Search results for: methanol and ethanol
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 970

Search results for: methanol and ethanol

190 Optimization of Ultrasound Assisted Extraction of Polysaccharides from Plant Waste Materials: Selected Model Material is Hazelnut Skin

Authors: T. Yılmaz, Ş. Tavman

Abstract:

In this study, optimization of ultrasound assisted extraction (UAE) of hemicellulose based polysaccharides from plant waste material has been studied. Selected material is hazelnut skin. Extraction variables for the operation are extraction time, amplitude and application temperature. Optimum conditions have been evaluated depending on responses such as amount of wet crude polysaccharide, total carbohydrate content and dried sample. Pretreated hazelnut skin powders were used for the experiments. 10 grams of samples were suspended in 100 ml water in a jacketed vessel with additional magnetic stirring. Mixture was sonicated by immersing ultrasonic probe processor. After the extraction procedures, ethanol soluble and insoluble sides were separated for further examinations. The obtained experimental data were analyzed by analysis of variance (ANOVA). Second order polynomial models were developed using multiple regression analysis. The individual and interactive effects of applied variables were evaluated by Box Behnken Design. The models developed from the experimental design were predictive and good fit with the experimental data with high correlation coefficient value (R2 more than 0.95). Extracted polysaccharides from hazelnut skin are assumed to be pectic polysaccharides according to the literature survey of Fourier Transform Spectrometry (FTIR) analysis results. No more change can be observed between spectrums of different sonication times. Application of UAE at optimized condition has an important effect on extraction of hemicellulose from plant material by satisfying partial hydrolysis to break the bounds with other components in plant cell wall material. This effect can be summarized by varied intensity of microjets and microstreaming at varied sonication conditions.

Keywords: hazelnut skin, optimization, polysaccharide, ultrasound assisted extraction

Procedia PDF Downloads 307
189 Characterisation of Chitooligomers Prepared with the Aid of Cellulase, Xylanase and Chitosanase

Authors: Anna Zimoch-Korzycka, Dominika Kulig, Andrzej Jarmoluk

Abstract:

The aim of this study was to obtain chitooligosaccharides from chitosan with better functional properties using three different enzyme preparations and compare the products of enzymatic hydrolysis. Commercially available cellulase (CL), xylanase (X) and chitosanase (CS) preparations were used to investigate hydrolytic activity on chitosan (CH) with low molecular weight and DD of 75-85%. It has been reported that CL and X have side activities of other enzymes, such as β-glucanase or β-glucosidase. CS enzyme has a foreign activity of chitinase. Each preparation was used in 1000 U of activity and in the same reaction conditions. The degree of deacetylation and molecular weight of chitosan were specified using titration and viscometric methods, respectively. The hydrolytic activity of enzymes preparations on chitosan was monitored by dynamic viscosity measurement. After 4 h reaction with stirring, solutions were filtered and chitosan oligomers were isolated by methanol solution into two fractions: precipitate (A) and supernatant (B). A Fourier-transform infrared spectroscopy was used to characterize the structural changes of chitosan oligomers fractions and initial chitosan. Furthermore, the solubility of lyophilized hydrolytic mixture (C) and two chitooligomers fractions (A, B) of each enzyme hydrolysis was assayed. The antioxidant activity of chitosan oligomers was evaluated as DPPH free radical scavenging activity. The dynamic viscosity measured after addition of enzymes preparation to the chitosan solution decreased dramatically over time in the sample with X in comparison to solution without the enzyme. For mixtures with CL and CS, lower viscosities were also recorded but not as low as the ones with X. A and B fractions were characterized by the most similar viscosity obtained by the xylanase hydrolysis and were 15 mPas and 9 mPas, respectively. Structural changes of chitosan oligomers A, B, C and their differences related with various enzyme preparations used were confirmed. Water solubility of A fractions was not possible to filter and the result was not recorded. Solubility of supernatants was approximately 95% and was higher than hydrolytic mixture. It was observed that the DPPH radical scavenging effect of A, B, C samples is the highest for X products and was approximately 13, 17, 19% respectively. In summary, a mixture of chitooligomers may be useful for the design of edible protective coatings due to the improved biophysical properties.

Keywords: cellulase, xylanase, chitosanase, chitosan, chitooligosaccharides

Procedia PDF Downloads 298
188 Chemical Composition and Characteristics of Organic Solvent Extracts from the Omani Seaweeds Melanothamnus Somalensis and Gelidium Omanense

Authors: Abdullah Al-Nassri, Ahmed Al-Alawi

Abstract:

Seaweeds are classified into three groups: red, green, and brown. Each group of seaweeds consists of several types that have differences in composition. Even at the species level, there are differences in some ingredients, although in general composition, they are the same. Environmental conditions, availability of nutrients, and maturity stage are the main reasons for composition differences. In this study, two red seaweed species, Melanothamnus somalensis & Gelidium omanense, were collected in September 2021 from Sadh (Dhofar governorate, Oman). Five organic solvents were used sequentially to achieve extraction. The solvents were applied in the following order: hexane, dichloromethane, ethyl acetate, acetone, and methanol. Preparative HPLC (PrepLC) was performed to fraction the extracts. The chemical composition was measured; also, total phenols, flavonoids, and tannins were investigated. The structure of the extracts was analyzed by Fourier-transform infrared spectroscopy (FTIR). Seaweeds demonstrated high differences in terms of chemical composition, total phenolic content (TPC), total flavonoid content (TFC), and total tannin content (TTC). Gelidium omanense showed high moisture content, lipid content and carbohydrates (9.8 ± 0.15 %, 2.29 ± 0.09 % and 70.15 ± 0.42 %, respectively) compared to Melanothamnus somalensis (6.85 ± 0.01 %, 2.05 ± 0.12 % and 52.7 ± 0.36 % respectively). However, Melanothamnus somalensis showed high ash content and protein (27.68 ± 0.40 % and 52.7 ± 0.36 % respectively) compared to Gelidium omanense (8.07 ± 0.39 % and 9.70 ± 0.22 % respectively). Melanothamnus somalensis showed higher elements and minerals content, especially sodium and potassium. This is attributed to the jelly-like structure of Melanothamnus somalensis, which allows storage of more solutes compared to the leafy-like structure of Gelidium omanense. Furthermore, Melanothamnus somalensis had higher TPC in all fractions except the hexane fraction than Gelidium omanense. Except with hexane, TFC in the other solvents’ extracts was significantly different between Gelidium omanense and Melanothamnus somalensis. In all fractions, except dichloromethane and ethyl acetate fractions, there were no significant differences in TTC between Gelidium omanense and Melanothamnus somalensis. FTIR spectra showed variation between fractions, which is an indication of different functional groups.

Keywords: chemical composition, organic extract, Omani seaweeds, biological activity, FTIR

Procedia PDF Downloads 39
187 Evaluation of the Gasification Process for the Generation of Syngas Using Solid Waste at the Autónoma de Colombia University

Authors: Yeraldin Galindo, Soraida Mora

Abstract:

Solid urban waste represents one of the largest sources of global environmental pollution due to the large quantities of these that are produced every day; thus, the elimination of such waste is a major problem for the environmental authorities who must look for alternatives to reduce the volume of waste with the possibility of obtaining an energy recovery. At the Autónoma de Colombia University, approximately 423.27 kg/d of solid waste are generated mainly paper, cardboard, and plastic. A large amount of these solid wastes has as final disposition the sanitary landfill of the city, wasting the energy potential that these could have, this, added to the emissions generated by the collection and transport of the same, has as consequence the increase of atmospheric pollutants. One of the alternative process used in the last years to generate electrical energy from solid waste such as paper, cardboard, plastic and, mainly, organic waste or biomass to replace the use of fossil fuels is the gasification. This is a thermal conversion process of biomass. The objective of it is to generate a combustible gas as the result of a series of chemical reactions propitiated by the addition of heat and the reaction agents. This project was developed with the intention of giving an energetic use to the waste (paper, cardboard, and plastic) produced inside the university, using them to generate a synthesis gas with a gasifier prototype. The gas produced was evaluated to determine their benefits in terms of electricity generation or raw material for the chemical industry. In this process, air was used as gasifying agent. The characterization of the synthesis gas was carried out by a gas chromatography carried out by the Chemical Engineering Laboratory of the National University of Colombia. Taking into account the results obtained, it was concluded that the gas generated is of acceptable quality in terms of the concentration of its components, but it is a gas of low calorific value. For this reason, the syngas generated in this project is not viable for the production of electrical energy but for the production of methanol transformed by the Fischer-Tropsch cycle.

Keywords: alternative energies, gasification, gasifying agent, solid urban waste, syngas

Procedia PDF Downloads 231
186 In vivo Antidiabetic and Antioxidant Potential of Pseudovaria macrophylla Extract

Authors: Aditya Arya, Hairin Taha, Ataul Karim Khan, Nayiar Shahid, Hapipah Mohd Ali, Mustafa Ali Mohd

Abstract:

This study has investigated the antidiabetic and antioxidant potential of Pseudovaria macrophylla bark extract on streptozotocin–nicotinamide induced type 2 diabetic rats. LCMS-QTOF and NMR experiments were done to determine the chemical composition in the methanolic bark extract. For in vivo experiments, the STZ (60 mg/kg/b.w, 15 min after 120 mg/kg/1 nicotinamide, i.p.) induced diabetic rats were treated with methanolic extract of Pseuduvaria macrophylla (200 and 400 mg/kg∙bw) and glibenclamide (2.5 mg/kg) as positive control respectively. Biochemical parameters were assayed in the blood samples of all groups of rats. The pro-inflammatory cytokines, antioxidant status and plasma transforming growth factor βeta-1 (TGF-β1) were evaluated. The histological study of the pancreas was examined and its expression level of insulin was observed by immunohistochemistry. In addition, the expression of glucose transporters (GLUT 1, 2 and 4) were assessed in pancreas tissue by western blot analysis. The outcomes of the study displayed that the bark methanol extract of Pseuduvaria macrophylla has potentially normalized the elevated blood glucose levels and improved serum insulin and C-peptide levels with significant increase in the antioxidant enzyme, reduced glutathione (GSH) and decrease in the level of lipid peroxidation (LPO). Additionally, the extract has markedly decreased the levels of serum pro-inflammatory cytokines and transforming growth factor beta-1 (TGF-β1). Histopathology analysis demonstrated that Pseuduvaria macrophylla has the potential to protect the pancreas of diabetic rats against peroxidation damage by downregulating oxidative stress and elevated hyperglycaemia. Furthermore, the expression of insulin protein, GLUT-1, GLUT-2 and GLUT-4 in pancreatic cells was enhanced. The findings of this study support the anti-diabetic claims of Pseudovaria macrophylla bark.

Keywords: diabetes mellitus, Pseuduvaria macrophylla, alkaloids, caffeic acid

Procedia PDF Downloads 334
185 In Vitro Effects of Azadirachta indica Leaves Extract Against Albugo Candida, the Causative Agent of White Blisters Disease of Brassica Oleraceae L., Var. Italica

Authors: Affiah D. U., Katuri I. P., Emefiene M. E., Amienyo C. A.

Abstract:

Broccoli (Brassica oleraceae L., var. italica) is one of the most important vegetables that is high in nutrients and bioactive compounds. It easily grown on a wide range of soil types and is adaptable to many different climatic conditions. This study was carried out within Jos North and environs in vitro to evaluate Neem (Azadirachta indica) leaves extract against Albugo candida, the causative agent of white blisters disease of broccoli. Through the survey, prevalence and incidence were accessed and a fluffy white growth symptom on the underside of leaves was also observed on the field. Infected leaves samples were collected from three different farms namely: Farin Gada, Naraguta, and Juth and the organism associated with the disease was isolated. Pathogenicity test carried out revealed the fungal isolate Albugo candida to be responsible for the disease. Antimicrobial susceptibility test was performed using agar well diffusion method to determine the minimum inhibitory concentrations of two extract of Azadirachta indica leaves against the organism. Ethanolic extract had the highest antifungal activities of 3.30±0.21 - 17.61± 0.11 while aqueous extract had the least antifungal activities of 0.00±0.00 - 13.23±0.12. The minimum inhibitory concentration of aqueous was 100 mg/ml while its minimum fungicidal concentration was at 200 mg/ml. For ethanol, the minimum inhibitory concentration was 50 mg/ml while its minimum fungicidal concentration was 100 mg/ml. Plants being less toxic in usage over synthetic or inorganic chemicals makes them easy to handle, easily accessible and renewable. Due to the biosafety of plant extracts and its availability since the plant-based extracts of the two different solvents were found to be effective against the test organism hence, it is recommended for in-depth research to make it readily available for control of other pathogens and pests.

Keywords: antifungal, biocontrol, broccoli, fungi

Procedia PDF Downloads 42
184 Green Extraction Processes for the Recovery of Polyphenols from Solid Wastes of Olive Oil Industry

Authors: Theodora-Venetia Missirli, Konstantina Kyriakopoulou, Magdalini Krokida

Abstract:

Olive mill solid waste is an olive oil mill industry by-product with high phenolic, lipid and organic acid concentrations that can be used as a low cost source of natural antioxidants. In this study, extracts of Olea europaea (olive tree) solid olive mill waste (SOMW) were evaluated in terms of their antiradical activity and total phenolic compounds concentrations, such as oleuropein, hydroxytyrosol etc. SOMW samples were subjected to drying prior to extraction as a pretreatment step. Two drying processes, accelerated solar drying (ASD) and air-drying (AD) (at 35, 50, 70°C constant air velocity of 1 m/s), were applied. Subsequently, three different extraction methods were employed to recover extracts from untreated and dried SOMW samples. The methods include the green Microwave Assisted (MAE) and Ultrasound Assisted Extraction (UAE) and the conventional Soxhlet extraction (SE), using water and methanol as solvents. The efficiency and selectivity of the processes were evaluated in terms of extraction yield. The antioxidant activity (AAR) and the total phenolic content (TPC) of the extracts were evaluated using the DPPH assay and the Folin-Ciocalteu method, respectively. The results showed that bioactive content was significantly affected by the extraction technique and the solvent. Specifically, untreated SOMW samples showed higher performance in the yield for all solvents and higher antioxidant potential and phenolic content in the case of water. UAE extraction method showed greater extraction yields than the MAE method for both untreated and dried leaves regardless of the solvent used. The use of ultrasound and microwave assisted extraction in combination with industrially applied drying methods, such as air and solar drying, was feasible and effective for the recovery of bioactive compounds.

Keywords: antioxidant potential, drying treatment, olive mill pomace, microwave assisted extraction, ultrasound assisted extraction

Procedia PDF Downloads 274
183 Evaluation of Certain Medicinal Plants for in vitro Anti-Oxidant and Anti-Glycation Activities

Authors: K. Shailaja

Abstract:

The advanced glycation end products (AGEs) formed between the reducing sugar and protein as a result of Oxidative stress and non-enzymatic glycosylation play an important role in pathogenesis of diabetes and aging complication. Glycation results in the production of free radicals. The oxidation process is believed to play an important role in AGEs formation. Thus agents with antioxidative property and antiglycation activity may retard the process of AGEs formation. Selected medicinal plants for the present study include Catharanthus roseus, Bougainvillea spectabilis (pink flowers), Cinnamomum tamala, Cinnamomum zeylanica, Abutilon indicum, Asparagus racemosus, and Sapindus emarginatus. The crude ethanolic extracts of the selected medicinal plants at varying concentrations ranging from 1-100 mg/ml were evaluated for in vitro antioxidant and protein glycation activities by FRAP and glucose-BSA assay respectively. Among all the plants tested, Bougainvillea spectabilis, Catharanthus roseus and Abutilon indicum showed strong antioxidant activity The antioxidant activity was expressed as mg of Gallic acid/ gm sample which was found to be 4.3 mg, 1.3mg, and 1.3mg respectively for Bougainvillea spectabilis, Catharanthus roseus and Abutilon indicum. The results of inhibition of the initial glycation product i.e., fructosamine was found to be 35% for Asparagus racemosus, Cinnamomum tamala and Abutilon indicum followed by the other plant extracts. The results indicate that these plants are potential sources of natural antioxidants which have free radical scavenging activity and might be used not only for reducing oxidative stress in diabetes but also open a new research avenues in the field of Natural Products.

Keywords: in vitro antioxidant activity, anti-glycation activity, ethanol extracts, polyphenols, Catharanthus roseus, Cinnamomum tamala

Procedia PDF Downloads 405
182 Formulation and Evaluation of Solid Dispersion of an Anti-Epileptic Drug Carbamazepine

Authors: Sharmin Akhter, M. Salahuddin, Sukalyan Kumar Kundu, Mohammad Fahim Kadir

Abstract:

Relatively insoluble candidate drug like carbamazepine (CBZ) often exhibit incomplete or erratic absorption; and hence wide consideration is given to improve aqueous solubility of such compound. Solid dispersions were formulated with an aim of improving aqueous solubility, oral bioavailability and the rate of dissolution of Carbamazepine using different hydrophyllic polymer like Polyethylene Glycol (PEG) 6000, Polyethylene Glycol (PEG) 4000, kollidon 30, HPMC 6 cps, poloxamer 407 and povidone k 30. Solid dispersions were prepared with different drug to polymer weight ratio by the solvent evaporation method where methanol was used as solvent. Drug-polymer physical mixtures were also prepared to compare the rate of dissolution. Effects of different polymer were studied for solid dispersion formulation as well as physical mixtures. These formulations were characterized in the solid state by Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM). Solid state characterization indicated CBZ was present as fine particles and entrapped in carrier matrix of PEG 6000 and PVP K30 solid dispersions. Fourier Transform Infrared (FTIR) spectroscopic studies showed the stability of CBZ and absence of well-defined drug-polymer interactions. In contrast to the very slow dissolution rate of pure CBZ, dispersions of drug in polymers considerably improved the dissolution rate. This can be attributed to increased wettability and dispersibility, as well as decreased crystallinity and increase in amorphous fraction of drug. Solid dispersion formulations containing PEG 6000 and Povidone K 30 showed maximum drug release within one hour at the ratio of 1:1:1. Even physical mixtures of CBZ prepared with both carriers also showed better dissolution profiles than those of pure CBZ. In conclusions, solid dispersions could be a promising delivery of CBZ with improved oral bioavailability and immediate release profiles.

Keywords: carbamazepine, FTIR, kollidon 30, HPMC 6 CPS, PEG 6000, PEG 4000, poloxamer 407, water solubility, povidone k 30, SEM, solid dispersion

Procedia PDF Downloads 276
181 Identification and Quantification of Sesquiterpene Lactones of Sagebrush (Artemisia tridentate) and Its Chemical Modification

Authors: Rosemary Anibogwu, Kavita Sharma, Karl De Jesus

Abstract:

Sagebrush is an abundant and naturally occurring plant in the Intermountain West region of the United States. The plant contains an array of bioactive compounds such as flavonoids, terpenoids, sterols, and phenolic acids. It is important to identify and characterize these compounds because Native Americans use sagebrush as herbal medicine. These compounds are also utilized for preventing infection in wounds, treating headaches and colds, and possess antitumor properties. This research is an exploratory study on the sesquiterpene present in the leaves of sagebrush. The leaf foliage was extracted with 100 % chloroform and 100 % methanol. The percentage yield for the crude was considerably higher in chloroform. The Thin Layer Chromatography (TLC) analysis of the crude extracted unveiled a brown band at Rf = 0.25 and a dark brown band at Rf = 0.74, along with three unknown faint bands the 254 nm UV lamp. Furthermore, the two distinct brown (Achillin) and dark brown band (Hydroxyachillin) in TLC were further utilized in the isolation of pure compounds with column chromatography. The structures of Achillin and Hydroxyachillin were elucidated based on extensive spectroscopic analysis, including TLC, High-Performance Liquid Chromatography (HPLC), 1D- and 2D-Nuclear Magnetic Resonance (NMR), and Mass Spectroscopy (MS). The antioxidant activities of crude extract and three pure compounds were evaluated in terms of their peroxyl radical scavenging by Ferric Reducing Ability of Plasma (FRAP) and 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) methods. The crude extract showed the antioxidant activity of 18.99 ± 0.51 µmol TEg -1 FW for FRAP and 11.59 ± 0.38 µmol TEg -1 FW for DPPH. The activities of Achillin, Hydroxyachillin, and Quercetagetin trimethyl ether were 13.03, 15.90 and 14.02 µmol TEg -1 FW respectively for the FRAP assay. The three purified compounds have been submitted to the National Cancer Institute 60 cancer cell line for further study.

Keywords: HPLC, nuclear magnetic resonance spectroscopy, sagebrush, sesquiterpene lactones

Procedia PDF Downloads 99
180 Identification of Bioactive Metabolites from Ficus carica and Their Neuroprotective Effects of Alzheimer's Disease

Authors: Hanan Khojah, RuAngelie Edrada-Ebel

Abstract:

Neurodegenerative disease including Alzheimer’s disease is a major cause of long-term disability. Oxidative stress is frequently implicated as one of the key contributing factors to neurodegenerative diseases. Protection against neuronal damage remains a great challenge for researchers. Ficus carica (commonly known as fig) is a species of great antioxidant nutritional value comprising a protective mechanism against innumerable health disorders related to oxidative stress as well as Alzheimer’s disease. The purpose of this work was to characterize the non-polar active metabolites in Ficus carica endocarp, mesocarp, and exocarp. Crude extracts were prepared using several extraction solvents, which included 1:1 water: ethylacetate, acetone and methanol. The dried extracts were then solvent partitioned between equivalent amounts of water and ethylacetate. Purification and fractionation were accomplished by high-throughput chromatography. The isolated metabolites were tested on their effect on human neuroblastoma cell line by cell viability test and cell cytotoxicity assay with acrolein. Molecular weights of the active metabolites were determined via LC–HRESIMS and GC-EIMS. Metabolomic profiling was performed to identify the active metabolites by using differential expression analysis software (Mzmine) and SIMCA for multivariate analysis. Structural elucidation and identification of the interested active metabolites were studied by 1-D and 2-D NMR. Significant differences in bioactivity against a concentration-dependent assay on acrolein radicals were observed between the three fruit parts. However, metabolites obtained from mesocarp and the endocarp demonstrated bioactivity to scavenge ROS radical. NMR profiling demonstrated that aliphatic compounds such as γ-sitosterol tend to induce neuronal bioactivity and exhibited bioactivity on the cell viability assay. γ-Sitosterol was found in higher concentrations in the mesocarp and was considered as one of the major phytosterol in Ficus carica.

Keywords: alzheimer, Ficus carica, γ-Sitosterol, metabolomics

Procedia PDF Downloads 315
179 Selective Guest Accommodation in Zn(II) Bimetallic: Organic Coordination Frameworks

Authors: Bukunola K. Oguntade, Gareth M. Watkins

Abstract:

The synthesis and characterization of metal-organic frameworks (MOFs) is an area of coordination chemistry which has grown rapidly in recent years. Worldwide there has been growing concerns about future energy supplies, and its environmental impacts. A good number of MOFs have been tested for the adsorption of small molecules in the vapour phase. An important issue for potential applications of MOFs for gas adsorption and storage materials is the stability of their structure upon sorption. Therefore, study on the thermal stability of MOFs upon adsorption is important. The incorporation of two or more transition metals in a coordination polymer is a current challenge for designed synthesis. This work focused on the synthesis, characterization and small molecule adsorption properties of three microporous (one zinc monometal and two bimetallics) complexes involving Cu(II), Zn(II) and 1,2,4,5-benzenetetracarboxylic acid using the ambient precipitation and solvothermal method. The complexes were characterized by elemental analysis, Infrared spectroscopy, Scanning Electron microscopy, Thermogravimetry analysis and X-ray Powder diffraction. The N2-adsorption Isotherm showed the complexes to be of TYPE III in reference to IUPAC classification, with very small pores only capable for small molecule sorption. All the synthesized compounds were observed to contain water as guest. Investigations of their inclusion properties for small molecules in the vapour phase showed water and methanol as the only possible inclusion candidates with 10.25H2O in the monometal complex [Zn4(H2B4C)2.5(OH)3(H2O)]·10H2O but not reusable after a complete structural collapse. The ambient precipitation bimetallic; [(CuZnB4C(H2O)2]·5H2O, was found to be reusable and recoverable from structure collapse after adsorption of 5.75H2O. In addition, Solvo-[CuZnB4C(H2O)2.5]·2H2O obtained from solvothermal method show two cycles of rehydration with 1.75H2O and 0.75MeOH inclusion while structure remains unaltered upon dehydration and adsorption.

Keywords: adsorption, characterization, copper, metal -organic frameworks, zinc

Procedia PDF Downloads 109
178 Zingiberaceous Plants as a Source of Anti-Bacterial Activity: Targeting Bacterial Cell Division Protein (FtsZ)

Authors: S. Reshma Reghu, Shiburaj Sugathan, T. G. Nandu, K. B. Ramesh Kumar, Mathew Dan

Abstract:

Bacterial diseases are considered to be one of the most prevalent health hazards in the developing world and many bacteria are becoming resistant to existing antibiotics making the treatment ineffective. Thus, it is necessary to find novel targets and develop new antibacterial drugs with a novel mechanism of action. The process of bacterial cell division is a novel and attractive target for new antibacterial drug discovery. FtsZ, a homolog of eukaryotic tubulin, is the major protein of the bacterial cell division machinery and is considered as an important antibacterial drug target. Zingiberaceae, the Ginger family consists of aromatic herbs with creeping rhizomes. Many of these plants have antimicrobial properties.This study aimed to determine the anti-bacterial activity of selected Zingiberaceous plants by targeting bacterial cell division protein, FtsZ. Essential oils and methanol extracts of Amomum ghaticum, Alpinia galanga, Kaempferia galanga, K. rotunda, and Zingiber officinale were tested to find its antibacterial efficiency using disc diffusion method against authentic bacterial strains obtained from MTCC (India). Essential oil isolated from A.galanga and Z.officinale were further assayed for FtsZ inhibition assay following non-radioactive malachite green-phosphomolybdate assay using E. coli FtsZ protein obtained from Cytoskelton Inc., USA. Z.officinale essential oil possess FtsZ inhibitory property. A molecular docking study was conducted with the known bioactive compounds of Z. officinale as ligands with the E. coli FtsZ protein homology model. Some of the major constituents of this plant like catechin, epicatechin, and gingerol possess agreeable docking scores. The results of this study revealed that several chemical constituents in Ginger plants can be utilised as potential source of antibacterial activity and it can warrant further investigation through drug discovery studies.

Keywords: antibacterial, FtsZ, zingiberaceae, docking

Procedia PDF Downloads 448
177 Antioxidant Capacity, Proximate Biomass Composition and Fatty Acid Profile of Five Marine Microalgal Species with Potential as Aquaculture Feed

Authors: Vasilis Andriopoulos, Maria D. Gkioni, Elena Koutra, Savvas G. Mastropetros, Fotini N. Lamari, Sofia Hatziantoniou, Michalis Kornaros

Abstract:

In the present study, the antioxidant activity of aqueous and methanolic extracts of Chlorella minutissima, Dunaliella salina, Isochrysis galbana, Nannochloropsis oculata and Tisohrysis lutea, as well as the proximate composition and fatty acid profile were evaluated, with the aim to select species suitable for co-production of antioxidants and aquaculture feed. Batch cultivation was performed at 25oC in a modified f/2 medium under continuous illumination and aeration with ambient air. Biomass was collected via centrifugation and extracted first with H2O and subsequently with methanol at two growth phases (early and late stationary). Total phenolic content and antioxidant and reducing activity of the extracts were evaluated. The highest phenolic content was found in the methanolic extract of C. minutissima at the early stationary phase (9.04±0.68 mg Gallic Acid Equivalent g-1 dry weight), and the aqueous extract of D. salina at the late stationary phase (8.78±1.49 mg Gallic Acid Equivalent g-1 Dry weight). Antioxidant activity, measured as 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and Ferric reducing antioxidant power assay of methanolic extracts were comparable to the literature and correlated to Total phenolic content and Chlorophyll content of the biomass. No such correlation was found in the aqueous extracts. N. oculata and T. lutea were high in protein (39.88±1.72% Dry weight and 43.30±1.33% Dry weight, respectively) and carotenoids (0.64±0.13% and 0.92±0.02%, respectively). Additionally, they presented high eicosapentaenoic acid and docosahexaenoic acid levels (33.74±9.98 mg eicosapentaenoic acid g-1 DW and 31.31±2.92 mg docosahexaenoic acid g-1 dry weight, respectively). N. oculata and T. lutea are promising candidates for the co-production of antioxidants and aquaculture feed, while C. minutissima and D. salina showed promise due to their higher antioxidant content.

Keywords: aquaculture fee, antioxidant activity, fatty acids, microalgae, total phenolic content

Procedia PDF Downloads 142
176 The Potential of Acanthaster Plancii Fractions as Anti-Atherosclerotic Agent by Inhibiting the Expression of Proprotein Convertase Subtilisin-Kexin Type 9

Authors: Nurjannatul Naim Kamaruddin, Tengku Sifziuzl Tengku Muhammad, Aina Farahiyah Abdul Manan, Habsah Mohamad

Abstract:

Atherosclerosis which leads to cardiovascular diseases such as myocardial infarction, unstable angina (ischemic heart pain), sudden cardiac death and stroke is the principal cause of death worldwide. It has been a very critical issue as current common drug treatment, statin therapy has left bad side effects like rhabdomyolysis, atrial fibrillation, liver disease, abdominal and chest pain. Interestingly, the discoveries of proprotein convertase subtilisin-kexin type 9 have paved a new way in the treatment of atherosclerosis. This serine protease is believed to involve in the regulation of LDL- uptake by LDL-receptor. Therefore, this study was conducted to evaluate the potential of Acanthaster plancii fractions to reduce the transcriptional activity of the PCSK9 promoter. In this study, the marine organism which is Acanthaster plancii has been used as the source for marine compounds in inhibiting PCSK9. The cytotoxicity activity of ten fractions from the methanol extracts of Acanthaster plancii was investigated on HepG2 cell lines using MTS assay and dual glo luciferase assay was carried out later to analyses the effects of the samples in reducing the transcriptional activity of the PCSK9 promoter. Both assays used fractions with five different concentrations, 3.13µg/mL, 6.25µg/mL, 12.5µg/mL, 25µg/mL, and 50µg/mL. MTS assay indicated that the fractions are non-cytotoxic towards HepG2 cell lines as their IC50 value is greater than 30µg/mL. Whilst, for the dual glo luciferase assay, among all the fractions, Enhance Fraction 2 (EF2) showed the best potential in reducing the transcriptional activity of the PCSK9 promoter. The results indicated that this EF2 gave the lowest PCSK9 promoter expression at low concentration which is 0.2 fold change at 6.25µg/mL. This finding suggested that further analysis should be done to validate the potential of Acanthaster plancii as the source of anti-atherosclerotic agent.

Keywords: Acanthaster plancii, atherosclerosis, luciferase assay, PCSK9

Procedia PDF Downloads 121
175 Application of Modified Vermiculite for Cationic Textile Dyestuffs Removal: Sorption and Regeneration Studies

Authors: W. Stawiński, A. Wegrzyn, O. M. Freitas, S. A. Figueiredo

Abstract:

Water is a life supporting resource, crucial for humanity and essential for natural ecosystems, which have been endangered by developing industry and increasing human population. Dyes are common in effluents discharged by various industries such as paper, plastics, food, cosmetics, and textile. They produce toxic effects on animals and disturb natural biological processes in receiving waters. Having complex molecular structure and resistance to biological decomposition they are problematic and difficult to be treated by conventional methods. In the search of efficient and sustainable method, sorption has been getting more interest in application to wastewaters treatment. Clays are minerals that have a layer structure based on phyllosilicate sheets that may carry a charge, which is balanced by ions located between the sheets. These charge-balancing ions can be exchanged resulting in very good ion-exchange properties of the material. Modifications of clays enhance their properties, producing a good and inexpensive sorbent for the removal of pollutants from wastewaters. The presented work proves that the treatment of a clay, vermiculite, with nitric acid followed by washing in citric acid strongly increases the sorption of two cationic dyes, methylene blue (C.I. 52015) and astrazon red (C.I. 110825). Desorption studies showed that the best eluent for regeneration is a solution of NaCl in ethanol. Cycles of sorption and desorption in column system showed no significant deterioration of sorption capacity and proved that the material shows a very good performance as sorbent, which can be recycled and reused. The results obtained open new possibilities of further modifications on vermiculite and modifications of other materials in order to get very efficient sorbents useful for wastewater treatment.

Keywords: cationic dyestuffs, sorption and regeneration, vermiculite, wastewater treatment

Procedia PDF Downloads 227
174 Effect of Chemical Modification of Functional Groups on Copper(II) Biosorption by Brown Marine Macroalgae Ascophyllum nodosum

Authors: Luciana P. Mazur, Tatiana A. Pozdniakova, Rui A. R. Boaventura, Vitor J. P. Vilar

Abstract:

The principal mechanism of metal ions sequestration by brown algae involves the formation of complexes between the metal ion and functional groups present on the cell wall of the biological material. To understand the role of functional groups on copper(II) uptake by Ascophyllum nodosum, some functional groups were chemically modified. The esterification of carboxylic groups was carried out by suspending the biomass in a methanol/HCl solution under stirring for 48 h and the blocking of the sulfonic groups was performed by repeating the same procedure for 4 cycles of 48 h. The methylation of amines was conducted by suspending the biomass in a formaldehyde/formic acid solution under shaking for 6 h and the chemical modification of sulfhydryl groups on the biomass surface was achieved using dithiodipyridine for 1 h. Equilibrium sorption studies for Cu2+ using the raw and esterified algae were performed at pH 2.0 and 4.0. The experiments were performed using an initial copper concentration of 300 mg/L and algae dose of 1.0 g/L. After reaching the equilibrium, the metal in solution was quantified by atomic absorption spectrometry. The biological material was analyzed by Fourier Transform Infrared Spectroscopy and Potentiometric Titration techniques for functional groups identification and quantification, respectively. The results using unmodified algae showed that the maximum copper uptake capacity at pH 4.0 and 2.0 was 1.17 and 0.52 mmol/g, respectively. At acidic pH values most carboxyl groups are protonated and copper sorption suffered a significant reduction of 56%. Blocking the carboxylic, sulfonic, amines and sulfhydryl functional groups, copper uptake decreased by 24/26%, 69/81%, 1/23% and 40/27% at pH 2.0/4.0, respectively, when compared to the unmodified biomass. It was possible to conclude that the carboxylic and sulfonic groups are the main functional groups responsible for copper binding (>80%). This result is supported by the fact that the adsorption capacity is directly related to the presence of carboxylic groups of the alginate polymer, and the second most abundant acidic functional group in brown algae is the sulfonic acid of fucoidan that contributes, to a lower extent, to heavy metal binding, particularly at low pH.

Keywords: biosorption, brown marine macroalgae, copper, ion-exchange

Procedia PDF Downloads 297
173 Ectoine: A Compatible Solute in Radio-Halophilic Stenotrophomonas sp. WMA-LM19 Strain to Prevent Ultraviolet-Induced Protein Damage

Authors: Wasim Sajjad, Manzoor Ahmad, Sundas Qadir, Muhammad Rafiq, Fariha Hasan, Richard Tehan, Kerry L. McPhail, Aamer Ali Shah

Abstract:

Aim: This study aims to investigate the possible radiation protective role of a compatible solute in the tolerance of radio-halophilic bacterium against stresses, like desiccation and exposure to ionizing radiation. Methods and Results: Nine different radio-resistant bacteria were isolated from desert soil, where strain WMA-LM19 was chosen for detailed studies on the basis of its high tolerance for ultraviolet radiation among all these isolates. 16S rRNA gene sequencing indicated that the bacterium was closely related to Stenotrophomonas sp. (KT008383). A bacterial milking strategy was applied for extraction of intracellular compatible solutes in 70% (v/v) ethanol, which were purified by high-performance liquid chromatography (HPLC). The compound was characterized as ectoine by 1H and 13C nuclear magnetic resonance (NMR), and mass spectrometry (MS). Ectoine demonstrated more efficient preventive activity (54.80%) to erythrocyte membranes and also inhibited oxidative damage to proteins and lipids in comparison to the standard ascorbic acid. Furthermore, a high level of ectoine-mediated protection of bovine serum albumin against ionizing radiation (1500-2000 Jm-2) was observed, as indicated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. Conclusion: The results indicated that ectoine can be used as a potential mitigator and radio-protective agent to overcome radiation- and salinity-mediated oxidative damage in extreme environments. Significance and Impact of the Study: This study shows that ectoine from radio-halophiles can be used as a potential source in topical creams as sunscreen. The investigation of ectoine as UV protectant also changes the prospective that radiation resistance is specific only to molecular adaptation.

Keywords: ectoine, anti-oxidant, stenotrophomonas sp., ultraviolet radiation

Procedia PDF Downloads 185
172 Antioxidant Activity and Total Phenolic Content within the Aerial Parts of Artemisia absinthium

Authors: Hallal Nouria, Kharoubi Omar

Abstract:

Wormwood (Artemisia absinthium L.) is a medicinal and aromatic bitter herb, which has been used as a medicine from ancient times. It has traditionally been used as anthelmintic, choleretic, antiseptic, balsamic, depurative, digestive, diuretic, emmenagogue and in treating leukemia and sclerosis. The species was cited to be used externally as cataplasm of crushed leaves for snake and scorpion bites or decoction for wounds and sores applied locally as antiseptic and antifungal. Wormwood extract have high contents of total phenolic compounds and total flavonoids indicating that these compounds contribute to antiradical and antioxidative activity. Most of the degenerative diseases are caused by free radicals. Antioxidants are the agents responsible for scavenging free radicals. The aim of present study was to evaluate the phytochemical and in vitro antioxidant properties of Wormwood extract. DPPH assay and reducing power assay were the method adopted to study antioxidant potentials of extracts. Standard methods were used to screen preliminary phytochemistry and quantitative analysis of tannin, phenolics and flavanoids. Aqueous and alcoholic extracts were showed good antioxidant effect with IC50 ranges from 62 μg/ml for aqueous and 116μg/ml for alcoholic extracts. Phenolic compounds, tannins and flavonoids were the major phytochemicals present in both the extracts. Percentage of inhibition increased with the increased concentration of extracts. The aqueous and alcoholic extract yielded 20, 15& 3, 59 mg/g gallic acid equivalent phenolic content 2, 78 & 1,83 mg/g quercetin equivalent flavonoid and 2, 34 & 6, 40 g tannic acid equivalent tannins respectively. The aqueous and methanol extracts of the aerial parts showed a positive correlation between the total phenolic content and the antioxidant activity measured in the plant samples. The present study provides evidence that both extracts of Artemisia absinthium is a potential source of natural antioxidant.

Keywords: pharmaceutical industries, medicinal and aromatic plant, antioxidants, phenolic compounds, Artemisia absinthium

Procedia PDF Downloads 405
171 Development and Validation of a Liquid Chromatographic Method for the Quantification of Related Substance in Gentamicin Drug Substances

Authors: Sofiqul Islam, V. Murugan, Prema Kumari, Hari

Abstract:

Gentamicin is a broad spectrum water-soluble aminoglycoside antibiotics produced by the fermentation process of microorganism known as Micromonospora purpurea. It is widely used for the treatment of infection caused by both gram positive and gram negative bacteria. Gentamicin consists of a mixture of aminoglycoside components like C1, C1a, C2a, and C2. The molecular structure of Gentamicin and its related substances showed that it has lack of presence of chromophore group in the molecule due to which the detection of such components were quite critical and challenging. In this study, a simple Reversed Phase-High Performance Liquid Chromatographic (RP-HPLC) method using ultraviolet (UV) detector was developed and validated for quantification of the related substances present in Gentamicin drug substances. The method was achieved by using Thermo Scientific Hypersil Gold analytical column (150 x 4.6 mm, 5 µm particle size) with isocratic elution composed of methanol: water: glacial acetic acid: sodium hexane sulfonate in the ratio 70:25:5:3 % v/v/v/w as a mobile phase at a flow rate of 0.5 mL/min, column temperature was maintained at 30 °C and detection wavelength of 330 nm. The four components of Gentamicin namely Gentamicin C1, C1a, C2a, and C2 were well separated along with the related substance present in Gentamicin. The Limit of Quantification (LOQ) values were found to be at 0.0075 mg/mL. The accuracy of the method was quite satisfactory in which the % recovery was resulted between 95-105% for the related substances. The correlation coefficient (≥ 0.995) shows the linearity response against concentration over the range of Limit of Quantification (LOQ). Precision studies showed the % Relative Standard Deviation (RSD) values less than 5% for its related substance. The method was validated in accordance with the International Conference of Harmonization (ICH) guideline with various parameters like system suitability, specificity, precision, linearity, accuracy, limit of quantification, and robustness. This proposed method was easy and suitable for use for the quantification of related substances in routine analysis of Gentamicin formulations.

Keywords: reversed phase-high performance liquid chromatographic (RP-HPLC), high performance liquid chromatography, gentamicin, isocratic, ultraviolet

Procedia PDF Downloads 140
170 Gas Chromatography-Analysis, Antioxidant, Anti-Inflammatory, and Anticancer Activities of Some Extracts and Fractions of Linum usitatissimum

Authors: Eman Abdullah Morsi, Hend Okasha, Heba Abdel Hady, Mortada El-Sayed, Mohamed Abbas Shemis

Abstract:

Context: Linum usitatissimum (Linn), known as Flaxseed, is one of the most important medicinal plants traditionally used for various health as nutritional purposes. Objective: Estimation of total phenolic and flavonoid contents as well as evaluate the antioxidant using α, α-diphenyl-β-picrylhydrazyl (DPPH), 2-2'azinobis (3-ethylbenzthiazoline-6-sulphonic acid (ABTS) and total antioxidant capacity (TAC) assay and investigation of anti-inflammatory by Bovine serum albumin (BSA) and anticancer activities of hepatocellular carcinoma cell line (HepG2) and breast cancer cell line (MCF7) have been applied on hexane, ethyl acetate, n-butanol and methanol extracts and also, fractions of methonal extract (hexane, ethyl acetate and n-butanol). Materials and Methods: Phenolic and flavonoid contents were detected using spectrophotometric and colorimetric assays. Antioxidant and anti-inflammatory activities were estimated in-vitro. Anticancer activity of extracts and fractions of methanolic extract were tested on (HepG2) and (MCF7). Results: Methanolic extract and its ethyl acetate fraction contain higher contents of total phenols and flavonoids. In addition, methanolic extract had higher antioxidant activity. Butanolic and ethyl acetate fractions yielded higher percent of inhibition of protein denaturation. Meanwhile, ethyl acetate fraction and methanolic extract had anticancer activity against HepG2 and MCF7 (IC50=60 ± 0.24 and 29.4 ± 0.12µg.mL⁻¹) and (IC50=94.7 ± 0.21 and 227 ± 0.48µg.mL⁻¹), respectively. In Gas chromatography-mass spectrometry (GC-MS) analysis, methanolic extract has 32 compounds, whereas; ethyl acetate and butanol fractions contain 40 and 36 compounds, respectively. Conclusion: Flaxseed contains totally different biologically active compounds that have been found to possess good variable activities, which can protect human body against several diseases.

Keywords: phenolic content, flavonoid content, HepG2, MCF7, hemolysis-assay, flaxseed

Procedia PDF Downloads 100
169 Therapeutic Drug Monitoring by Dried Blood Spot and LC-MS/MS: Novel Application to Carbamazepine and Its Metabolite in Paediatric Population

Authors: Giancarlo La Marca, Engy Shokry, Fabio Villanelli

Abstract:

Epilepsy is one of the most common neurological disorders, with an estimated prevalence of 50 million people worldwide. Twenty five percent of the epilepsy population is represented in children under the age of 15 years. For antiepileptic drugs (AED), there is a poor correlation between plasma concentration and dose especially in children. This was attributed to greater pharmacokinetic variability than adults. Hence, therapeutic drug monitoring (TDM) is recommended in controlling toxicity while drug exposure is maintained. Carbamazepine (CBZ) is a first-line AED and the drug of first choice in trigeminal neuralgia. CBZ is metabolised in the liver into carbamazepine-10,11-epoxide (CBZE), its major metabolite which is equipotent. This develops the need for an assay able to monitor the levels of both CBZ and CBZE. The aim of the present study was to develop and validate a LC-MS/MS method for simultaneous quantification of CBZ and CBZE in dried blood spots (DBS). DBS technique overcomes many logistical problems, ethical issues and technical challenges faced by classical plasma sampling. LC-MS/MS has been regarded as superior technique over immunoassays and HPLC/UV methods owing to its better specificity and sensitivity, lack of interference or matrix effects. Our method combines advantages of DBS technique and LC-MS/MS in clinical practice. The extraction process was done using methanol-water-formic acid (80:20:0.1, v/v/v). The chromatographic elution was achieved by using a linear gradient with a mobile phase consisting of acetonitrile-water-0.1% formic acid at a flow rate of 0.50 mL/min. The method was linear over the range 1-40 mg/L and 0.25-20 mg/L for CBZ and CBZE respectively. The limit of quantification was 1.00 mg/L and 0.25 mg/L for CBZ and CBZE, respectively. Intra-day and inter-day assay precisions were found to be less than 6.5% and 11.8%. An evaluation of DBS technique was performed, including effect of extraction solvent, spot homogeneity and stability in DBS. Results from a comparison with the plasma assay are also presented. The novelty of the present work lies in being the first to quantify CBZ and its metabolite from only one 3.2 mm DBS disc finger-prick sample (3.3-3.4 µl blood) by LC-MS/MS in a 10 min. chromatographic run.

Keywords: carbamazepine, carbamazepine-10, 11-epoxide, dried blood spots, LC-MS/MS, therapeutic drug monitoring

Procedia PDF Downloads 386
168 Role of Onion Extract for Neuro-Protection in Experimental Stroke Model

Authors: Richa Shri, Varinder Singh, Kundan Singh Bora, Abhishek Bhanot, Rahul Kumar, Amit Kumar, Ravinder Kaur

Abstract:

The term ‘neuroprotection’ means preserving/salvaging function and structure of neurons. Neuroprotection is an adjunctive treatment option for neurodegenerative disorders. Oxidative stress is considered a major culprit in neurodegenerative disorders; hence, management strategies include use of antioxidants. Our search for a neuroprotective agent began with Allium cepa L. or onions, (family Amaryllidaceae) - a potent antioxidant. We have investigated the neuroprotective potential of onions in experimental models of ischemic stroke, diabetic neuropathy, neuropathic pain, and dementia. In pre and post-ischemic stroke model, the methanol extract of outer scales of onion bulbs (MEOS) prevented memory loss and motor in-coordination; reduced oxidative stress and cerebral infarct size. This also prevented and ameliorated diabetic neuropathy in mice. The MEOS was fractionated to yield a flavonoid rich fraction (FRF) that successfully reversed ischemia-reperfusion induced neuronal damage, thereby demonstrating that the flavonoids are responsible for the activity. The FRF effectively ameliorated chronic constriction induced neuropathic pain in rats. The FRF was subjected to bioactivity-guided fractionated. It was seen that FRF is more effective as compared to the isolated components probably due to synergism among the constituents (i.e., quercetin and quercetin glucosides) in the FRF. The outer scales of onion bulbs have great potential for prevention as well as for treatment of neuronal disorders. Red onions, with higher amounts of flavonoids as compared to the white onions, produced more significant neuroprotection. Thus, the standardized FRF from the waste material of a commonly used vegetable, especially the red variety, may be developed as a valuable neuroprotective agent.

Keywords: Allium cepa, antioxidant activity, flavonoid rich fraction, neuroprotection

Procedia PDF Downloads 122
167 Effect of Anionic Lipid on Zeta Potential Values and Physical Stability of Liposomal Amikacin

Authors: Yulistiani, Muhammad Amin, Fasich

Abstract:

A surface charge of the nanoparticle is a very important consideration in pulmonal drug delivery system. The zeta potential (ZP) is related to the surface charge which can predict stability of nanoparticles as nebules of liposomal amikacin. Anionic lipid such as 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) is expected to contribute to the physical stability of liposomal amikacin and the optimal ZP value. Suitable ZP can improve drug release profiles at specific sites in alveoli as well as their stability in dosage form. This study aimed to analyze the effect of DPPG on ZP values and physical stability of liposomal amikacin. Liposomes were prepared by using the reserved phase evaporation method. Liposomes consisting of DPPG, 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), cholesterol and amikacin were formulated in five different compositions 0/150/5/100, 10//150/5/100, 20/150/5/100, 30/150/5/100 and 40/150/5/100 (w/v) respectively. A chloroform/methanol mixture in the ratio of 1 : 1 (v/v) was used as solvent to dissolve lipids. These systems were adjusted in the phosphate buffer at pH 7.4. Nebules of liposomal amikacin were produced by using the vibrating nebulizer and then characterized by the X-ray diffraction, differential scanning calorimetry, particle size and zeta potential analyzer, and scanning electron microscope. Amikacin concentration from liposome leakage was determined by the immunoassay method. The study revealed that presence of DPPG could increase the ZP value. The addition of 10 mg DPPG in the composition resulted in increasing of ZP value to 3.70 mV (negatively charged). The optimum ZP value was reached at -28.780 ± 0.70 mV and particle size of nebules 461.70 ± 21.79 nm. Nebulizing process altered parameters such as particle size, conformation of lipid components and the amount of surface charges of nanoparticles which could influence the ZP value. These parameters might have profound effects on the application of nebules in the alveoli; however, negatively charge nanoparticles were unexpected to have a high ZP value in this system due to increased macrophage uptake and pulmonal clearance. Therefore, the ratio of liposome 20/150/5/100 (w/v) resulted in the most stable colloidal system and might be applicable to pulmonal drug delivery system.

Keywords: anionic lipid, dipalmitoylphosphatidylglycerol, liposomal amikacin, stability, zeta potential

Procedia PDF Downloads 320
166 Evidence of Microplastic Pollution in the Río Bravo/Rio Grande (Mexico/US Border)

Authors: Stephanie Hernández-Carreón, Judith Virginia Ríos-Arana

Abstract:

Microplastics (MPs) are plastic particles smaller than 5 mm that has been detected in soil, air, organisms, and mostly water around the world. Most studies have focused on MPs detection in marine waters, and less so in freshwater, such is the case of Mexico, where studies about MPs in freshwaters are limited. One of the most important rivers in the country is The Rio Grande/Río Bravo, a natural border between Mexico and the United States. Its waters serve different purposes, such as fishing, habitat to endemic species, electricity generation, agriculture, and drinking water sources, among others. Despite its importance, the river’s waters have not been analyzed to determine the presence of MPs; therefore, the purpose of this research is to determine if the Rio Bravo/Rio Grande is polluted with microplastics. For doing so, three sites (Borderland, Casa de Adobe, and Guadalupe) along the El Paso-Juárez metroplex have been sampled: 30 L of water were filtered through a plankton net (64 µm) in each site and sediments-composed samples were collected. Water samples and sediments were 1) digested with a hydrogen peroxide solution (30%), 2) resuspended in a calcium chloride solution (1.5 g/cm3) to separate MPs, and 3) filtered through a 0.45 µm nitrocellulose membrane. Processed water samples were dyed with Nile Red (1 mg/ml ethanol) and analyzed by fluorescence microscopy. Two water samples have been analyzed until January 2023: Casa de Adobe and Borderland finding a concentration of 5.67 particles/L and 5.93 particles/L, respectively. Three types of particles were observed: fibers, fragments, and films, fibers being the most abundant. These data, as well as the data obtained from the rest of the samples, will be analyzed by an ANOVA (α=0.05). The concentrations and types of particles found in the Río Bravo correspond with other studies on rivers associated with urban environments and agricultural activities in China, where a range of 3.67—10.7 particles/L was reported in the Wei River. Even though we are in the early stages of the study, and three new sites will be sampled and analyzed in 2023 to provide more data about this issue in the river, this presents the first evidence of microplastic pollution in the Rio Grande.

Keywords: microplastics, fresh water, Rio Bravo, fluorescence microscopy

Procedia PDF Downloads 124
165 Cedrela Toona Roxb.: An Exploratory Study Describing Its Antidiabetic Property

Authors: Kinjal H. Shah, Piyush M. Patel

Abstract:

Diabetes mellitus is considered to be a serious endocrine syndrome. Synthetic hypoglycemic agents can produce serious side effects including hematological effects, coma, and disturbances of the liver and kidney. In addition, they are not suitable for use during pregnancy. In recent years, there have been relatively few reports of short-term side effects or toxicity due to sulphonylureas. Published figures and frequency of side effects in large series of patient range from about 1 to 5%, with symptoms severe enough to lead to the withdrawal of the drug in less than 1 to 2%. Adverse effects, in general, have been of the following type: allergic skin reactions, gastrointestinal disturbances, blood dyscrasias, hepatic dysfunction, and hypoglycemia. The associated disadvantages with insulin and oral hypoglycemic agents have led to stimulation in the research for locating natural resources showing antidiabetic activity and to explore the possibilities of using traditional medicines with proper chemical and pharmacological profiles. Literature survey reveals that the inhabitants of Abbottabad district of Pakistan use the dried leaf powder along with table salt and water orally for treating diabetes, skin allergy, wounds and as a blood purifier, where they pronounced the plant locally as ‘Nem.' The detailed phytochemical investigation of the Cedrela toona Roxb. leaves for antidiabetic activity has not been documented. Hence, there is a need for phytochemical investigation of the leaves for antidiabetic activity. The collection of fresh leaves and authentification followed by successive extraction, phytochemical screening, and testing of antidiabetic activity. The blood glucose level was reduced maximum in ethanol extract at 5th and 7th h after treatment. Blood glucose was depressed by 8.2% and 10.06% in alloxan – induced diabetic rats after treatment which was comparable to the standard drug, Glibenclamide. This may be due to the activation of the existing pancreatic cells in diabetic rats by the ethanolic extract.

Keywords: antidiabetic, Cedrela toona Roxb., phytochemical screening, blood glucose

Procedia PDF Downloads 232
164 A Study on ZnO Nanoparticles Properties: An Integration of Rietveld Method and First-Principles Calculation

Authors: Kausar Harun, Ahmad Azmin Mohamad

Abstract:

Zinc oxide (ZnO) has been extensively used in optoelectronic devices, with recent interest as photoanode material in dye-sensitize solar cell. Numerous methods employed to experimentally synthesized ZnO, while some are theoretically-modeled. Both approaches provide information on ZnO properties, but theoretical calculation proved to be more accurate and timely effective. Thus, integration between these two methods is essential to intimately resemble the properties of synthesized ZnO. In this study, experimentally-grown ZnO nanoparticles were prepared by sol-gel storage method with zinc acetate dihydrate and methanol as precursor and solvent. A 1 M sodium hydroxide (NaOH) solution was used as stabilizer. The optimum time to produce ZnO nanoparticles were recorded as 12 hours. Phase and structural analysis showed that single phase ZnO produced with wurtzite hexagonal structure. Further work on quantitative analysis was done via Rietveld-refinement method to obtain structural and crystallite parameter such as lattice dimensions, space group, and atomic coordination. The lattice dimensions were a=b=3.2498Å and c=5.2068Å which were later used as main input in first-principles calculations. By applying density-functional theory (DFT) embedded in CASTEP computer code, the structure of synthesized ZnO was built and optimized using several exchange-correlation functionals. The generalized-gradient approximation functional with Perdew-Burke-Ernzerhof and Hubbard U corrections (GGA-PBE+U) showed the structure with lowest energy and lattice deviations. In this study, emphasize also given to the modification of valence electron energy level to overcome the underestimation in DFT calculation. Both Zn and O valance energy were fixed at Ud=8.3 eV and Up=7.3 eV, respectively. Hence, the following electronic and optical properties of synthesized ZnO were calculated based on GGA-PBE+U functional within ultrasoft-pseudopotential method. In conclusion, the incorporation of Rietveld analysis into first-principles calculation was valid as the resulting properties were comparable with those reported in literature. The time taken to evaluate certain properties via physical testing was then eliminated as the simulation could be done through computational method.

Keywords: density functional theory, first-principles, Rietveld-refinement, ZnO nanoparticles

Procedia PDF Downloads 282
163 The Understanding of Biochemical and Molecular Analysis of Diabetic Rats Treated with Andrographis paniculata and Erythrina indica Methanol Extract

Authors: Chakrapani Pullagummi, Arun Jyothi Bheemagani, B. Chandra Sekhar Singh, Prem Kumar, A. Roja Rani

Abstract:

Diabetes mellitus describes a metabolic disorder of multiple aetiology characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion and its action. The objective of present study was alloxan induced diabetes in S.D (Sprague Dawley) rats, treated with leaf extract of Andrographis paniculata and bark extract of Erythrina indica. Plant extract treated rats were analyzed biochemically and molecularly. on normal and diabetic rats. The changes in MDA (lipid peroxidation) and glucose (by GOD method) levels in blood of both normal and diabetic rat were analyzed. Diabetes induced rats were treated with methanolic extracts of Andrographis paniculata leaf and Erythrina indica bark which are of medicinal importance. Later after inducing diabetes the rats were treated with medicinal plant extracts, Andrographis paniculata leaf and Erythrina indica bark which are well known for their anti diabetic and antioxidative property in order to control the glucose and MDA levels. The blood plasma of diabetic and normal rats was analyzed for the levels of MDA (lipid peroxidation) and glucose levels. Results of this study suggested that the Andrographis paniculata leaf and Erythrina indica can be used as a potential natural antidiabetic agent for treating and postponing the appearance of complications that arise due to Diabetes. Molecular study deals with the analysis of binding mechanism of 2 selected natural compounds from Andrographis and Erythrina extracts against the novel target for type T2D namely PPAR-γ compared with Rosiglitazone (standard compound). The results revealed that most of the selected herbal lead compounds were effective targets against the receptors. These compounds showed favorable interactions with the amino acid residues thereby substantiating their proven efficacy as anti-diabetic compounds.

Keywords: andrographis paniculata, erythrina indica, alloxan, lipid peroxidation, blood glucose level, PPAR-γ

Procedia PDF Downloads 453
162 Brilliant Candy Consists of Centella asiatica Extract and Soy Milk to Safe Nutrition Child of Indonesia

Authors: Hesti Ghassani, Tessa Septiadi

Abstract:

In the world we live on today, young generation highly influences the future of a nation. We have to concern that the condition of the country in 20 years later depending by the character of young adults these days. Therefore, it is important that we have to support and control the teenagers especially in one of developing countries in which I live in: Indonesia. Indonesia is a home to 240 million people. It diverse in languages, cultures, as well as attitudes. The differences among each individual lead us to think that there is something we have to take care of. It is necessary to pay attention to the nutrition consumed by the nation. We initiate to control the food consumed by young generation as early as a primary students. Nutrition affects the immune of the body, neuron system, and, most importantly brain. One of the nutrition that has to be fulfilled is milk. However, most of the population in Indonesia isn’t aware of the importance of consuming milk as their daily basis. We’ve formed an innovation called the Brilliant Candy which is affordable and rich in nutrition. So that is why the paper made by literature study to solve the problem with effective ways using available resources, practice and cheap. Brilliant Candy consists of Centella asiatica extract mixed with Soy milk. Centella asiatica contains of alkaloid which give the energy to brain and circulate oxygen. Based on the research of Sathya and Ganga, Centella asiatica can increase the intelligence. Indeed, Centella asiatica can relieve stress, and help us in staying focus. Soy milk is a kind of milk which come from extracted soybean. Soybean is rich in flafonoid. It has various advantages for our body. Which can also support child nutrition consumed. Soybean boosts immune system, helps digestive system, and in terms of food, soy bean exists as a source of nutrition. A method to get extraction of Centella asiatica is namely maserasi using ethanol. While making soybean milk with got the pollen of soybean. Both materials get mixed processed into hard candy with congelation of.

Keywords: Indonesia, Centella asiatica, Soy milk, alkaloid, flafonoid

Procedia PDF Downloads 281
161 Cross-Linked Amyloglucosidase Aggregates: A New Carrier Free Immobilization Strategy for Continuous Saccharification of Starch

Authors: Sidra Pervez, Afsheen Aman, Shah Ali Ul Qader

Abstract:

The importance of attaining an optimum performance of an enzyme is often a question of devising an effective method for its immobilization. Cross-linked enzyme aggregate (CLEAs) is a new approach for immobilization of enzymes using carrier free strategy. This method is exquisitely simple (involving precipitation of the enzyme from aqueous buffer followed by cross-linking of the resulting physical aggregates of enzyme molecules) and amenable to rapid optimization. Among many industrial enzymes, amyloglucosidase is an important amylolytic enzyme that hydrolyzes alpha (1→4) and alpha (1→6) glycosidic bonds in starch molecule and produce glucose as a sole end product. Glucose liberated by amyloglucosidase can be used for the production of ethanol and glucose syrups. Besides this amyloglucosidase can be widely used in various food and pharmaceuticals industries. For production of amyloglucosidase on commercial scale, filamentous fungi of genera Aspergillus are mostly used because they secrete large amount of enzymes extracellularly. The current investigation was based on isolation and identification of filamentous fungi from genus Aspergillus for the production of amyloglucosidase in submerged fermentation and optimization of cultivation parameters for starch saccharification. Natural isolates were identified as Aspergillus niger KIBGE-IB36, Aspergillus fumigatus KIBGE-IB33, Aspergillus flavus KIBGE-IB34 and Aspergillus terreus KIBGE-IB35 on taxonomical basis and 18S rDNA analysis and their sequence were submitted to GenBank. Among them, Aspergillus fumigatus KIBGE-IB33 was selected on the basis of maximum enzyme production. After optimization of fermentation conditions enzyme was immobilized on CLEA. Different parameters were optimized for maximum immobilization of amyloglucosidase. Data of enzyme stability (thermal and Storage) and reusability suggested the applicability of immobilized amyloglucosidase for continuous saccharification of starch in industrial processes.

Keywords: aspergillus, immobilization, industrial processes, starch saccharification

Procedia PDF Downloads 468