Search results for: mechanical resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6305

Search results for: mechanical resistance

6125 Resistance towards Education System through Street Library Movement: A Study in Sukabumi, Indonesia

Authors: M. Inbar Daeribi, Vara Leoni

Abstract:

Street Library Movement has been established and started to grow in some cities in Indonesia as a social movement. In the beginning, this movement emerged as a response to Indonesian lack of reading culture. Nevertheless, this study found out that street library movement is not only a literacy movement for developing reading culture. Furthermore, this movement is also a resistance towards education system in Indonesia. Street library movement is a critical consciousness driven by autonomous working group (community) as counter-public form towards Indonesia’s education condition legitimated by the government. This study, conducted in qualitative method with street library movement in Sukabumi, West Java, Indonesia as the object of study, will examine resistance forms of this movement and its social impacts. By studying this paper, it can be explained how street library movement served as an engine for social development.

Keywords: street library movement, social movement, resistance, education system

Procedia PDF Downloads 300
6124 Effect of the Soil-Foundation Interface Condition in the Determination of the Resistance Domain of Rigid Shallow Foundations

Authors: Nivine Abbas, Sergio Lagomarsino, Serena Cattari

Abstract:

The resistance domain of a generally loaded rigid shallow foundation is normally represented as an interaction diagram limited by a failure surface in the three dimensional (3D) load space (N, V, M), where N is the vertical centric load component, V is the horizontal load component and M is the bending moment component. Usually, this resistance domain is constructed neglecting the foundation sliding mechanism that take place at the level of soil-foundation interface once the applied horizontal load exceeds the interface frictional resistance of the foundation. This issue is translated in the literature by the fact that the failure limit in the (2D) load space (N, V) is constructed as a parabola having an initial slope, at the center of the coordinate system, that depends, in some works, only of the soil friction angle, and in other works, has an empirical value. However, considering a given geometry of the foundation lying on a given soil type, the initial slope of the failure limit must change, for instance, when varying the roughness of the foundation surface at its interface with the soil. The present study discusses the effect of the soil-foundation interface condition on the construction of the resistance domain, and proposes a correction to be applied to the failure limit in order to overcome this effect.

Keywords: soil-foundation interface, sliding mechanism, soil shearing, resistance domain, rigid shallow foundation

Procedia PDF Downloads 417
6123 Mechanical Characterization and Metallography of Sintered Aluminium-Titanium Diboride Metal Matrix Composite

Authors: Sai Harshini Irigineni, Suresh Kumar Reddy Narala

Abstract:

The industrial applicability of aluminium metal matrix composites (AMMCs) has been rapidly growing due to their exceptional materials traits such as low weight, high strength, excellent thermal performance, and corrosion resistance. The increasing demand for AMMCs in automobile, aviation, aerospace and defence ventures has opened up windows of opportunity for the development of processing methods that facilitate low-cost production of AMMCs with superior properties. In the present work, owing to its economy, efficiency, and suitability, powder metallurgy (P/M) technique was employed to develop AMMCs with pure aluminium as matrix material and titanium diboride (TiB₂) as reinforcement. AMMC samples with different weight compositions (Al-0.1%TiB₂, Al-5%TiB₂, Al-10%TiB₂, and Al-15% TiB₂) were prepared through hot press compacting followed by traditional sintering. The developed AMMC was subjected to metallographic studies and mechanical characterization. Experimental evidences show significant improvement in mechanical properties such as tensile strength, hardness with increasing reinforcement content. The current study demonstrates the superiority of AMMCs over conventional metals and alloys and the results obtained may be of immense in material selection for different structural applications.

Keywords: AMMCs, mechanical characterization, powder metallurgy, TiB₂

Procedia PDF Downloads 107
6122 Characterisation and in vitro Corrosion Resistance of Plasma Sprayed Hydroxyapatite and Hydroxyapatite: Silicon Oxide Coatings on 316L SS

Authors: Gurpreet Singh, Hazoor Singh, Buta Singh Sidhu

Abstract:

In the current investigation plasma spray technique was used for depositing hydroxyapatite (HA) and HA – silicon oxide (SiO2) coatings on 316L SS substrate. In HA-SiO2 coating, 20 wt% SiO2 was mixed with HA. The feedstock and coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX) analyses. The corrosion resistance of the uncoated, HA coated and HA + 20 wt% SiO2 coated 316L SS was investigated by electrochemical corrosion testing in simulated human body fluid (Ringer’s solution). The influence of SiO2 (20 wt%) on corrosion resistance was determined. After the corrosion testing, the samples were analyzed by XRD and SEM/EDX analyses. The addition of SiO2 reduces the crystallinity of the coating. The corrosion resistance of the 316L SS was found to increase after the deposition of the HA + 20 wt% SiO2 and HA coatings.

Keywords: HA, SiO2, corrosion, Ringer’s solution, 316L SS

Procedia PDF Downloads 387
6121 Clinical Impact of Ultra-Deep Versus Sanger Sequencing Detection of Minority Mutations on the HIV-1 Drug Resistance Genotype Interpretations after Virological Failure

Authors: S. Mohamed, D. Gonzalez, C. Sayada, P. Halfon

Abstract:

Drug resistance mutations are routinely detected using standard Sanger sequencing, which does not detect minor variants with a frequency below 20%. The impact of detecting minor variants generated by ultra-deep sequencing (UDS) on HIV drug-resistance (DR) interpretations has not yet been studied. Fifty HIV-1 patients who experienced virological failure were included in this retrospective study. The HIV-1 UDS protocol allowed the detection and quantification of HIV-1 protease and reverse transcriptase variants related to genotypes A, B, C, E, F, and G. DeepChek®-HIV simplified DR interpretation software was used to compare Sanger sequencing and UDS. The total time required for the UDS protocol was found to be approximately three times longer than Sanger sequencing with equivalent reagent costs. UDS detected all of the mutations found by population sequencing and identified additional resistance variants in all patients. An analysis of DR revealed a total of 643 and 224 clinically relevant mutations by UDS and Sanger sequencing, respectively. Three resistance mutations with > 20% prevalence were detected solely by UDS: A98S (23%), E138A (21%) and V179I (25%). A significant difference in the DR interpretations for 19 antiretroviral drugs was observed between the UDS and Sanger sequencing methods. Y181C and T215Y were the most frequent mutations associated with interpretation differences. A combination of UDS and DeepChek® software for the interpretation of DR results would help clinicians provide suitable treatments. A cut-off of 1% allowed a better characterisation of the viral population by identifying additional resistance mutations and improving the DR interpretation.

Keywords: HIV-1, ultra-deep sequencing, Sanger sequencing, drug resistance

Procedia PDF Downloads 304
6120 Development and Sound Absorption and Insulation Performance Evaluation of Nonwoven Fabric Material including Paper Honeycomb Structure for Insulator Covering Shelf Trim

Authors: In-Sung Lee, Un-Hwan Park, Jun-Hyeok Heo, Dae-Gyu Park

Abstract:

Insulator Covering Shelf Trim is one of the automotive interior parts located in the rear seat of a car, and it is a component that is the most strongly demanded for impact resistance, strength, and heat resistance. Such an Insulator Covering Shelf Trim is composed of a polyethylene terephthalate (PET) nonwoven fabric which is a surface material appearing externally and a substrate layer which exerts shape and mechanical strength. In this paper, we develop a lightweight Insulator Covering Shelf Trim using the nonwoven fabric material with a high strength honeycomb structure and evaluate sound absorption and insulation performance by using acoustic impedance tubes.

Keywords: sound absorption and insulation, insulator covering shelf trim, nonwoven fabric, honeycomb

Procedia PDF Downloads 702
6119 Preparation and Properties of NR Based Ebonite Rubber Suitable for Use as Engineering Material

Authors: Dosu Malomo, O. E. Edeh, P. O. Okolo, F. C. Ibeh

Abstract:

The preparation of various samples of ebonite vulcanizates and their physico-mechanical properties have been investigated using standard methods. This work explores the production of ebonite dust, production of ebonite vulcanizates and investigation of the characterisation of the ebonite. Five different ebonite materials – labelled A, B, C, D, and E with sulphur content in parts per hundred grams of rubber (Phr) of 32, 34, 36, 38 and 40 respectively were produced. The physico-mechanical properties carried out were tensile strength, hardness and abrasion resistance. The tensile strength (MPa) for sample A, B, C, D and E were 5.6, 3.5, 4.7, 1.7 and 2.0 respectively while the abrasion(%mass loss) were 8.49, 4.24, 2.59, 1.08 and 1.05 respectively and the hardness (IRHD) being 63, 64, 65, 70 and 82. The results show that the preparation of ebonite from natural rubber as a base polymer is feasible considering the results of characterisation obtained.

Keywords: compounding, ebonite dust, natural rubber, vulcanization

Procedia PDF Downloads 137
6118 Determination of Identification and Antibiotic Resistance Rates of Pseudomonas aeruginosa Strains from Various Clinical Specimens in a University Hospital for Two Years, 2013-2015

Authors: Recep Kesli, Gulsah Asik, Cengiz Demir, Onur Turkyilmaz

Abstract:

Objective: Pseudomonas aeruginosa (P. aeruginosa) is an important nosocomial pathogen which causes serious hospital infections and is resistant to many commonly used antibiotics. P. aeruginosa can develop resistance during therapy and also it is very resistant to disinfectant chemicals. It may be found in respiratory support devices in hospitals. In this study, the antibiotic resistance of P. aeruginosa strains isolated from bronchial aspiration samples was evaluated retrospectively. Methods: Between October 2013 and September 2015, a total of 318 P. aeruginosa were isolated from clinical samples obtained from various intensive care units and inpatient patients hospitalized at Afyon Kocatepe University, ANS Practice and Research Hospital. Isolated bacteria identified by using both the conventional methods and automated identification system-VITEK 2 (bioMerieux, Marcy l’etoile France). Antibacterial resistance tests were performed by using Kirby-Bauer disc (Oxoid, Hampshire, England) diffusion method following the recommendations of CLSI. Results: Antibiotic resistance rates of identified 318 P. aeruginosa strains were found as follows for tested antibiotics; 32 % amikacin, 42% gentamicin, 43% imipenem, 43% meropenem, 50% ciprofloxacin, 57% levofloxacin, 38% cefepime, 63% ceftazidime, and 85% piperacillin/tazobactam. Conclusion: Resistance profiles change according to years and provinces for P. aeruginosa, so these findings should be considered empirical treatment choices. In this study, the highest and lowest resistance rates found against piperacillin/tazobactam % 85, and amikacin %32.

Keywords: Pseudomonas aeruginosa, antibiotic resistance rates, intensive care unit, Pseudomonas spp.

Procedia PDF Downloads 261
6117 Characterization of an Ecological Mortar Lightweight With Polystyrene

Authors: Aidoud Assia, Bencheikh Messaouda, Boukour Salima

Abstract:

Polystyrene is often seen in the ocean and on Algerian beaches, mainly as food containers. It's one of the top 10 most common items found there. This happens because it's light and easily carried away from its original source, like packaging or transport, into the environment. Unfortunately, it's not recycled much because it's not very profitable to do so. Hence, turning this waste into a resource can turn challenges into opportunities for a territory's economic and environmental development, which is the focus of this study. the goal is to analyze the physical and mechanical properties of a new type of mortar made from dune sand mixed with recycled polystyrene. it also aim to assess its potential for use in various construction applications. The mixtures were prepared by replacing portions of dune sand with polystyrene waste at varying volumes (10%, 20%, and 30%), while keeping the amount of cement constant. The results indicate a noticeable impact on both the physical and mechanical properties because of incorporating polystyrene waste.

Keywords: polystyrène, eco-mortier, sable de dune, résistance

Procedia PDF Downloads 5
6116 Mechanisms of Cultural Change Resistance through Cultures

Authors: Horaya Mostafa Ahmed

Abstract:

All cultures are inherently predisposed to change and, at the same time, to resisting change. There are dynamic processes operating that encourage the acceptance of new ideas and things, while there are others that encourage changeless stability. Despite the dramatic changes that have taken place in all human cultures, there are cultures still steadfast and resist change. These cultures resist through some culture mechanisms like, cultural boundaries, ethnocentrism, religion, and cultural relativity. So this paper is an attempt to discover these mechanisms of cultural change resistance and to ask is cultural change always required.

Keywords: cultural change, cultural boundaries, cultural relativity, ethnocentrism, religion, resistance

Procedia PDF Downloads 316
6115 Role of ABC Transporters in Non-Target Site Herbicide Resistance in Black Grass (Alopecurus myosuroides)

Authors: Alina Goldberg Cavalleri, Sara Franco Ortega, Nawaporn Onkokesung, Richard Dale, Melissa Brazier-Hicks, Robert Edwards

Abstract:

Non-target site based resistance (NTSR) to herbicides in weeds is a polygenic trait associated with the upregulation of proteins involved in xenobiotic detoxification and translocation we have termed the xenome. Among the xenome proteins, ABC transporters play a key role in enhancing herbicide metabolism by effluxing conjugated xenobiotics from the cytoplasm into the vacuole. The importance of ABC transporters is emphasized by the fact that they often contribute to multidrug resistance in human cells and antibiotic resistance in bacteria. They also play a key role in insecticide resistance in major vectors of human diseases and crop pests. By surveying available databases, transcripts encoding ABCs have been identified as being enhanced in populations exhibiting NTSR in several weed species. Based on a transcriptomics data in black grass (Alopecurus myosuroides, Am), we have identified three proteins from the ABC-C subfamily that are upregulated in NTSR populations. ABC-C transporters are poorly characterized proteins in plants, but in Arabidopsis localize to the vacuolar membrane and have functional roles in transporting glutathionylated (GSH)-xenobiotic conjugates. We found that the up-regulation of AmABCs strongly correlates with the up-regulation of a glutathione transferase termed AmGSTU2, which can conjugate GSH to herbicides. The expression profile of the ABC transcripts was profiled in populations of black grass showing different degree of resistance to herbicides. This, together with a phylogenetic analysis, revealed that AmABCs cluster in different groups which might indicate different substrate and roles in the herbicide resistance phenotype in the different populations

Keywords: black grass, herbicide, resistance, transporters

Procedia PDF Downloads 125
6114 Correlates of Peer Influence and Resistance to HIV/AIDS Counselling and Testing among Students in Tertiary Institutions in Kano State, Nigeria

Authors: A. S. Haruna, M. U. Tambawal, A. A. Salawu

Abstract:

The psychological impact of peer influence on its individual group members, can make them resist HIV/AIDS counselling and testing. This study investigated the correlate of peer influence and resistance to HIV/AIDS counselling and testing among students in tertiary institutions in Kano state, Nigeria. To achieve this, three null hypotheses were postulated and tested. Cross-Sectional Survey Design was employed in which 1512 sample was selected from a student population of 104,841.Simple Random Sampling was used in the selection. A self-developed 20-item scale called Peer Influence and Psychological Resistance Inventory (PIPRI) was used for data collection. Pearson Product Moment Correlation (PPMCC) via test-retest method was applied to estimate a reliability coefficient of 0.86 for the scale. Data obtained was analyzed using t-test and PPMCC at 0.05 level of confidence. Results reveal 26.3% (397) of the respondents being influenced by their peer group, while 39.8% showed resistance. Also, the t-tests and PPMCC statistics were greater than their respective critical values. This shows that there was a significant gender difference in peer influence and a difference between peer influence and resistance to HIV/AIDS counselling and testing. However, a positive relationship between peer influence and resistance to HIV/AIDS counselling and testing was shown. A major recommendation offered suggests the use of reinforcement and social support for positive attitudes and maintenance of safe behaviour among students who patronize HIV/AIDS counselling.

Keywords: peer group influence, HIV/AIDS counselling and testing, psychological resistance, students

Procedia PDF Downloads 365
6113 An Automated Bender Element System Used for S-Wave Velocity Tomography during Model Pile Installation

Authors: Yuxin Wu, Yu-Shing Wang, Zitao Zhang

Abstract:

A high-speed and time-lapse S-wave velocity measurement system has been built up for S-wave tomography in sand. This system is based on bender elements and applied to model pile tests in a tailor-made pressurized chamber to monitor the shear wave velocity distribution during pile installation in sand. Tactile pressure sensors are used parallel together with bender elements to monitor the stress changes during the tests. Strain gages are used to monitor the shaft resistance and toe resistance of pile. Since the shear wave velocity (Vs) is determined by the shear modulus of sand and the shaft resistance of pile is also influenced by the shear modulus of sand around the pile, the purposes of this study are to time-lapse monitor the S-wave velocity distribution change at a certain horizontal section during pile installation and to correlate the S-wave velocity distribution and shaft resistance of pile in sand.

Keywords: bender element, pile, shaft resistance, shear wave velocity, tomography

Procedia PDF Downloads 387
6112 Tamper Resistance Evaluation Tests with Noise Resources

Authors: Masaya Yoshikawa, Toshiya Asai, Ryoma Matsuhisa, Yusuke Nozaki, Kensaku Asahi

Abstract:

Recently, side-channel attacks, which estimate secret keys using side-channel information such as power consumption and compromising emanations of cryptography circuits embedded in hardware, have become a serious problem. In particular, electromagnetic analysis attacks against cryptographic circuits between information processing and electromagnetic fields, which are related to secret keys in cryptography circuits, are the most threatening side-channel attacks. Therefore, it is important to evaluate tamper resistance against electromagnetic analysis attacks for cryptography circuits. The present study performs basic examination of the tamper resistance of cryptography circuits using electromagnetic analysis attacks with noise resources.

Keywords: tamper resistance, cryptographic circuit, hardware security evaluation, noise resources

Procedia PDF Downloads 465
6111 Preparation Static Dissipative Nanocomposites of Alkaline Earth Metal Doped Aluminium Oxide and Methyl Vinyl Silicone Polymer

Authors: Aparna M. Joshi

Abstract:

Methyl vinyl silicone polymer (VMQ) - alkaline earth metal doped aluminium oxide composites are prepared by conventional two rolls open mill mixing method. Doped aluminium oxides (DAO) using silvery white coloured alkaline earth metals such as Mg and Ca as dopants in the concentration of 0.4 % are synthesized by microwave combustion method and referred as MA ( Mg doped aluminium oxide) and CA ( Ca doped aluminium oxide). The as-synthesized materials are characterized for the electrical resistance, X–ray diffraction, FE-SEM, TEM and FTIR. The electrical resistances of the DAOs are observed to be ~ 8-20 MΩ. This means that the resistance of aluminium oxide (Corundum) α-Al2O3 which is ~ 1010Ω is reduced by the order of ~ 103 to 104 Ω after doping. XRD studies reveal the doping of Mg and Ca in aluminium oxide. The microstructural study using FE-SEM shows the flaky clusterous structures with the thickness of the flakes between 10 and 20 nm. TEM images depict the rod-shaped morphological geometry of the particles with the diameter of ~50-70 nm. The nanocomposites are synthesized by incorporating the DAOs in the concentration of 75 phr (parts per hundred parts of rubber) into VMQ polymer. The electrical resistance of VMQ polymer, which is ~ 1015Ω, drops by the order of 108Ω. There is a retention of the electrical resistance of ~ 30-50 MΩ for the nanocomposites which is a static dissipative range of electricity. In this work white coloured electrically conductive VMQ polymer-DAO nanocomposites (MAVMQ for Mg doping and CAVMQ for Ca doping) have been synthesized. The physical and mechanical properties of the composites such as specific gravity, hardness, tensile strength and rebound resilience are measured. Hardness and tensile strength are found to increase, with the negligible alteration in the other properties.

Keywords: doped aluminium oxide, methyl vinyl silicone polymer, microwave synthesis, static dissipation

Procedia PDF Downloads 529
6110 Investigation of Textile Laminates Structure and Electrical Resistance

Authors: A. Gulbiniene, V. Jankauskaite

Abstract:

Textile laminates with breathable membranes are used extensively in protective footwear. Such polymeric membranes act as a barrier to liquid water and soil entry from the environment, but are sufficiently permeable to water vapour to allow significant amounts of sweat to evaporate and affect the comfort of the wearer. In this paper the influence of absorbed humidity amount on the electrical properties of textiles lining laminates with and without polymeric membrane is presented. It was shown that textile laminate structure and its layers have a great influence on the water vapour absorption. Laminates with polyurethane foam layers show lower ability to absorb water vapour. Semi-permeable membrane increases absorbed humidity amount. The increase of water vapour absorption ability decreases textile laminates' electrical resistance. However, the intensity of the decrease in electrical resistance depends on the textile laminate layers' nature. Laminates with polyamide layers show significantly lower electrical resistance values.

Keywords: electrical resistance, humid atmosphere, textiles laminate, water vapour absorption

Procedia PDF Downloads 211
6109 Effect of Resistance Training on Muscle Strength, IGF₁, and Physical Performance of Volleyball Players

Authors: Menan M. Elsayed, Hussein A. Heshmat

Abstract:

The aim of the study is to assess the effect of resistance training on muscle strength and physical performance of volleyball players of Physical Education College, Helwan University. The researcher used the experimental method of pre-post measurements of one group of 10 volleyball players. The execution of the program was through the period of 12/8/2018 to 12/10/2018; included 24 training units, 3 training units weekly for 8 weeks. The training program revealed an improvement in post measurement of muscle strength, IGF₁ (insulin-like growth factor 1), and physical performance of players. It may be concluded that the resistance training may include changes in hormones and muscle fibers leading to hypertrophy of the muscle and physical performance. It is recommended to use the results of the study in rationing the loads and training programs.

Keywords: IGF₁, muscle strength, physical performance, resistance training, volleyball players

Procedia PDF Downloads 156
6108 A Comparison of Antibiotic Resistant Enterobacteriaceae: Diabetic versus Non-Diabetic Infections

Authors: Zainab Dashti, Leila Vali

Abstract:

Background: The Middle East, in particular Kuwait, contains one of the highest rates of patients with Diabetes in the world. Generally, infections resistant to antibiotics among the diabetic population has been shown to be on the rise. This is the first study in Kuwait to compare the antibiotic resistance profiles and genotypic differences between the resistant isolates of Enterobacteriaceae obtained from diabetic and non-diabetic patients. Material/Methods: In total, 65 isolates were collected from diabetic patients consisting of 34 E. coli, 15 K. pneumoniae and 16 other Enterobacteriaceae species (including Salmonella spp. Serratia spp and Proteus spp.). In our control group, a total of 49 isolates consisting of 37 E. coli, 7 K. pneumoniae and 5 other species (including Salmonella spp. Serratia spp and Proteus spp.) were included. Isolates were identified at the species level and antibiotic resistance profiles, including Colistin, were determined using initially the Vitek system followed by double dilution MIC and E-test assays. Multi drug resistance (MDR) was defined as isolates resistant to a minimum of three antibiotics from three different classes. PCR was performed to detect ESBL genes (blaCTX-M, blaTEM & blaSHV), flouroquinolone resistance genes (qnrA, qnrB, qnrS & aac(6’)-lb-cr) and carbapenem resistance genes (blaOXA, blaVIM, blaGIM, blaKPC, blaIMP, & blaNDM) in both groups. Pulse field gel electrophoresis (PFGE) was performed to compare clonal relatedness of both E. coli and K.pneumonaie isolates. Results: Colistin resistance was determined in three isolates with MICs of 32-128 mg/L. A significant difference in resistance to ampicillin (Diabetes 93.8% vs control 72.5%, P value <0.002), augmentin (80% vs 52.5%, p value < 0.003), cefuroxime (69.2% vs 45%, p value < 0.0014), ceftazadime (73.8% vs 42.5%, p value <0.001) and ciprofloxacin (67.6% vs 40%, p value < 0.005) were determined. Also, a significant difference in MDR rates between the two groups (Diabetes 76.9%, control 57.5%, p value <0.036 were found. All antibiotic resistance genes showed a higher prevalence among the diabetic group, except for blaCTX-M, which was higher among the control group. PFGE showed a high rate of diversity between each group of isolates. Conclusions: Our results suggested an alarming rate of antibiotic resistance, in particular Colistin resistance (1.8%) among K. pneumoniea isolated from diabetic patients in Kuwait. MDR among Enterobacteriaceae infections also seems to be a worrying issue among the diabetics of Kuwait. More efforts are required to limit the issue of antibiotic resistance in Kuwait, especially among patients with diabetes mellitus.

Keywords: antibiotic resistance, diabetes, enterobacreriacae, multi antibiotic resistance

Procedia PDF Downloads 333
6107 Microstructure, Mechanical and Tribological Properties of (TiTaZrNb)Nx Medium Entropy Nitride Coatings: Influence of Nitrogen Content and Bias Voltage

Authors: Mario Alejandro Grisales, M. Daniela Chimá, Gilberto Bejarano Gaitán

Abstract:

High entropy alloys (HEA) and nitride (HEN) are currently very attractive to the automotive, aerospace, metalworking and materials forming manufacturing industry, among others, for exhibiting higher mechanical properties, wear resistance, and thermal stability than binary and ternary alloys. In this work medium-entropy coatings of TiTaZrNb and the nitrides of (TiTaZrNb)Nx were synthesized on to AISI 420 and M2 steel samples by the direct current magnetron sputtering technique. The influence of the bias voltage supplied to the substrate on the microstructure, chemical- and phase composition of the matrix coating was evaluated, and the effect of nitrogen flow on the microstructural, mechanical and tribological properties of the corresponding nitrides was studied. A change in the crystalline structure from BCC for TiTaZrNb coatings to FCC for (TiTaZrNb)Nx was observed, that is associated with the incorporation of nitrogen into the matrix and the consequent formation of a solid solution of (TiTaZrNb)Nx. An increase in hardness and residual stresses was observed with increasing bias voltage for TiTaZrNb, reaching 12.8 GPa for the coating deposited with a bias of -130V. In the case of (TiTaZrNb)Nx nitride, a greater hardness of 23 GPa is achieved for the coating deposited with a N2 flow of 12 sccm, which slightly drops to 21.7 GPa for that deposited with N2 flow of 15 sccm. The slight reduction in hardness could be associated with the precipitation of the TiN and ZrN phases that are formed at higher nitrogen flows. The specific wear rate of the deposited coatings ranged between 0.5xexp13 and 0.6xexp13 N/m2. The steel substrate exhibited an average hardness of 2.0 GPa and a specific wear rate of 203.2exp13 N/m2. Both the hardness and the specific wear rate of the synthesized nitride coatings were higher than that of the steel substrate, showing a protective effect of the steel against wear.

Keywords: medium entropy coatings, hard coatings, magnetron sputtering, tribology, wear resistance

Procedia PDF Downloads 41
6106 Dissimilar Welding Of New High Oxidation Material – Thor™ 115 With Vm-12 Shc

Authors: Michal Urzynicok, Krzysztof Kwiecinski

Abstract:

The development of materials used in the power generation industry for the production of boilers and their parts is characterized by high steam parameters, which present new challenges. Implementation of new combinations of alloying elements that lead to the best possible mechanical properties, including creep resistance, greatly affects new steels' weldability. All new grades have to undergo many different examinations, in regards to bending and welding, in order to enable the development of fabrication technologies, ensuring failure-free production and assembly of boiler components. 12% Cr martensitic steels like THOR™ 115 or VM-12 SHC are characterized by high oxidation resistance in high-temperature environments. At the moment, VM-12 SHC can be found in many boilers where both headers and superheater coils were produced. As this material is very difficult to obtain, a search for a proper replacement has begun. A new creep strength-enhanced ferritic steel for service in supercritical and ultra-supercritical boiler applications was developed by Tenaris in Italy and it is designated as Thor™115 (Tenaris High Oxidation Resistance). As high demand in power plants occurred to replace some parts of existing installations fabricated from VM12-SHC with other alternatives, a new development of welding procedures has begun to prepare fabricators for the challenges of joining old components with new THOR™ 115 material. This paper covers the first research of welding of dissimilar joints made out of VM12-SHC and THOR™ 115.

Keywords: thor, vm12, dissimilar welding, weldability

Procedia PDF Downloads 132
6105 Characteristic of Ta Alloy Coating Films on Near-Net Shape with Different Current Densities Using MARC Process

Authors: Young Jun Lee, Tae Hyuk Lee, Kyoung Tae Park, Jong Hyeon Lee

Abstract:

The harsh atmosphere of the sulfur-iodine process used for producing hydrogen requires better corrosion resistance and mechanical properties that is possible to obtain with pure tantalum. Ta-W alloy is superior to pure tantalum but is difficult to alloy due to its high melting temperature. In this study, substrates of near-net shape (Swagelok® tube ISSG8UT4) were coated with Ta-W using the multi-anode reactive alloy coating (MARC) process in molten salt (LiF-NaF-K2TaF7) at different current densities (1, 2 and 4mA/cm2). Ta-4W coating films of uniform coating thicknesses, without any entrapped salt, were successfully deposited on Swagelok tube by electrodeposition at 1 mA/cm2. The resulting coated film with a corrosion rate of less than 0.011 mm/year was attained in hydriodic acid at 160°C, and hardness up to 12.9 % stronger than pure tantalum coated film. The alloy coating films also contributed to significant enhancement of corrosion resistance.

Keywords: tantalum, tantalum alloy, tungsten alloy, electroplating

Procedia PDF Downloads 389
6104 Emergence of Fluoroquinolone Resistance in Pigs, Nigeria

Authors: Igbakura I. Luga, Alex A. Adikwu

Abstract:

A comparison of resistance to quinolones was carried out on isolates of Shiga toxin-producing Escherichia coliO157:H7 from cattle and mecA and nuc genes harbouring Staphylococcus aureus from pigs. The isolates were separately tested in the first and current decades of the 21st century. The objective was to demonstrate the dissemination of resistance to this frontline class of antibiotic by bacteria from food animals and bring to the limelight the spread of antibiotic resistance in Nigeria. A total of 10 isolates of the E. coli O157:H7 and 9 of mecA and nuc genes harbouring S. aureus were obtained following isolation, biochemical testing, and serological identification using the Remel Wellcolex E. coli O157:H7 test. Shiga toxin-production screening in the E. coli O157:H7 using the verotoxin E. coli reverse passive latex agglutination (VTEC-RPLA) test; and molecular identification of the mecA and nuc genes in S. aureus. Detection of the mecA and nuc genes were carried out using the protocol by the Danish Technical University (DTU) using the following primers mecA-1:5'-GGGATCATAGCGTCATTATTC-3', mecA-2: 5'-AACGATTGTGACACGATAGCC-3', nuc-1: 5'-TCAGCAAATGCATCACAAACAG-3', nuc-2: 5'-CGTAAATGCACTTGCTTCAGG-3' for the mecA and nuc genes, respectively. The nuc genes confirm the S. aureus isolates and the mecA genes as being methicillin-resistant and so pathogenic to man. The fluoroquinolones used in the antibiotic resistance testing were norfloxacin (10 µg) and ciprofloxacin (5 µg) in the E. coli O157:H7 isolates and ciprofloxacin (5 µg) in the S. aureus isolates. Susceptibility was tested using the disk diffusion method on Muller-Hinton agar. Fluoroquinolone resistance was not detected from isolates of E. coli O157:H7 from cattle. However, 44% (4/9) of the S. aureus were resistant to ciprofloxacin. Resistance of up to 44% in isolates of mecA and nuc genes harbouring S. aureus is a compelling evidence for the rapid spread of antibiotic resistance from bacteria in food animals from Nigeria. Ciprofloxacin is the drug of choice for the treatment of Typhoid fever, therefore widespread resistance to it in pathogenic bacteria is of great public health significance. The study concludes that antibiotic resistance in bacteria from food animals is on the increase in Nigeria. The National Food and Drug Administration and Control (NAFDAC) agency in Nigeria should implement the World Health Organization (WHO) global action plan on antimicrobial resistance. A good starting point can be coordinating the WHO, Office of International Epizootics (OIE), Food and Agricultural Organization (FAO) tripartite draft antimicrobial resistance monitoring and evaluation (M&E) framework in Nigeria.

Keywords: Fluoroquinolone, Nigeria, resistance, Staphylococcus aureus

Procedia PDF Downloads 426
6103 Effects of Alkaline Pretreatment Parameters on the Corrosion Resistance and ‎Wettability of Magnesium Implant

Authors: Mahtab Assadian, Mohd Hasbullah Idris, Mostafa Rezazadeh Shirdar, Mohammad Mahdi Taheri, ‎S. Izman

Abstract:

Corrosion behaviour and surface roughness of magnesium substrate were investigated after NaOH pretreatment in different concentrations (1, 5, and 10 molar) and duration of (10 min, 30 min, 1 h, 3 h, 6 h and 24 h). Creation of Mg(OH)2 barrier layer after pretreatment enhanced corrostion resistance as well as wettability of substrate surface. Characterization including Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) was conducted to detect the existence of this barrier layer. Surface roughness and wettability of substrate was evaluated using atomic force microscopy (AFM) and contact angle measurement respectively. It is found that magnesium treated by 1M NaOH for 30 min reveals higher corrosion resistance and lower water contact angle of substrate surface. In addition, this investigation indicates that pH value of SBF solution is strongly influenced by different time and concentration of alkaline pretreatment.

Keywords: magnesium, NaOH pretreatment, corrosion resistance, wettability

Procedia PDF Downloads 934
6102 From Genome to Field: Applying Genome Wide Association Study for Sustainable Ascochyta Blight Management in Faba Beans

Authors: Rabia Faridi, Rizwana Maqbool, Umara Sahar Rana, Zaheer Ahmad

Abstract:

Climate change impacts agriculture, notably in Germany, where spring faba beans predominate. However, improved winter hardiness aligns with milder winters, enabling autumn-sown varieties. Genetic resistance to Ascochyta blight is vital for crop integration. Traditional breeding faces challenges due to complex inheritance. This study assessed 224 homozygous faba bean lines for Ascochyta resistance traits. To achieve h²>70%, 12 replicates were required (realized h²=87%). Genetic variation and strong trait correlations were observed. Five lines outperformed 29H, while three were highly susceptible. A genome-wide association study (GWAS) with 188 inbred lines and 2058 markers, including 17 guide SNP markers, identified 12 markers associated with resistance traits, potentially indicating new resistance genes. One guide marker (Vf-Mt1g014230-001) on chromosome III validated a known QTL. The guided marker approach complemented GWAS, facilitating marker-assisted selection for Ascochyta resistance. The Göttingen Winter Bean Population offers promise for resistance breeding.

Keywords: genome wide association studies, marker assisted breeding, faba bean, ascochyta blight

Procedia PDF Downloads 31
6101 Characterization of Sintered Fe-Cr-Mn Powder Mixtures Containing Intermetallics

Authors: A. Yonetken, A. Erol, M. Cakmakkaya

Abstract:

Intermetallic materials are among advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of %88Ni-%10Cr and %2Mn powders were investigated using specimens produced by tube furnace sintering at 900-1300°C temperature. A composite consisting of ternary additions, a metallic phase, Fe ,Cr and Mn have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition %88Ni-%10Cr and %2Mn at 1300°C suggest that the best properties as 138,80HV and 6,269/cm3 density were obtained at 1300°C.

Keywords: composite, high temperature, intermetallic, sintering

Procedia PDF Downloads 384
6100 Enhancement of Hardness and Corrosion Resistance of Plasma Nitrided Low Alloy Tool Steel

Authors: Kalimi Trinadh, Corinne Nouveau, A. S. Khanna, Karanveer S. Aneja, K. Ram Mohan Rao

Abstract:

This study concerns improving the corrosion resistance of low alloy steel after plasma nitriding performed at variable time and temperature. Nitriding carried out in the temperature range of 450-550ᵒC for a various time period of 1-8 hrs. at 500Pa in a glow discharge plasma of H₂ and N₂ (80:20). The substrate was kept biased negatively at 250V. Following nitriding the X-ray diffraction studies shown that the phases formed were mainly γ′ (Fe₄N) and ε (Fe₂₋₃N). The ε (Fe₂₋₃N) phase found to be the dominating phase. Cross sections of the samples under scanning electron microscope point analyses revealed the presence of nitrogen in the surface region. For the assessment of corrosion resistance property, potentiodynamic polarization tests were performed in 3.5% NaCl solution. It has been shown that the plasma nitriding significantly improved the corrosion resistance when compared to the as-received steel. Furthermore, it has also been found that nitriding for 6h has more corrosion resistance than nitriding for the 8h duration. The hardness of the nitrided samples was measured by Vicker’s microhardness tester. The hardness of the nitrided steel was found to be improved much above the hardness of the steel in the as-received condition. It was found to be around two-fold of the initial hardness.

Keywords: corrosion, steel, plasma nitriding, X-ray diffraction

Procedia PDF Downloads 171
6099 Laser Welding Technique Effect for Proton Exchange Membrane Fuel Cell Application

Authors: Chih-Chia Lin, Ching-Ying Huang, Cheng-Hong Liu, Wen-Lin Wang

Abstract:

A complete fuel cell stack comprises several single cells with end plates, bipolar plates, gaskets and membrane electrode assembly (MEA) components. Electrons generated from cells are conducted through bipolar plates. The amount of cells' components increases as the stack voltage increases, complicating the fuel cell assembly process and mass production. Stack assembly error influence cell performance. PEM fuel cell stack importing laser welding technique could eliminate transverse deformation between bipolar plates to promote stress uniformity of cell components as bipolar plates and MEA. Simultaneously, bipolar plates were melted together using laser welding to decrease interface resistance. A series of experiments as through-plan and in-plan resistance measurement test was conducted to observe the laser welding effect. The result showed that the through-plane resistance with laser welding was a drop of 97.5-97.6% when the contact pressure was about 1MPa to 3 MPa, and the in-plane resistance was not significantly different for laser welding.

Keywords: PEM fuel cell, laser welding, through-plan, in-plan, resistance

Procedia PDF Downloads 474
6098 In-Process Integration of Resistance-Based, Fiber Sensors during the Braiding Process for Strain Monitoring of Carbon Fiber Reinforced Composite Materials

Authors: Oscar Bareiro, Johannes Sackmann, Thomas Gries

Abstract:

Carbon fiber reinforced polymer composites (CFRP) are used in a wide variety of applications due to its advantageous properties and design versatility. The braiding process enables the manufacture of components with good toughness and fatigue strength. However, failure mechanisms of CFRPs are complex and still present challenges associated with their maintenance and repair. Within the broad scope of structural health monitoring (SHM), strain monitoring can be applied to composite materials to improve reliability, reduce maintenance costs and safely exhaust service life. Traditional SHM systems employ e.g. fiber optics, piezoelectrics as sensors, which are often expensive, time consuming and complicated to implement. A cost-efficient alternative can be the exploitation of the conductive properties of fiber-based sensors such as carbon, copper, or constantan - a copper-nickel alloy – that can be utilized as sensors within composite structures to achieve strain monitoring. This allows the structure to provide feedback via electrical signals to a user which are essential for evaluating the structural condition of the structure. This work presents a strategy for the in-process integration of resistance-based sensors (Elektrisola Feindraht AG, CuNi23Mn, Ø = 0.05 mm) into textile preforms during its manufacture via the braiding process (Herzog RF-64/120) to achieve strain monitoring of braided composites. For this, flat samples of instrumented composite laminates of carbon fibers (Toho Tenax HTS40 F13 24K, 1600 tex) and epoxy resin (Epikote RIMR 426) were manufactured via vacuum-assisted resin infusion. These flat samples were later cut out into test specimens and the integrated sensors were wired to the measurement equipment (National Instruments, VB-8012) for data acquisition during the execution of mechanical tests. Quasi-static tests were performed (tensile, 3-point bending tests) following standard protocols (DIN EN ISO 527-1 & 4, DIN EN ISO 14132); additionally, dynamic tensile tests were executed. These tests were executed to assess the sensor response under different loading conditions and to evaluate the influence of the sensor presence on the mechanical properties of the material. Several orientations of the sensor with regards to the applied loading and sensor placements inside the laminate were tested. Strain measurements from the integrated sensors were made by programming a data acquisition code (LabView) written for the measurement equipment. Strain measurements from the integrated sensors were then correlated to the strain/stress state for the tested samples. From the assessment of the sensor integration approach it can be concluded that it allows for a seamless sensor integration into the textile preform. No damage to the sensor or negative effect on its electrical properties was detected during inspection after integration. From the assessment of the mechanical tests of instrumented samples it can be concluded that the presence of the sensors does not alter significantly the mechanical properties of the material. It was found that there is a good correlation between resistance measurements from the integrated sensors and the applied strain. It can be concluded that the correlation is of sufficient accuracy to determinate the strain state of a composite laminate based solely on the resistance measurements from the integrated sensors.

Keywords: braiding process, in-process sensor integration, instrumented composite material, resistance-based sensor, strain monitoring

Procedia PDF Downloads 81
6097 Effect of Fenugreek Seed with Aerobic Exercise Training on Insulin Resistance in Women with Type 2 Diabetes

Authors: M. Nasiri

Abstract:

Aim: Considering the hypoglisimic ad hipolipidimic effect of the fenugreek seed and aerobic exercise training, this study was conducted to evaluate the effect of fenugreek and aerobic exercise training on insulin resistance in women with type 2 diabetes. Methodology: 32 patients with type II diabetes were selected and randomly divided into four groups: control, fenugreek, training and fenugreek - training. Fenugreek groups used 10 grams of fenugreek seeds daily for eight weeks on two occasions before noon and evening meal. Training of groups is also performed a regular program of aerobic exercise 65-55% of maximum heart rate (4 days per week).Two days before and after the training period, blood samples were taken from their brachial veins in a fasting state (12 hours prior to the test) in a sitting position. The data was analyzed used of t-independent and ANOVA at a significance level of α < 0.05. Results: Intra-group changes in all experimental groups showed that significant decrease insulin resistance, and the difference between groups showed significant difference between the groups of fenugreek - training than other groups there. Conclusions: According to the research findings to fenugreek combined with aerobic exercise more beneficial effect on the inhibition of insulin resistance in women with diabetes are recommended to them.

Keywords: fenugreek, training, insulin resistance, diabetes

Procedia PDF Downloads 425
6096 Improving the Corrosion Resistance of Magnesium by Application of TiO₂-MgO Coatings

Authors: Eric Noe Hernandez Rodriguez, Cristian Esneider Penuela Cruz

Abstract:

Magnesium is a biocompatible and biodegradable material that has gained increased interest for application in resorbable orthopedic implants. However, to date, much research is being conducted to overcome the main disadvantage: its low corrosion resistance. In this work, we report our findings on the development and application of TiO₂-MgO coatings to improve and modulate the corrosion resistance of magnesium pieces. The plasma electrolytic oxidation (PEO) technique was employed to obtain the TiO₂-MgO coatings. The effect of the experimental parameters on the modulation of the TiO₂:MgO ratio was investigated. The most critical parameters were the chemical composition of the precursor electrolytic solution and the current density. According to scanning electron microscopy (SEM) observations, the coatings were porous; however, they become more compact as the current density increases. XRD measurements showed that the coatings are formed by a composite consisting of TiO₂ and MgO oxides, whose ratio can be changed by the experimental conditions. TiO₂ had the anatase crystalline structure, while the MgO had the FCC crystalline structure. The corrosion resistance was evaluated through the corrosion current (Icorr) measured at room temperature by the polarization technique (Tafel). For doing it, Hank's solution was used in order to simulate the body fluids. Also, immersion tests were conducted. Tafel curves showed an improvement of the corrosion resistance at some coated magnesium pieces in contrast to control pieces (uncoated). Corrosion currents were lower, and the corrosion potential changed to positive values. It was observed that the experimental parameters allowed to modulate the protective capacity of the coatings by changing the TiO₂:MgO ratio. Coatings with a higher content of TiO₂ (measured by energy dispersive spectroscopy) showed higher corrosion resistance. Results showed that TiO₂-MgO coatings can be successfully applied to improve the corrosion resistance of Mg pieces in simulated body fluid; even more, the corrosion resistance can be tuned by changing the TiO₂:MgO ratio.

Keywords: biomaterials, PEO, corrosion resistance, magnesium

Procedia PDF Downloads 79