genes related with apoptosis, differentiation, and cell growth. The possible relationship between GRP78-NF-κB could support and explain several mechanisms that may regulate a variety of cell functions, especially following brain injuries. Although several reports show interactions between NF-κB and heat shock proteins family members, there is a lack of information on how GRP78 may be interacting with NF-κB, and possibly regulating its downstream activation. Therefore, we assessed the computational predictions of the GRP78 (Chain A) and NF-κB complex (IkB alpha and p65) protein-protein interactions. The interaction interface of the docking model showed that the amino acids ASN 47, GLU 215, GLY 403 of GRP78 and THR 54, ASN 182 and HIS 184 of NF-κB are key residues involved in the docking. The electrostatic field between GRP78-NF-κB interfaces and molecular dynamic simulations support the possible interaction between the proteins. In conclusion, this work shed some light in the possible GRP78-NF-κB complex indicating key residues in this crosstalk, which may be used as an input for better drug design strategy targeting NF-κB downstream signaling as a new therapeutic approach following brain injuries.

Keywords: computational biology, protein interactions, Grp78, bioinformatics, molecular dynamics

Procedia PDF Downloads 320
1049 RNA-Seq Based Transcriptomic Analysis of Wheat Cultivars for Unveiling of Genomic Variations and Isolation of Drought Tolerant Genes for Genome Editing

Authors: Ghulam Muhammad Ali

Abstract:

Unveiling of genes involved in drought and root architecture using transcriptomic analyses remained fragmented for further improvement of wheat through genome editing. The purpose of this research endeavor was to unveil the variations in different genes implicated in drought tolerance and root architecture in wheat through RNA-seq data analysis. In this study seedlings of 8 days old, 6 cultivars of wheat namely, Batis, Blue Silver, Local White, UZ888, Chakwal 50 and Synthetic wheat S22 were subjected to transcriptomic analysis for root and shoot genes. Total of 12 RNA samples was sequenced by Illumina. Using updated wheat transcripts from Ensembl and IWGC references with 54,175 gene models, we found that 49,621 out of 54,175 (91.5%) genes are expressed at an RPKM of 0.1 or more (in at least 1 sample). The number of genes expressed was higher in Local White than Batis. Differentially expressed genes (DEG) were higher in Chakwal 50. Expression-based clustering indicated conserved function of DRO1and RPK1 between Arabidopsis and wheat. Dendrogram showed that Local White is sister to Chakwal 50 while Batis is closely related to Blue Silver. This study flaunts transcriptomic sequence variations in different cultivars that showed mutations in genes associated with drought that may directly contribute to drought tolerance. DRO1 and RPK1 genes were fetched/isolated for genome editing. These genes are being edited in wheat through CRISPR-Cas9 for yield enhancement.

Keywords: transcriptomic, wheat, genome editing, drought, CRISPR-Cas9, yield enhancement

Procedia PDF Downloads 118
1048 hsa-miR-1204 and hsa-miR-639 Prominent Role in Tamoxifen's Molecular Mechanisms on the EMT Phenomenon in Breast Cancer Patients

Authors: Mahsa Taghavi

Abstract:

In the treatment of breast cancer, tamoxifen is a regularly prescribed medication. The effect of tamoxifen on breast cancer patients' EMT pathways was studied. In this study to see if it had any effect on the cancer cells' resistance to tamoxifen and to look for specific miRNAs associated with EMT. In this work, we used continuous and integrated bioinformatics analysis to choose the optimal GEO datasets. Once we had sorted the gene expression profile, we looked at the mechanism of signaling, the ontology of genes, and the protein interaction of each gene. In the end, we used the GEPIA database to confirm the candidate genes. after that, I investigated critical miRNAs related to candidate genes. There were two gene expression profiles that were categorized into two distinct groups. Using the expression profile of genes that were lowered in the EMT pathway, the first group was examined. The second group represented the polar opposite of the first. A total of 253 genes from the first group and 302 genes from the second group were found to be common. Several genes in the first category were linked to cell death, focal adhesion, and cellular aging. Two genes in the second group were linked to cell death, focal adhesion, and cellular aging. distinct cell cycle stages were observed. Finally, proteins such as MYLK, SOCS3, and STAT5B from the first group and BIRC5, PLK1, and RAPGAP1 from the second group were selected as potential candidates linked to tamoxifen's influence on the EMT pathway. hsa-miR-1204 and hsa-miR-639 have a very close relationship with the candidates genes according to the node degrees and betweenness index. With this, the action of tamoxifen on the EMT pathway was better understood. It's important to learn more about how tamoxifen's target genes and proteins work so that we can better understand the drug.

Keywords: tamoxifen, breast cancer, bioinformatics analysis, EMT, miRNAs

Procedia PDF Downloads 102
1047 In Silico Study of Antiviral Drugs Against Three Important Proteins of Sars-Cov-2 Using Molecular Docking Method

Authors: Alireza Jalalvand, Maryam Saleh, Somayeh Behjat Khatouni, Zahra Bahri Najafi, Foroozan Fatahinia, Narges Ismailzadeh, Behrokh Farahmand

Abstract:

Object: In the last two decades, the recent outbreak of Coronavirus (SARS-CoV-2) imposed a global pandemic in the world. Despite the increasing prevalence of the disease, there are no effective drugs to treat it. A suitable and rapid way to afford an effective drug and treat the global pandemic is a computational drug study. This study used molecular docking methods to examine the potential inhibition of over 50 antiviral drugs against three fundamental proteins of SARS-CoV-2. METHODS: Through a literature review, three important proteins (a key protease, RNA-dependent RNA polymerase (RdRp), and spike) were selected as drug targets. Three-dimensional (3D) structures of protease, spike, and RdRP proteins were obtained from the Protein Data Bank. Protein had minimal energy. Over 50 antiviral drugs were considered candidates for protein inhibition and their 3D structures were obtained from drug banks. The Autodock 4.2 software was used to define the molecular docking settings and run the algorithm. RESULTS: Five drugs, including indinavir, lopinavir, saquinavir, nelfinavir, and remdesivir, exhibited the highest inhibitory potency against all three proteins based on the binding energies and drug binding positions deduced from docking and hydrogen-bonding analysis. Conclusions: According to the results, among the drugs mentioned, saquinavir and lopinavir showed the highest inhibitory potency against all three proteins compared to other drugs. It may enter laboratory phase studies as a dual-drug treatment to inhibit SARS-CoV-2.

Keywords: covid-19, drug repositioning, molecular docking, lopinavir, saquinavir

Procedia PDF Downloads 59