Search results for: mole method
18972 Investigating the Energy Gap and Wavelength of (AlₓGa₁₋ₓAs)ₘ/(GaAs)ₙ Superlattices in Terms of Material Thickness and Al Mole Fraction Using Empirical Tight-Binding Method
Authors: Matineh Sadat Hosseini Gheidari, Vahid Reza Yazdanpanah
Abstract:
In this paper, we used the empirical tight-binding method (ETBM) with sp3s* approximation and considering the first nearest neighbor with spin-orbit interactions in order to model superlattice structure (SLS) of (AlₓGa₁₋ₓAs)ₘ/(GaAs)ₙ grown on GaAs (100) substrate at 300K. In the next step, we investigated the behavior of the energy gap and wavelength of this superlattice in terms of different thicknesses of core materials and Al mole fractions. As a result of this survey, we found out that as the Al composition increases, the energy gap of this superlattice has an upward trend and ranges from 1.42-1.63 eV. Also, according to the wavelength range that we gained from this superlattice in different Al mole fractions and various thicknesses, we can find a suitable semiconductor for a special light-emitting diode (LED) application.Keywords: energy gap, empirical tight-binding method, light-emitting diode, superlattice, wavelength
Procedia PDF Downloads 20318971 Investigating Students’ Cognitive Processes in Solving Stoichiometric Problems and its Implications to Teaching and Learning Chemistry
Authors: Allen A. Espinosa, Larkins A. Trinidad
Abstract:
The present study investigated collegiate students’ problem solving strategies and misconceptions in solving stoichiometric problems and later on formulate a teaching framework from the result of the study. The study found out that the most prominent strategies among students are the mole method and the proportionality method, which are both algorithmic by nature. Misconception was also noted as some students rely on Avogadro’s number in converting between moles. It is suggested therefore that the teaching of stoichiometry should not be confined to demonstration. Students should be involved in the process of thinking of ways to solve the problem.Keywords: stoichiometry, Svogadro’s number, mole method, proportionality method
Procedia PDF Downloads 37918970 Metal Ions Cross-Linking of Epoxidized Natural Rubber
Authors: Kriengsak Damampai, Skulrat Pichaiyut, Amit Das, Charoen Nacason
Abstract:
The curing of epoxidized natural rubber (ENR) was performed by using metal ions (Ferric chloride, FeCl₃). Two different mole% of epoxide were used there are 25 mole% (ENR-25) and 50 mole% (ENR-50) epoxizied natural rubber. The main aim of this work was investigated the influence of metal ions on the coordination reaction of epoxidized natural rubber. Also, cure characteristics and mechanical properties of the rubber compounds were investigated. It was found that the ENR-50 compounds indicated superior modulus and tensile strength than the ENR-25 compounds. This was attributed to higher the cross-linking in the rubber via coordination linkages between the oxidation groups in ENR molecule and FeCl₃of metal ions. Various quantities of FeCl3 were also investigated. It is seen that the ENR-25 and 50 mole% compounds with FeCl₃ of more than 3 mmol exhibited higher modulus and tensile strength compare to the pure ENR. Furthermore, the FTIR spectra was used to confirm the cross-linked of ENR with FeCl₃.Keywords: Epoxidized natural rubber, Ferric chloride, cross-linking, Coordination
Procedia PDF Downloads 8018969 Utilization of Bottom Ash as Catalyst in Biomass Steam Gasification for Hydrogen and Syngas Production: Lab Scale Approach
Authors: Angga Pratama Herman, Muhammad Shahbaz, Suzana Yusup
Abstract:
Bottom ash is a solid waste from thermal power plant and it is usually disposed of into landfills and ash ponds. These disposal methods are not sustainable since new lands need to be acquired as the landfills and ash ponds are fill to its capacity. Bottom ash also classified as hazardous material that makes the disposal methods may have contributed to the environmental effect to the area. Hence, more research needs to be done to explore the potential of recycling the bottom ash as more useful product. The objective of this research is to explore the potential of utilizing bottom ash as catalyst in biomass steam gasification. In this research, bottom ash was used as catalyst in gasification of Palm Kernel Shell (PKS) using Thermo Gravimetric Analyzer coupled with mass spectrometry (TGA/MS). The effects of temperature (650 – 750 °C), particle size (0.5 – 1.0 mm) and bottom ash percentage (2 % - 10 %) were studied with and without steam. The experimental arrays were designed using expert method of Central Composite Design (CCD). Results show maximum yield of hydrogen gas was 34.3 mole % for gasification without steam and 61.4 Mole % with steam. Similar trend was observed for syngas production. The maximum syngas yield was 59.5 mole % for without steam and it reached up to 81.5 mole% with the use of steam. The optimal condition for both product gases was temperature 700 °C, particle size 0.75 mm and cool bottom ash % 0.06. In conclusion, the use of bottom ash as catalyst is possible for biomass steam gasification and the product gases composition are comparable with previous researches, however the results need to be validated for bench or pilot scale study.Keywords: bottom ash, biomass steam gasification, catalyst, lab scale
Procedia PDF Downloads 29718968 Cellulose Extraction from Pomelo Peel: Synthesis of Carboxymethyl Cellulose
Authors: Jitlada Chumee, Drenpen Seeburin
Abstract:
The cellulose was extracted from pomelo peel and an etherification reaction used for converting cellulose to carboxymethyl cellulose (CMC). The pomelo peel was refluxed with 0.5 M HCl and 1 M NaOH solution at 90°C for 1 h and 2 h, respectively. The cellulose was bleached with calcium hypochlorite and used as precursor. The precursor was soaked in mixed solution between isopropyl alcohol and 40%w/v NaOH for 12 h. After that, chloroacetic acid was added and reacted at 55°C for 6 h. The optimum condition was 5 g of cellulose: 0.25 mole of NaOH : 0.07 mole of ClCH2COOH with 78.00% of yield. Moreover, the product had 0.54 of degree of substitution (DS).Keywords: pomelo peel, carboxymethyl cellulose, bioplastic, extraction
Procedia PDF Downloads 31218967 Hypoxia Tolerance, Longevity and Cancer-Resistance in the Mole Rat Spalax – a Liver Transcriptomics Approach
Authors: Hanno Schmidt, Assaf Malik, Anne Bicker, Gesa Poetzsch, Aaron Avivi, Imad Shams, Thomas Hankeln
Abstract:
The blind subterranean mole rat Spalax shows a remarkable tolerance to hypoxia, cancer-resistance and longevity. Unravelling the genomic basis of these adaptations will be important for biomedical applications. RNA-Seq gene expression data were obtained from normoxic and hypoxic Spalax and rat liver tissue. Hypoxic Spalax broadly downregulates genes from major liver function pathways. This energy-saving response is likely a crucial adaptation to low oxygen levels. In contrast, the hypoxiasensitive rat shows massive upregulation of energy metabolism genes. Candidate genes with plausible connections to the mole rat’s phenotype, such as important key genes related to hypoxia-tolerance, DNA damage repair, tumourigenesis and ageing, are substantially higher expressed in Spalax than in rat. Comparative liver transcriptomics highlights the importance of molecular adaptations at the gene regulatory level in Spalax and pinpoints a variety of starting points for subsequent functional studies.Keywords: cancer, hypoxia, longevity, transcriptomics
Procedia PDF Downloads 15418966 Mixed Micellization Study of Adiphenine Hydrochloride with 1-Decyl-3-Methylimidazolium Chloride
Authors: Abbul B. Khan, Neeraj Dohare, Rajan Patel
Abstract:
The mixed micellization of adiphenine hydrochloride (ADP) with 1-decyl-3-methylimidazolium chloride (C10mim.Cl), was investigated at different mole fractions and temperatures by surface tension measurements. The synergistic behavior (i.e., non-ideal behavior) for binary mixtures was explained by the deviation of critical micelle concentration (cmc) from ideal critical micelle concentration (cmc*), micellar mole fraction (Xim) from ideal micellar mole fraction (Xiideal), the values of interaction parameter (β) and activity coefficients (fi) (for both mixed micelles and mixed monolayer). The excess free energy (∆Gex) for the ADP- C10mim.Cl binary mixtures explain the stability of mixed micelles in comparison to micelles of pure ADP and C10mim.Cl. Interfacial parameters, i.e., Gibbs surface excess (Гmax), minimum head group area at air/ water interface (Amin), and free energy of micellization (ΔG0m) were also evaluated for the systems.Keywords: adiphenine hydrochloride, critical micelle concentration, interaction parameter, activity coefficient
Procedia PDF Downloads 26818965 Energy Loss Reduction in Oil Refineries through Flare Gas Recovery Approaches
Authors: Majid Amidpour, Parisa Karimi, Marzieh Joda
Abstract:
For the last few years, release of burned undesirable by-products has become a challenging issue in oil industries. Flaring, as one of the main sources of air contamination, involves detrimental and long-lasting effects on human health and is considered a substantial reason for energy losses worldwide. This research involves studying the implications of two main flare gas recovery methods at three oil refineries, all in Iran as the case I, case II, and case III in which the production capacities are increasing respectively. In the proposed methods, flare gases are converted into more valuable products, before combustion by the flare networks. The first approach involves collecting, compressing and converting the flare gas to smokeless fuel which can be used in the fuel gas system of the refineries. The other scenario includes utilizing the flare gas as a feed into liquefied petroleum gas (LPG) production unit already established in the refineries. The processes of these scenarios are simulated, and the capital investment is calculated for each procedure. The cumulative profits of the scenarios are evaluated using Net Present Value method. Furthermore, the sensitivity analysis based on total propane and butane mole fraction is carried out to make a rational comparison for LPG production approach, and the results are illustrated for different mole fractions of propane and butane. As the mole fraction of propane and butane contained in LPG differs in summer and winter seasons, the results corresponding to LPG scenario are demonstrated for each season. The results of the simulations show that cumulative profit in fuel gas production scenario and LPG production rate increase with the capacity of the refineries. Moreover, the investment return time in LPG production method experiences a decline, followed by a rising trend with an increase in C3 and C4 content. The minimum value of time return occurs at propane and butane sum concentration values of 0.7, 0.6, and 0.7 in case I, II, and III, respectively. Based on comparison of the time of investment return and cumulative profit, fuel gas production is the superior scenario for three case studies.Keywords: flare gas reduction, liquefied petroleum gas, fuel gas, net present value method, sensitivity analysis
Procedia PDF Downloads 15918964 Preparation of Ceramic Hollow Fiber Membranes for CO2 Capture
Authors: Kai-Wei Huang, Yi-Feng Lin
Abstract:
The purpose of this study is to have chemical resistance, high heat resistance and mechanical strength of ceramic hollow fiber membrane into a membrane contactor, and the combustion process is applied (Post-combustion capture) of the carbon dioxide absorption device. In this paper, we would investigate the effect of the ceramic membrane hydrophobicity to the flux of the carbon dioxide adsorption. To improve the applicability of the ceramic film. We use the dry-wet spinning method with the high temperature sintering process for preparing a ceramic hollow fiber membranes to increase the filling density per unit volume of the membrane. The PESf/Al2O3 ratio of 1:5 was prepared ceramic hollow fibers membrane precursors and investigate the relationship of the different sintering temperature to the membrane pore size and porosity. It can be found that the membrane via the sintering temperature of 1400 °C prepared with the highest porosity of 70%, while the membrane via the sintering temperature of 1600 °C prepared although has a minimum porosity of about 54%, but also has the smallest average pore size of about 0.2 μm. The hydrophilic ceramic hollow fiber membranes which after high-temperature sintering were changed into hydrophobic successfully via the 0.02M FAS modifier. The hydrophobic ceramic hollow fiber membranes with different sintering temperature, the membrane which was prepared via 1400 °C sintering has the highest carbon dioxide adsorption about 4.2 × 10-4 (mole/m2s). The membrane prepared via 1500 °C sintering has the carbon dioxide adsorption about 3.8 × 10-3 (mole/m2s),and the membrane prepared via 1600 °C sintering has the lowest carbon dioxide adsorption about 2.68 × 10-3 (mole/m2s).All of them have reusability and in long time operation, the membrane which was prepared via 1600 °C sintering has the smallest pores and also could operate for three days. After the test, the 1600 °C sintering ceramic hollow fiber membrane was most suitable for the factory.Keywords: carbon dioxide capture, membrane contactor, ceramic membrane, ceramic hollow fiber membrane
Procedia PDF Downloads 34718963 An Investigation of New Phase Diagram of Ag2SO4-CaSO4
Authors: Ravi V. Joat, Pravin S. Bodke, Shradha S. Binani, S. S. Wasnik
Abstract:
A phase diagram of the Ag2SO4 - CaSO4 (Silver sulphate – Calcium Sulphate) binaries system using conductivity, XRD (X-Ray Diffraction Technique) and DTA (Differential Thermal Analysis) data is constructed. The eutectic reaction (liquid -» a-Ag2SO4 + CaSO4) is observed at 10 mole% CaSO4 and 645°C. Room temperature solid solubility limit up to 5.27 mole % of Ca 2+ in Ag2SO4 is set using X-ray powder diffraction and scanning electron microscopy results. All compositions beyond this limit are two-phase mixtures below and above the transition temperature (≈ 416°C). The bulk conductivity, obtained following complex impedance spectroscopy, is found decreasing with increase in CaSO4 content. Amongst other binary compositions, the 80AgSO4-20CaSO4 gave improved sinterability/packing density.Keywords: phase diagram, Ag2SO4-CaSO4 binaries system, conductivity, XRD, DTA
Procedia PDF Downloads 62418962 Rodents Control in Poultry Production; Harnessing Conflicting Animal Welfare Interests in Developing Countries
Authors: O. M. Alabi, F. A. Aderemi, M. O. Ayoola
Abstract:
An aspect of biosecurity measures to ensure good welfare for chickens is rodents’ control. Rats and mice are rodents commonly found in poultry houses in most of the African countries. More than 20,000 species of rat have been identified in Africa among which are; Black house rats (Rattus rattus), East African mole rat (Tachyorcytes splendens), Naked mole rat (Heterocephalus glaber), Zambian mole rat (Fukomys mechowii), African grass rat (Arvicanthis niloticus), Nigerian mole rat (Cryptomys foxi), Target rat (Stochomys longicaudatus) and West African Shaggy rat (Dasymis rufulus). Apart from being destructive, rats and mice are voracious in that they compete with chickens for feed and water thereby causing economical losses to the farmer, they are also vectors to many pathogens of poultry diseases such as Salmonellosis, colibacillosis, ascaridiasis, coryza, pasteurellosis and mycoplasmosis. As bad as these rodents are to the poultry farmers, they are good sources of animal protein to local hunters and other farmers in most African countries. Rat is considered a delicacy in Nigeria and many other African countries hence the need to investigate into how the rats species will not go into extinction. Rodents are usually controlled by poultry farmers with the use of rodenticides which can either be anticoagulant or stomach poison, and with the use of baits. However, elimination of rats and mice is being considered as callous act against these species of animal and their natural existence as human food also. This paper therefore suggests that sanitation methods such as feed removal from rats and mice, controlling feed and water spillage, proper disposal of waste eggs, dead birds and garbage, keeping the surroundings of the poultry clean; rodent proofing by making it difficult for rodents to enter the poultry houses are some of the humane ways of controlling rodents in poultry production to avoid improving the welfare of a particular animal at the expense of the other.Keywords: management, poultry, rodents, welfare
Procedia PDF Downloads 41818961 Wet Chemical Synthesis for Fe-Ni Alloy Nanocrystalline Powder
Authors: Neera Singh, Devendra Kumar, Om Parkash
Abstract:
We have synthesized nanocrystalline Fe-Ni alloy powders where Ni varies as 10, 30 and 50 mole% by a wet chemical route (sol-gel auto-combustion) followed by reduction in hydrogen atmosphere. The ratio of citrate to nitrate was maintained at 0.3 where citric acid has worked as a fuel during combustion. The reduction of combusted powders was done at 700°C/1h in hydrogen atmosphere using an atmosphere controlled quartz tube furnace. Phase and microstructure analysis has shown the formation of α-(Fe,Ni) and γ-(Fe,Ni) phases after reduction. An increase in Ni concentration resulted in more γ-(Fe,Ni) formation where complete γ-(Fe,Ni) formation was achieved at 50 mole% Ni concentration. Formation of particles below 50 nm size range was confirmed using Scherrer’s formula and Transmission Electron Microscope. The work is aimed at the effect of Ni concentration on phase, microstructure and magnetic properties of synthesized alloy powders.Keywords: combustion, microstructure, nanocrystalline, reduction
Procedia PDF Downloads 18018960 The Optimization of Copper Sulfate and Tincalconite Molar Ratios on the Hydrothermal Synthesis of Copper Borates
Authors: E. Moroydor Derun, N. Tugrul, F. T. Senberber, A. S. Kipcak, S. Piskin
Abstract:
In this research, copper borates are synthesized by the reaction of copper sulfate pentahydrate (CuSO4.5H2O) and tincalconite (Na2O4B7.10H2O). The experimental parameters are selected as 80°C reaction temperature and 60 of reaction time. The effect of mole ratio of CuSO4.5H2O to Na2O4B7.5H2O is studied. For the identification analyses X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques are used. At the end of the experiments, synthesized copper borate is matched with the powder diffraction file of “00-001-0472” [Cu(BO2)2] and characteristic vibrations between B and O atoms are seen. The proper crystals are obtained at the mole ratio of 3:1. This study showed that simplified synthesis process is suitable for the production of copper borate minerals.Keywords: hydrothermal synthesis, copper borates, copper sulfate, tincalconite
Procedia PDF Downloads 38018959 Structural, Optical and Electrical Properties of PbS Thin Films Deposited by CBD at Different Bath pH
Authors: Lynda Beddek, Nadhir Attaf, Mohamed Salah Aida
Abstract:
PbS thin films were grown on glass substrates by chemical bath deposition (CBD). The precursor aqueous bath contained 1 mole of lead nitrate, 1 mole of Thiourea and complexing agents (triethanolamine (TEA) and NaOH). Bath temperature and deposition time were fixed at 60°C and 3 hours, respectively. However, the PH of bath was varied from 10.5 to 12.5. Structural properties of the deposited films were characterized by X-ray diffraction and Raman spectroscopy. The preferred direction was revealed to be along (111) and the PbS crystal structure was confirmed. Strains and grains sizes were also calculated. Optical studies showed that films thicknesses do not exceed 600nm. Energy band gap values of films decreases with increase in pH and reached a value ~ 0.4eV at pH equal 12.5. The small value of the energy band gap makes PbS one of the most interesting candidate for solar energy conversion near the infrared ray.Keywords: CBD, PbS, pH, thin films, x-ray diffraction
Procedia PDF Downloads 44018958 Mechanical and Micro-Structural Properties of Fly Ash Based Geopolymer with High-Temperature Exposure
Authors: Young-Cheol Choi, Joo-Hyung Kim, Gyu-Don Moon
Abstract:
This paper discusses the effect of Na2O (alkali) content, SiO2/Na2O mole ratio, and elevated temperature on the mechanical performance of fly-ash-based inorganic green geopolymer composites. Fly-ash-based geopolymers, which were manufactured with varying alkali contents (4–8 % of fly ash weight) and SiO2/Na2O mole ratios (0.6–1.4), were subjected to elevated temperatures up to 900 ºC ; the geopolymer composites and their performance were evaluated on the basis of weight loss and strength loss after temperature exposure. In addition, mineralogical changes due to the elevated temperature exposure were studied using x-ray diffraction. Investigations of microstructures and microprobe analysis were performed using mercury intrusion porosimetry. The results showed that the fly-ash-based geopolymer responded significantly to high-temperature conditions.Keywords: fly ash, geopolymer, micro-structure, high-temperature, mechanical structural
Procedia PDF Downloads 59618957 Artificial Intelligence Methods in Estimating the Minimum Miscibility Pressure Required for Gas Flooding
Authors: Emad A. Mohammed
Abstract:
Utilizing the capabilities of Data Mining and Artificial Intelligence in the prediction of the minimum miscibility pressure (MMP) required for multi-contact miscible (MCM) displacement of reservoir petroleum by hydrocarbon gas flooding using Fuzzy Logic models and Artificial Neural Network models will help a lot in giving accurate results. The factors affecting the (MMP) as it is proved from the literature and from the dataset are as follows: XC2-6: Intermediate composition in the oil-containing C2-6, CO2 and H2S, in mole %, XC1: Amount of methane in the oil (%),T: Temperature (°C), MwC7+: Molecular weight of C7+ (g/mol), YC2+: Mole percent of C2+ composition in injected gas (%), MwC2+: Molecular weight of C2+ in injected gas. Fuzzy Logic and Neural Networks have been used widely in prediction and classification, with relatively high accuracy, in different fields of study. It is well known that the Fuzzy Inference system can handle uncertainty within the inputs such as in our case. The results of this work showed that our proposed models perform better with higher performance indices than other emprical correlations.Keywords: MMP, gas flooding, artificial intelligence, correlation
Procedia PDF Downloads 14318956 Interaction of Hemoglobin with Sodium Dodecyl Sulfate and Ascorbic Acid: A Chemometrics Study
Authors: Radnoosh Mirzajani, Ebrahim Mirzajani, Heshmatollah Ebrahimi-Najafabadi
Abstract:
Introduction: Hydrogen peroxide can be produced over the interaction of sodium dodecyl sulfate (SDS) with hemoglobin which would facilitate the oxidation process of hemoglobin. The presence of ascorbic acid (AA) can hinder the extreme oxidation of oxyhemoglobin. Methods: Hemoglobin was purified from blood samples according to the method of Williams. UV-V is spectra of Hb solutions mixed with different concentrations of SDS and AA were recorded. Chemical components, concentration, and spectral profiles were estimated using MCR-ALS techniques. Results: The intensity of soret band of OxyHb decreased due to the interaction of Hb with SDS. Furthermore, changes were also observed for peaks at 575 and 540. Subspace plots confirm the presence of OxyHb, MetHb, and Hemichrom in each mixture. The resolved concentration profiles using MCR-ALS reveal that the mole fraction of OxyHb increased upon the presence of AA up to a concentration level of 3 mM. The higher concentration of AA shows a reverse effect. AA demonstrated a dual effect on the interaction of hemoglobin with SDS. AA disturbs the interaction of SDS and hemoglobin and exhibits an antioxidative effect. However, it caused a tiny decrease in the mole fraction of OxyHb. Conclusions: H2O2 produces upon the interaction of OxyHb with SDS. Oxidation of OxyHb facilitates due to overproduction of H2O2. Ascorbic acid interacts with H2O2 to form dehydroascorbic acid. Furthermore, the available free SDS was reduced because the Gibbs free energy for micelle production of SDS became more negative in the presence of AA.Keywords: hemoglobin, ascorbic acid, sodium dodecyl sulfate, multivariate curve resolution, antioxidant
Procedia PDF Downloads 11718955 Modelling and Simulating CO2 Electro-Reduction to Formic Acid Using Microfluidic Electrolytic Cells: The Influence of Bi-Sn Catalyst and 1-Ethyl-3-Methyl Imidazolium Tetra-Fluoroborate Electrolyte on Cell Performance
Authors: Akan C. Offong, E. J. Anthony, Vasilije Manovic
Abstract:
A modified steady-state numerical model is developed for the electrochemical reduction of CO2 to formic acid. The numerical model achieves a CD (current density) (~60 mA/cm2), FE-faradaic efficiency (~98%) and conversion (~80%) for CO2 electro-reduction to formic acid in a microfluidic cell. The model integrates charge and species transport, mass conservation, and momentum with electrochemistry. Specifically, the influences of Bi-Sn based nanoparticle catalyst (on the cathode surface) at different mole fractions and 1-ethyl-3-methyl imidazolium tetra-fluoroborate ([EMIM][BF4]) electrolyte, on CD, FE and CO2 conversion to formic acid is studied. The reaction is carried out at a constant concentration of electrolyte (85% v/v., [EMIM][BF4]). Based on the mass transfer characteristics analysis (concentration contours), mole ratio 0.5:0.5 Bi-Sn catalyst displays the highest CO2 mole consumption in the cathode gas channel. After validating with experimental data (polarisation curves) from literature, extensive simulations reveal performance measure: CD, FE and CO2 conversion. Increasing the negative cathode potential increases the current densities for both formic acid and H2 formations. However, H2 formations are minimal as a result of insufficient hydrogen ions in the ionic liquid electrolyte. Moreover, the limited hydrogen ions have a negative effect on formic acid CD. As CO2 flow rate increases, CD, FE and CO2 conversion increases.Keywords: carbon dioxide, electro-chemical reduction, ionic liquids, microfluidics, modelling
Procedia PDF Downloads 14418954 Solvent Extraction, Spectrophotometric Determination of Antimony(III) from Real Samples and Synthetic Mixtures Using O-Methylphenyl Thiourea as a Sensitive Reagent
Authors: Shashikant R. Kuchekar, Shivaji D. Pulate, Vishwas B. Gaikwad
Abstract:
A simple and selective method is developed for solvent extraction spectrophotometric determination of antimony(III) using O-Methylphenyl Thiourea (OMPT) as a sensitive chromogenic chelating agent. The basis of proposed method is formation of antimony(III)-OMPT complex was extracted with 0.0025 M OMPT in chloroform from aqueous solution of antimony(III) in 1.0 M perchloric acid. The absorbance of this complex was measured at 297 nm against reagent blank. Beer’s law was obeyed up to 15µg mL-1 of antimony(III). The Molar absorptivity and Sandell’s sensitivity of the antimony(III)-OMPT complex in chloroform are 16.6730 × 103 L mol-1 cm-1 and 0.00730282 µg cm-2 respectively. The stoichiometry of antimony(III)-OMPT complex was established from slope ratio method, mole ratio method and Job’s continuous variation method was 1:2. The complex was stable for more than 48 h. The interfering effect of various foreign ions was studied and suitable masking agents are used wherever necessary to enhance selectivity of the method. The proposed method is successfully applied for determination of antimony(III) from real samples alloy and synthetic mixtures. Repetition of the method was checked by finding relative standard deviation (RSD) for 10 determinations which was 0.42%.Keywords: solvent extraction, antimony, spectrophotometry, real sample analysis
Procedia PDF Downloads 33118953 The Performance of PtSn/Al₂O₃ with Cylindrical Particles for Acetic Acid Hydrogenation
Authors: Mingchuan Zhou, Haitao Zhang, Hongfang Ma, Weiyong Ying
Abstract:
Alumina supported PtSn catalysts with cylindrical particles were prepared and characterized by using low temperature N2 adsorption/desorption and X-ray diffraction. Low temperature N2 adsorption/desorption demonstrate that the tableting changed the texture properties of catalysts. XRD pattern indicate that the crystal structure of supports had no change after reaction. The performances over particles of PtSn/Al2O3 catalysts were investigated with regards to reaction temperature, pressure, and H2/AcOH mole ratio. After tableting, the conversion of acetic acid and selectivity of ethanol and acetyl acetate decreased. High reaction temperature and pressure can improve conversion of acetic acid. H2/AcOH mole ratio of 9.36 showed the best performance on acetic acid hydrogenation. High pressure had benefits for the selectivity of ethanol and other two parameters had no obvious effect on selectivity.Keywords: acetic acid hydrogenation, cylindrical particles, ethanol, PtSn
Procedia PDF Downloads 31718952 Determination of Starting Design Parameters for Reactive-Dividing Wall Distillation Column Simulation Using a Modified Shortcut Design Method
Authors: Anthony P. Anies, Jose C. Muñoz
Abstract:
A new shortcut method for the design of reactive-dividing wall columns (RDWC) is proposed in this work. The RDWC is decomposed into its thermodynamically equivalent configuration naming the Petlyuk column, which consists of a reactive prefractionator and an unreactive main fractionator. The modified FUGK(Fenske-Underwood-Gilliland-Kirkbride) shortcut distillation method, which incorporates the effect of reaction on the Underwood equations and the Gilliland correlation, is used to design the reactive prefractionator. On the other hand, the conventional FUGK shortcut method is used to design the unreactive main fractionator. The shortcut method is applied to the synthesis of dimethyl ether (DME) through the liquid phase dehydration of methanol, and the results were used as the starting design inputs for rigorous simulation in Aspen Plus V8.8. A mole purity of 99 DME in the distillate stream, 99% methanol in the side draw stream, and 99% water in the bottoms stream were obtained in the simulation, thereby making the proposed shortcut method applicable for the preliminary design of RDWC.Keywords: aspen plus, dimethyl ether, petlyuk column, reactive-dividing wall column, shortcut method, FUGK
Procedia PDF Downloads 19118951 Use of Biomass as Co-Fuel in Briquetting of Low-Rank Coal: Strengthen the Energy Supply and Save the Environment
Authors: Mahidin, Yanna Syamsuddin, Samsul Rizal
Abstract:
In order to fulfill world energy demand, several efforts have been done to look for new and renewable energy candidates to substitute oil and gas. Biomass is one of new and renewable energy sources, which is abundant in Indonesia. Palm kernel shell is a kind of biomass discharge from palm oil industries as a waste. On the other hand, Jatropha curcas that is easy to grow in Indonesia is also a typical energy source either for bio-diesel or biomass. In this study, biomass was used as co-fuel in briquetting of low-rank coal to suppress the release of emission (such as CO, NOx and SOx) during coal combustion. Desulfurizer, CaO-base, was also added to ensure the SOx capture is effectively occurred. Ratio of coal to palm kernel shell (w/w) in the bio-briquette were 50:50, 60:40, 70:30, 80:20 and 90:10, while ratio of calcium to sulfur (Ca/S) in mole/mole were 1:1; 1.25:1; 1.5:1; 1.75:1 and 2:1. The bio-briquette then subjected to physical characterization and combustion test. The results show that the maximum weight loss in the durability measurement was ±6%. In addition, the highest stove efficiency for each desulfurizer was observed at the coal/PKS ratio of 90:10 and Ca/S ratio of 1:1 (except for the scallop shell desulfurizer that appeared at two Ca/S ratios; 1.25:1 and 1.5:1, respectively), i.e. 13.8% for the lime; 15.86% for the oyster shell; 14.54% for the scallop shell and 15.84% for the green mussel shell desulfurizers.Keywords: biomass, low-rank coal, bio-briquette, new and renewable energy, palm kernel shell
Procedia PDF Downloads 44118950 Optimization of Syngas Quality for Fischer-Tropsch Synthesis
Authors: Ali Rabah
Abstract:
This research received no grant or financial support from any public, commercial, or none governmental agency. The author conducted this work as part of his normal research activities as a professor of Chemical Engineering at the University of Khartoum, Sudan. Abstract While fossil oil reserves have been receding, the demand for diesel and gasoline has been growing. In recent years, syngas of biomass origin has been emerging as a viable feedstock for Fischer-Tropsch (FT) synthesis, a process for manufacturing synthetic gasoline and diesel. This paper reports the optimization of syngas quality to match FT synthesis requirements. The optimization model maximizes the thermal efficiency under the constraint of H2/CO≥2.0 and operating conditions of equivalent ratio (0 ≤ ER ≤ 1.0), steam to biomass ratio (0 ≤ SB ≤ 5), and gasification temperature (500 °C ≤ Tg ≤ 1300 °C). The optimization model is executed using the optimization section of the Model Analysis Tools of the Aspen Plus simulator. The model is tested using eleven (11) types of MSW. The optimum operating conditions under which the objective function and the constraint are satisfied are ER=0, SB=0.66-1.22, and Tg=679 - 763°C. Under the optimum operating conditions, the syngas quality is H2=52.38 - 58.67-mole percent, LHV=12.55 - 17.15 MJ/kg, N2=0.38 - 2.33-mole percent, and H2/CO≥2.15. The generalized optimization model reported could be extended to any other type of biomass and coal. Keywords: MSW, Syngas, Optimization, Fischer-Tropsch.Keywords: syngas, MSW, optimization, Fisher-Tropsh
Procedia PDF Downloads 8018949 Enhancement of Transaction's Authentication for the Europay, MasterCard, and Visa Contactless Card Payments
Authors: Ossama Al-Maliki
Abstract:
Europay, MasterCard, and Visa (EMV) is one of the most popular payment protocol in the world. The EMV protocol supports Chip and PIN Transactions, Chip and Signature transactions, and Contactless transactions. This protocol suffers from tens of £ millions of lost per year due to many fraudulent payments. This is due to several reported vulnerable points in the protocols used for such payments that allow skimming, replay, cloning, Mole Point of Sale (POS), relay, and other attacks to be conducted. In this paper, we are focusing on the EMV contactless specification and we have proposed two proposal solutions to the addition of a localization factor to enhance the payment authentication of such transactions designed to prevent relay, cloning, and Mole-POS attacks. Our proposed solution is a back-end localization scheme to help the Issuer-Bank compare the location of the genuine cardholder in relation to the used POS. Our scheme uses 'something you have' which is the Cardholder Smartphone (CSP) to provide the location of the cardholder at the time of the transaction and without impacting the contactless payment time/protocol. The Issuer-bank obtain the CSP Location using tried and tested localization techniques, and independently of the cardholder. Both of our proposal solutions do not require infrastructure changes, and it uses existing EMV/SP protocol messages to communicate our scheme information.Keywords: NFC, RFID, contactless card, authentication, location, EMV
Procedia PDF Downloads 24118948 Multistep Thermal Degradation Kinetics: Pyrolysis of CaSO₄-Complex Obtained by Antiscaling Effect of Maleic-Anhydride Polymer
Authors: Yousef M. Al-Roomi, Kaneez Fatema Hussain
Abstract:
This work evaluates the thermal degradation kinetic parameters of CaSO₄-complex isolated after the inhibition effect of maleic-anhydride based polymer (YMR-polymers). Pyrolysis experiments were carried out at four heating rates (5, 10, 15 and 20°C/min). Several analytical model-free methods were used to determine the kinetic parameters, including Friedman, Coats and Redfern, Kissinger, Flynn-Wall-Ozawa and Kissinger-Akahira–Sunose methods. The Criado model fitting method based on real mechanism followed in thermal degradation of the complex has been applied to explain the degradation mechanism of CaSO₄-complex. In addition, a simple dynamic model was proposed over two temperature ranges for successive decomposition of CaSO₄-complex which has a combination of organic and inorganic part (adsorbed polymer + CaSO₄.2H₂O scale). The model developed enabled the assessment of pre-exponential factor (A) and apparent activation-energy (Eₐ) for both stages independently using a mathematical developed expression based on an integral solution. The unique reaction mechanism approach applied in this study showed that (Eₐ₁-160.5 kJ/mole) for organic decomposition (adsorbed polymer stage-I) has been lower than Eₐ₂-388 kJ/mole for the CaSO₄ decomposition (inorganic stage-II). Further adsorbed YMR-antiscalant not only reduced the decomposition temperature of CaSO₄-complex compared to CaSO₄-blank (CaSO₄.2H₂O scales in the absence of YMR-polymer) but also distorted the crystal lattice of the organic complex of CaSO₄ precipitates, destroying their compact and regular crystal structures observed from XRD and SEM studies.Keywords: CaSO₄-complex, maleic-anhydride polymers, thermal degradation kinetics and mechanism, XRD and SEM studies
Procedia PDF Downloads 11718947 Heteromolecular Structure Formation in Aqueous Solutions of Ethanol, Tetrahydrofuran and Dimethylformamide
Authors: Sh. Gofurov, O. Ismailova, U. Makhmanov, A. Kokhkharov
Abstract:
The refractometric method has been used to determine optical properties of concentration features of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide at the room temperature. Changes in dielectric permittivity of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide in a wide range of concentrations (0÷1.0 molar fraction) have been studied using molecular dynamics method. The curves depending on the concentration of experimental data on excess refractive indices and excess dielectric permittivity were compared. It has been shown that stable heteromolecular complexes in binary solutions are formed in the concentration range of 0.3÷0.4 mole fractions. The real and complex part of dielectric permittivity was obtained from dipole-dipole autocorrelation functions of molecules. At the concentrations of C = 0.3 / 0.4 m.f. the heteromolecular structures with hydrogen bonds are formed. This is confirmed by the extremum values of excessive dielectric permittivity and excessive refractive index of aqueous solutions.Keywords: refractometric method, aqueous solution, molecular dynamics, dielectric constant
Procedia PDF Downloads 26118946 Combustion Characteristics and Pollutant Emissions in Gasoline/Ethanol Mixed Fuels
Authors: Shin Woo Kim, Eui Ju Lee
Abstract:
The recent development of biofuel production technology facilitates the use of bioethanol and biodiesel on automobile. Bioethanol, especially, can be used as a fuel for gasoline vehicles because the addition of ethanol has been known to increase octane number and reduce soot emissions. However, the wide application of biofuel has been still limited because of lack of detailed combustion properties such as auto-ignition temperature and pollutant emissions such as NOx and soot, which has been concerned mainly on the vehicle fire safety and environmental safety. In this study, the combustion characteristics of gasoline/ethanol fuel were investigated both numerically and experimentally. For auto-ignition temperature and NOx emission, the numerical simulation was performed on the well-stirred reactor (WSR) to simulate the homogeneous gasoline engine and to clarify the effect of ethanol addition in the gasoline fuel. Also, the response surface method (RSM) was introduced as a design of experiment (DOE), which enables the various combustion properties to be predicted and optimized systematically with respect to three independent variables, i.e., ethanol mole fraction, equivalence ratio and residence time. The results of stoichiometric gasoline surrogate show that the auto-ignition temperature increases but NOx yields decrease with increasing ethanol mole fraction. This implies that the bioethanol added gasoline is an eco-friendly fuel on engine running condition. However, unburned hydrocarbon is increased dramatically with increasing ethanol content, which results from the incomplete combustion and hence needs to adjust combustion itself rather than an after-treatment system. RSM results analyzed with three independent variables predict the auto-ignition temperature accurately. However, NOx emission had a big difference between the calculated values and the predicted values using conventional RSM because NOx emission varies very steeply and hence the obtained second order polynomial cannot follow the rates. To relax the increasing rate of dependent variable, NOx emission is taken as common logarithms and worked again with RSM. NOx emission predicted through logarithm transformation is in a fairly good agreement with the experimental results. For more tangible understanding of gasoline/ethanol fuel on pollutant emissions, experimental measurements of combustion products were performed in gasoline/ethanol pool fires, which is widely used as a fire source of laboratory scale experiments. Three measurement methods were introduced to clarify the pollutant emissions, i.e., various gas concentrations including NOx, gravimetric soot filter sampling for elements analysis and pyrolysis, thermophoretic soot sampling with transmission electron microscopy (TEM). Soot yield by gravimetric sampling was decreased dramatically as ethanol was added, but NOx emission was almost comparable regardless of ethanol mole fraction. The morphology of the soot particle was investigated to address the degree of soot maturing. The incipient soot such as a liquid like PAHs was observed clearly on the soot of higher ethanol containing gasoline, and the soot might be matured under the undiluted gasoline fuel.Keywords: gasoline/ethanol fuel, NOx, pool fire, soot, well-stirred reactor (WSR)
Procedia PDF Downloads 21118945 Effect of Span 60, Labrasol, and Cholesterol on Labisia pumila Loaded Niosomes Quality
Authors: H. Binti Ya’akob, C. Siew Chin, A. Abd Aziz, I. Ware, M. Fauzi Abd Jalil, N. Rashidah Ahmed, R. Sabtu
Abstract:
Labisia pumila (LP) plant extract has the potential to be applied in cosmeceutical products due to its anti-photoaging properties. The main purpose of this study was to improve transdermal delivery of LP by encapsulating LP in niosomes. Niosomes loaded LPs were prepared by coacervation phase separation method using non-ionic surfactant (Span 60), labrasol, and cholesterol. The optimum formula obtained were Span 60, labrasol and cholesterol at the mole ratio of 6:1:4. At the optimum formulation, the niosome obtained significantly improved the quality of transdermal penetration of LP compared to free LP.Keywords: Labisia pumila, niosomes, transdermal, quality
Procedia PDF Downloads 31218944 Ta-doped Nb2O5: Synthesis and Photocatalytic Activity
Authors: Mahendrasingh J. Pawar, M. D. Gaoner
Abstract:
Ta-doped Nb2O5 (Ta content 0.5-2% mole fraction) nanoparticles in the range of 20-40 nm were synthesized by combustion technique. The crystalline phase, morphology and size of the nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectroscopy. The specific surface area of the nanoparticles was measured by nitrogen adsorption (BET analysis). The undoped Nb2O5 nanoparticles were found to have the particles size in the range of 50−80 nm. The photocatalytic performance of the samples was characterized by degrading 20 mg/L toluene under UV−Vis irradiation. The results show that the Ta-doped Nb2O5 nanoparticles exhibit a significant increase in photocatalytic performance over the undoped Nb2O5 nanoparticles, and the Nb2O5 nanoparticles doped with 1.5% Ta and calcined at 450°C show the best photocatalytic performance.Keywords: Nb2O5, Ta-doped Nb2O5, photodegradation of Toluene, combustion method
Procedia PDF Downloads 56318943 Mulberry Leave: An Efficient and Economical Adsorbent for Remediation of Arsenic (V) and Arsenic (III) Contaminated Water
Authors: Saima Q. Memon, Mazhar I. Khaskheli
Abstract:
The aim of present study was to investigate the efficiency of mulberry leaves for the removal of both arsenic (III) and arsenic (V) from aqueous medium. Batch equilibrium studies were carried out to optimize various parameters such as pH of metal ion solution, volume of sorbate, sorbent doze, and agitation speed and agitation time. Maximum sorption efficiency of mulberry leaves for As (III) and As (V) at optimum conditions were 2818 μg.g-1 and 4930 μg.g-1, respectively. The experimental data was a good fit to Freundlich and D-R adsorption isotherm. Energy of adsorption was found to be in the range of 3-6 KJ/mole suggesting the physical nature of process. Kinetic data followed the first order rate, Morris-Weber equations. Developed method was applied to remove arsenic from real water samples.Keywords: arsenic removal, mulberry, adsorption isotherms, kinetics of adsorption
Procedia PDF Downloads 273