Search results for: lipid peroxidation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 661

Search results for: lipid peroxidation

481 Hyparrhenia hirta: A Potential Protective Agent against DNA Damage and Liver Toxicity of Sodium Nitrate in Adult Rats

Authors: Hanen Bouaziz-Ketata, Ghada Ben Salah, Hichem Ben Salah, Kamel Jamoussi, Najiba Zeghal

Abstract:

The present study investigated the protective role of Hyparrhenia hirta on nitrate-induced liver damage. Experiments were carried out on adult rats divided into 3 groups, a control group and two treated groups. NaNO3 was administered daily by oral gavage at a dose of 400 mg/kg bw in treated groups either alone or coadministered with Hyparrhenia hirta methanolic extract via drinking water at a dose of 200 mg/kg bw for 50 days. Liver toxicity induced by NaNO3 was characterized by higher serum levels of glucose, total cholesterol and triglyceride and lower serum total protein than those of controls. Transaminases and lactate deshydrogenase activities in serum were elevated indicating hepatic cells’ damage after treatment with NaNO3. The hyperbilirubinemia and the increased serum gamma glutamyl transferase activities suggested the presence of cholestasis in NaNO3 exposed rats. In parallel, NaNO3 caused oxidant/antioxidant imbalance in the liver as reflected by the increased lipid peroxidation, the decreased total glutathione content and superoxide dismutase, catalase and glutathione peroxidase activities. Nitrate caused also a significant induction of DNA fragmentation as evidenced by the presence of a smear without ladder formation on agarose gel. Hyparrhenia hirta supplementation showed an improvement of all parameters cited above. We conclude that the present work provides ethnopharmacological relevance of Hyparrhenia hirta against the toxic effect of nitrate, suggesting its role as a potential antioxidant.

Keywords: Hyparrhenia hirta, liver, nitrate toxicity, oxidative stress, rat

Procedia PDF Downloads 511
480 Role of Selenium and Vitamin E in Occupational Exposure to Heavy Metals (Mercury, Lead and Cadmium): Impact of Working in Lamp Factory

Authors: Tarek Elnimr, Rabab El-kelany

Abstract:

Heavy metals are environmental contaminants that may pose long-term health risks. Unfortunately, the consequent implementation of preventive measures was generally delayed, causing important negative effects to the exposed populations. The objective of this study was to determine whether co-consumption of nutritional supplements as selenium and vitamin E would treat the hazardous effects of exposure to mercury, lead and cadmium. 108 workers (60 males and 48 females) were the subject of this study, their ages ranged from 19-63 years, (M = 29.5±10.12). They were working in lamp factory for an average of 0.5-40 years (M= 5.3±8.8). Twenty control subjects matched for age and gender were used for comparison. All workers were subjected to neuropsychiatric evaluation. General Health Questionnaire (GHQ-28) revealed that 44.4% were complaining of anxiety, 52.7% of depression, 41.6% of social dysfunction and 22.2% of somatic symptoms. Cognitive tests revealed that long-term memory was not affected significantly when compared with controls, while short term memory and perceptual ability were affected significantly. Blood metal levels were measured by Inductively Coupled Plasma – optical emission spectrometry(ICP-OES), and revealed that the mean blood mercury, lead and cadmium concentrations before treatment were 1.6 mg/l, 0.39 mg/l and 1.7 µg/l, while they decreased significantly after treatment to 1.2 mg/l, 0.29 mg/l and 1.3 µg/l respectively. Anti-oxidative enzymes (paraoxonase and catalase) and lipid peroxidation product (malondialdehyde) were measured before and after treatment with selenium and vitamin E, and showed significant improvement. It could be concluded that co-consumption of selenium and vitamin E produces significant decrease in mercury, lead and cadmium levels in blood.

Keywords: mercury, lead, cadmium, neuropsychiatric impairment, selenium, vitamin E

Procedia PDF Downloads 317
479 Protective Effect of Celosia Argentea Leaf Extract on Cadmium Induced Toxicity and Oxidative Stress in Rats

Authors: Sulyman Abdulhakeem Olarewaju, S. O. Malomo, M. T. Yakubu, J. O. Akolade

Abstract:

The ameliorative effect of Celosia argentea var. cristata leaf extract against cadmium (Cd) induced oxidative stress and toxicity in selected tissues of rats was investigated. Toxicity coupled with oxidative stress was induced in rats by oral administration of Cd (8 mg/kg b. wt). Preliminary quantitative phytochemical and in vitro antioxidant analyses showed that the methanolic extract of C. argentea leaves was constituted by polyphenols (5.72%), saponins (3.20%), tannins (0.65%) and cadenolides (0.006%). IC50 of 9800, 7406, and 45.04 μg/ml were recorded for inhibition of linoleic acid oxidation, 2, 2-diphenyl-1-picrylhydrazyl and hydrogen peroxide radicals respectively. Simultaneous administration of C. argentea leaf extract with Cd significantly attenuated Cd-induced elevation of serum enzyme markers such as aspartate and alanine transaminase, alkaline and acid phosphatase as well as γ-glutaryltransferase in a dose-dependent fashion, while their reduced level in the liver were significantly increased. Higher levels of enzymatic antioxidants; superoxide dismutase and catalase activities were observed in the liver, brain, kidney and testes of the Cd-induced rats treated with C. argentea extract, while lipid peroxidation expressed in malondialdehyde concentrations were lower when compared to values in rats administered Cd only. Other Cd-induced toxicity and stress markers in the serum viz. reduced uric acid and albumin levels as well as elevated total and unconjugated bilirubin were attenuated by the extract and their values compared favorably with those animals co-administered cadmium with ascorbic acid. Data from the study showed that oral administration of extract from the leaf C. argentea may ameliorate Cd-induced oxidative stress and toxicity in rats.

Keywords: toxicity, cadmium, celosia, antioxidants, oxidative stress

Procedia PDF Downloads 300
478 Night Shift Work as an Oxidative Stressor: A Systematic Review

Authors: Madeline Gibson

Abstract:

Night shift workers make up an essential part of the modern workforce. However, night shift workers have higher incidences of late in life diseases and earlier mortality. Night shift workers are exposed to constant light and experience circadian rhythm disruption. Sleep disruption is thought to increase oxidative stress, defined as an imbalance of excess pro-oxidative factors and reactive oxygen species over anti-oxidative activity. Oxidative stress can damage cells, proteins and DNA and can eventually lead to varied chronic diseases such as cancer, diabetes, cardiovascular disease, Alzheimer’s and dementia. This review aimed to understand whether night shift workers were at greater risk of oxidative stress and to contribute to a consensus on this relationship. Twelve studies published in 2001-2019 examining 2,081 workers were included in the review. Studies compared both the impact of working a single shift and in comparisons between those who regularly work night shifts and only day shifts. All studies had evidence to support this relationship across a range of oxidative stress indicators, including increased DNA damage, reduced DNA repair capacity, increased lipid peroxidation, higher levels of reactive oxygen species, and to a lesser extent, a reduction in antioxidant defense. This research supports the theory that melatonin and the sleep-wake cycle mediate the relationship between shift work and oxidative stress. It is concluded that night shift work increases the risk for oxidative stress and, therefore, future disease. Recommendations are made to promote the long-term health of shift workers considering these findings.

Keywords: night shift work, coxidative stress, circadian rhythm, melatonin, disease, circadian rhythm disruption

Procedia PDF Downloads 218
477 Pistachio Supplementation Ameliorates the Motor and Cognitive Deficits in Rotenone-Induced Rat Model of Parkinson’s Disease

Authors: Saida Haider, Syeda Madiha

Abstract:

Parkinson’s disease (PD) is a common neurological disorder characterized by motor deficits and loss of dopaminergic neurons. Oxidative stress is said to play a pivotal role in the pathophysiology of the disease. In the present study, PD was induced by injection of rotenone (1.5 mg/kg/day, s.c.) for eight days. Pistachio (800 mg/kg/day, p.o.) was given for two weeks. At the end of treatment brains were dissected out and striatum was isolated for biochemical and neurochemical analysis. Morris water maze (MWM) test and novel object recognition (NOR) task was used to test the memory function while motor behavior was determined by open field test (OFT), Kondziela inverted screen test (KIST), pole test (PT), beam walking test (BWT), inclined plane test (IPT) and footprint (FP) test. Several dietary components have been evaluated as potential therapeutic compounds in many neurodegenerative diseases. Increasing evidence shows that nuts have protective effects against various diseases by improving the oxidative status and reducing lipid peroxidation. Pistachio is the only nut that contains anthocyanin, a potent antioxidant having neuroprotective properties. Results showed that pistachio supplementation significantly restored the rotenone-induced motor deficits and improved the memory performance. Moreover, rats treated with pistachio also exhibited enhanced oxidative status and increased dopamine (DA) and 5-hydroxytryptamine (5-HT) concentration in striatum. In conclusion, to our best knowledge, we have for the first time shown that pistachio nut possesses neuroprotective effects against rotenone-induced motor and cognitive deficits. These beneficial effects of pistachio may be attributed to its high content of natural antioxidant and phenolic compounds. Hence, consumption of pistachio regularly as part of a daily diet can be beneficial in the prevention and treatment of PD.

Keywords: rotenone, pistachio, oxidative stress, Parkinson’s disease

Procedia PDF Downloads 81
476 In vitro Assessment of Bioactive Properties and Dose-Dependent Antioxidant Activities of Commercial Grape Cultivars in Taiwan

Authors: Kandi Sridhar, Charles Albert Linton

Abstract:

Grapes are excellent sources of bioactive compounds, which have been suggested to be responsible for lowering the risk of chronic diseases. Fresh and freeze-dried extracts of Kyoho and Jubilee, commercial grape varieties available in Taiwan and attractive for their quality berries, were investigated for their total phenolics and total flavonoids contents and related dose-dependent antioxidants properties using various in vitro assays. The efficiency of the extraction yield ranged from 7.10 % to 25.53 % (w/w), depending on solvent used. Fresh samples of Kyoho and Jubilee exhibited total polyphenolic contents (351.56 ± 23.08 and 328.67 ± 16.54 µg GAE/mL, respectively), whereas Kyoho freeze-dried methanol: water extracts contains the good levels of total flavonoids (4767.82 ± 22.20 µg QE/mL). Kyoho and Jubilee freeze-dried extracts exhibited the highest total flavonoid contents. There was a weak correlation between total phenolic and flavonoid assays (r= -0.05, R2 = 0.02, p > 0.05). Kyoho fresh and freeze-dried samples showed the DPPH (11.51 – 77.82 %), superoxide scavenging activity (33.61 – 81.95 %), and total antioxidant inhibition (92.01 – 99.28 %), respectively. Total flavonoids were statistically correlated with EC50 DPPH scavenging radicals (r =0.91, p < 0.01), EC50 nitric oxide (r = 0.25, p > 0.05), and EC50 lipid peroxidation radicals (r = 0.38, p > 0.05). These results suggested that the two commercial grape cultivars in Taiwan could be used as a good source of natural antioxidants. Thus, consumption of grapes as a source antioxidant might lower the risk of chronic diseases. Moreover, future studies will investigate and develop phenolic acid profile for the cultivars in Taiwan.

Keywords: antioxidants, EC50 radical scavenging activity, grape cultivars, total phenolics

Procedia PDF Downloads 156
475 Preliminary Assessment for Protective Effect of Rhodiola rosea in Chemically Induced Ulcerative Colitis

Authors: Santram Lodhi, Alok Pal Jain, Awesh K. Yadav, Gopal Rai

Abstract:

Rhodiola rosea L. (Crassulaceae) is commonly known as golden root or rose root. It is a perennial herbaceous plant and most investigated species of the genus Rhodiola. Rhodiola rosea contains flavonoids, terpenoids, phenylpropanoid glycosides and phenylethanol derivatives in the roots of the plant. The objective of present study was to investigate the protective effect of hydroalcoholic extract from Rhodiola rosea roots in DSS induced colitis in mice. The ulcerative colitis was induced by DSS (3%, w/v) in mice and estimated weight loss and stool consistency. Various parameters including Colon length, spleen weights and ulcer index were also measured. The histological observations were observed by H&E staining. Effect of hydroalcoholic extract on various antioxidant parameter of rat colon such as tissue myeloperoxidase (MPO), reduced GSH, SOD concentrations and lipid peroxidation were determined. Pro-inflammatory mediators, such as tumour necrosis factor-α (TNF-α) and nitric oxide (NO) were determined by ELISA. In DSS induced group, mice body weight decreased gradually as compared to the control group. Redness and edema were observed in the colons intensely and scores representing inflammation in this group. The extract treated showed with tissue levels of TNF-α, IL-6 and MPO activity were significantly (p<0.05) increased. The mice treated with higher doses of hydroalcoholic extract (300 mg/kg) significantly reduced the activity compared with standard drug sulfasalazine (100 mg/kg. B.wt). Conclusion: Results of this study were suggested that the efficacy of hydroalcoholic extract, especially at the higher dose, was similar to that of standard drug, which concerned its potential application as a natural medicine for the treatment of ulcerative colitis.

Keywords: phenylpropanoid, Rhodiola rosea, sulfasalazin, ulcerative colitis

Procedia PDF Downloads 220
474 Obesity-Associated Vitamin D Insufficiency Among Women

Authors: Archana Surendran, Kalpana C. A.

Abstract:

Vitamin D insufficiency is highly prevalent in women. Vitamin D bioavailability could be reduced in obesity due to increased sequestration by white adipose tissue. Increased sun exposure due to more frequent outdoor physical activity as well as a diet rich in vitamin D could be the common cause of both higher levels of 25(OH)D and a more favorable lipid profile. The study was conducted with the aim to assess the obesity status among selected working women in Coimbatore, determine their lifestyle and physical activity pattern, study their dietary intake, estimate the vitamin D and lipid profile of selected women and associate the relationship between Vitamin D and obesity among the selected women. A total of 100 working women (non pregnant, non lactating) working in IT sector, hotels and teaching staff were selected for the study. Anthropometric measurements and dietary recall were conducted for all. The women were further categorized as obese and non-obese based on their BMI. Fifteen obese and 15 non-obese women were selected and their fasting blood glucose level, serum Vitamin D and lipid profile were measured. Association between serum vitamin D, lipid profile, anthropometric measurements, food intake and sun exposure was correlated. Fifty six percent of women in the age group between 25-39 years and 44 percent of women in the age group between 40-45 years were obese. Waist and hip circumference of women in the age group between 40-45 years (89.7 and 107.4 cm) were higher than that of obese women in the age group between 25-39 years (88.6 and 102.8 cm). There were no women with sufficient vitamin D levels. In the age group between 40-45 years (obese women), serum Vitamin D was inversely proportional to waist-hip ratio and LDL cholesterol. There was an inverse relationship between body fat percentage and Total cholesterol with serum vitamin D among the women of the age group between 25-39 years. Consumption of milk and milk products were low among women. Intake of calcium was deficit among the women in both the age groups and showed a negative correlation. Sun exposure was less for all the women. Findings from the study revealed that obese women with a higher consumption of fat and less intake of calcium-rich foods have low serum Vitamin D levels than the non-obese women. Thus, it can be concluded that there is an association between Vitamin D status and obesity among adult women.

Keywords: obesity, sun exposure, vitamin D, women

Procedia PDF Downloads 108
473 Lipid Profile of Civil Servants in Abeokuta Ogun State Nigeria

Authors: Sunday Sedodo Nupo, Clara Berstien Oguntona, Babatunde Oguntona, Oluseyi Akinloye, P. A. Olunusi Adeboye

Abstract:

Cardiovascular diseases are now becoming dominant sources of morbidity and mortality worldwide. This study investigated the lipid profile of civil servants. A cross-sectional study was carried out among randomly selected 202 male and 298 female civil servants in Abeokuta Ogun state. A pretested structured questionnaire was used to elicit information on history of non-communicable diseases and physical activity pattern of the respondents. The blood pressures of the subjects were measured and classified using World Health Organization criteria. The total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL). Ethical approval was obtained from Ogun State Ministry of Health. Data collected were analysed using Statistical package for social science version 17.1. Results showed that majority (76%) of the subjects were within the age range of 20 - 40 years, 75% earned between N58,500 - N98,000 monthly and 68% were sedentary. The mean energy intake of men and women were 3942±38 kcal and 2791±3 kcal respectively, while the protein intake for men was 65±49 g/day and 54.28±40 g/day for women. Desirable TC level (<200 mg/dl) was found in 80% of the selected subjects while the normal TG (<150 mg/dl) and LDL (<129 mg/dl) was found in 95% and 90% subjects respectively. The mean TC was 78.91±11 mg/dl and 62.69±9 mg/dl in men and women respectively. The study showed that most of the subjects had normal lipid in terms of serum triglycerides, total cholesterol, HDL cholesterol and LDL cholesterol.

Keywords: high density lipoprotein, morbidity, mortality, triglycerides

Procedia PDF Downloads 201
472 Reversal of Testicular Damage and Subfertility by Resveratrol

Authors: Samy S. Eleawa, Mahmoud A. Alkhateeb, Fahaid H. Alhashem, Ismaeel bin-Jaliah, Hussein F. Sakr, Hesham M. Elrefaey, Abbas O. Elkarib, Mohammad A. Haidara, Abdullah S. Shatoor, Mohammad A. Khalil

Abstract:

This effect of Resveratrol (RES) against CdCl2- induced toxicity in the rat testes was investigated. Seven experimental groups of adult male rats were formulated as follows: A) Controls + NS, B) Control+ vehicle (saline solution of hydroxypropyl cyclodextrin), C) RES treated, D) CdCl2 +NS, E) CdCl2+ vehicle, F) RES followed by CdCl2 and M) CdCl2 followed by RES. At the end of the protocol, serum levels of FSH, LH, and testosterone were measured in all groups. Testicular levels of TBARS and Super Oxide Dismutase (SOD) activity were also measured. Epidydidimal semen analysis was performed and testicular expression of Bcl-2, p53 and Bax were assessed by RT-PCR. Also, histopathological changes of testes were examined microscopically and described. Pre and Post administration of RES in cadmium chloride-intoxicated rats improved semen parameters including count, motility, daily sperm production and morphology, increased serum concentrations of gonadotropins and testosterone, decreased testicular lipid peroxidation and increased SOD activity. Not only RES attenuated cadmium chloride induced testicular histopathology but was also able to protect against the onset of cadmium chloride testicular toxicity. Cadmium chloride downregulated the anti-apoptotic gene Bcl2 and upregulated the expression of both pro-apoptotic genes p53 and Bax. Resveratrol protected from and partially reversed cadmium chloride testicular via upregulation of Bcl2 and down regulation of p53 and Bax gene expression. Antioxidant activity of RES protects against cadmium chloride testicular toxicity and partially reverses its effect via upregulation of BCl2 and downregulation of p53 and Bax expression. These findings have far reaching implications on subfertility and impotency frequently seen in hypertensive as well as metabolic syndrome patients.

Keywords: resveratrol, cadmium, infertility, sperm, testis, metabolic syndrome

Procedia PDF Downloads 510
471 Nanoparticle Induced Neurotoxicity Mediated by Mitochondria

Authors: Nandini Nalika, Suhel Parvez

Abstract:

Nanotechnology has emerged to play a vital role in developing all through the industrial world with an immense production of nanomaterials including nanoparticles (NPs). Many toxicological studies have confirmed that due to unique small size and physico-chemical properties of NPs (1-100nm), they can be potentially hazardous. Metallic NPs of small size have been shown to induce higher levels of cellular oxidative stress and can easily pass through the Blood Brain Barrier (BBB) and significantly accumulate in brain. With the wide applications of titanium dioxide nanoparticles (TNPs) in day-to-day life in form of cosmetics, paints, sterilisation and so on, there is growing concern regarding the deleterious effects of TNPs on central nervous system and mitochondria appear to be important cellular organelles targeted to the pro-oxidative effects of NPs and an important source that contribute significantly for the production of reactive oxygen species after some toxicity or an injury. The aim of our study was to elucidate the effect of TNPs in anatase form with different concentrations (5-50 µg/ml) following with various oxidative stress markers in isolated brain mitochondria as an in vitro model. Oxidative stress was determined by measuring the different oxidative stress markers like lipid peroxidation as well as the protein carbonyl content which was found to be significantly increased. Reduced glutathione content and major glutathione metabolizing enzymes were also modulated signifying the role of glutathione redox cycle in the pathophysiology of TNPs. The study also includes the mitochondrial enzymes (Complex 1, Complex II, complex IV, Complex V ) and the enzymes showed toxicity in a relatively short time due to the effect of TNPs. The study provide a range of concentration that were toxic to the neuronal cells and data pointing to a general toxicity in brain mitochondria by TNPs, therefore, it is in need to consider the proper utilization of NPs in the environment.

Keywords: mitochondria, nanoparticles, brain, in vitro

Procedia PDF Downloads 366
470 Fatty Acid Extracts of Sea Pen (Virgularia gustaviana) and Their Potential Applications as Antibacterial, Antifungal, and Anti-Inflammatory Agents

Authors: Sharareh Sharifi

Abstract:

In this study, the crude extracts of Virgularia gustavina were examined as antibacterial, antifungal and anti-inflammatory agent. To assess inflammation, Xylene was applied to the ear of mice. The mice of the experimental group were fed with doses of 10 mg/kg, 20 mg/kg, and 40 mg/kg of lipid extract of chloroform and hexane as a separate group and then statistical analysis was performed on the results. Chloroform and hexane extracts of sea pen have strong anti-inflammatory effects even at low doses which is probably due to 54% arachidonic acid. Antibacterial and antifungal effects of hexane and chloroform extracts were measured with MIC and MBC methods and it is shown that chloroform extract has best activity against Staphylococcus aureus on 125 µg/ml doze in MIC method.

Keywords: sea pen (virgularia gustaviana), lipid extract, anti-inflammatory and anti-bacterial activities, fatty acid

Procedia PDF Downloads 240
469 Effects of Hydroxysafflor Yellow a (HSYA) on UVA-Induced Damage in HaCaT Keratinocytes

Authors: Szu-Chieh Yu, Pei-Chin Chiand, Chih-Yi Lin, Yi-Wen Chien

Abstract:

UV radiation from sunlight cause numbers of acute and chronic skin damage which can result in inflammation, immune changes, physical changes and DNA damage that facilitates skin aging and the development of skin carcinogenesis. Reactive oxygen species (ROS) are generated by excessive solar UV radiation, resulting in oxidative damage to cellar components, proteins, lipids, and nucleic acids. Thus, antioxidation plays an important role that protects skin against ROS-induced injury. Safflower (Carthamus tinctorius L.) is an important Chinese medicine contained abundance flavones and hydroxysafflor yellow A (HSYA) which is main active ingredient. HSYA is part of quinochalcone and has unique structures of hydroxy groups that provided the antioxidant effect. In this study, the aim was to investigate the protective role of HYSA in human keratinocytes (HaCaT) against UVA-induced oxidative damage and the possible mechanism. The HaCaT cells were UVA-irradiated and the effects of HYSA on cell viability, reactive oxygen species generation, DNA fragmentation and lipid peroxidation were measured. The mRNA expression of matrix metalloproteinase Ι (MMP Ι), cyclooxygenase-2 (COX-2) were determined by RT-PCR. In this study, UVA exposure lead to decrease in cell viability and increase in reactive oxygen species generation in HaCaT cells. HYSA could effectively increase the viability of HaCaT cells after UVA exposure and protect them from UVA-induced oxidative stress. Moreover, HYSA can reduce inflammation through inhibition the mRNA expression of MMP Ι and COX-2. Our results suggest that HSYA can act as a free radical scavenger while keratinocytes were photodamaged. HYSA could be a useful natural medicine for the protection of epidermal cells from UVA-induced damage and will be developed into products for skin care.

Keywords: HaCaT keratinocytes, hydroxysafflor yellow A (HSYA), MMP Ι, oxidative stress

Procedia PDF Downloads 359
468 Nutritional Properties and Lipid Oxidation Assessments of Sucuks Prepared with Camel (Camelus Dromedarius) Meat and Hump

Authors: Mina Kargozari, Isabel Revilla Martin, Ángel A. Carbonell-Barrachina

Abstract:

Different formulations of Turkish fermented sausages (sucuks) prepared with camel meat-hump (CH), camel meat-beef fat (CB), beef-hump (BH) and beef-beef fat (BB), were characterized. The sausages were analytically compared to determine differences in proximate composition and total cholesterol content (TCC), quality parameters such as fatty acids profile and fat quality characteristics, and lipid oxidation parameters including peroxide value, thiobarbituric acid-reactive substances (TBARS) and resulted carbonyl compounds. The PUFAs/SFAs ratio was higher in CB and BB samples than CH and BH (p<0.05). The higher calculated atherogenic and thrombogenic indexes (AI and TI) were obtained from the samples made with hump (p< 0.05) as a result of high amounts of their SFAs. The CH sausages contained high amount of total fat (p<0.05) among all samples. The CB sucuks exhibited the highest protein content and the lowest TCC and rancidity at the end of ripening (p<0.05). The TBARS results showed that beef fat samples were more susceptible to lipid oxidation. Moreover, no significant difference (p<0.05) was observed for the values of short aldehydes among the sucuk samples excepting nonanal. This study demonstrated that supplementing camel meat for the production of dry-fermented sausage resulted in high quality products with good functional and nutritional characteristics.

Keywords: fermented sausages, quality properties, SPME, total cholesterol content

Procedia PDF Downloads 296
467 Green Fruit and Vegetables Have Favorable Effects on 3-Year Changes of Cardiometabolic Risk Factors: A Cohort Study

Authors: Parvin Mirmiran, Zahra Bahadoran, Nazanin Moslehi, Fereidoun Azizi

Abstract:

Background and aim: We aimed to investigate the effects of green fruits and vegetables (green FV) consumption on the 3-year changes of cardiometabolic risk factors. Methods: This longitudinal study was conducted in the framework of Tehran Lipid and Glucose Study, between 2006-2008 and 2009-2011, on 1272 adults. Dietary intake of green FV, including green cabbage, broccoli, lettuce, celery, green beans, green peas, cucumber, leafy vegetables, zucchini, green chili and bell pepper, and kiwi fruit, has been assessed by a validated semi-quantitative food frequency questionnaire at baseline and second examination. Demographics, anthropometrics and biochemical measures were evaluated at baseline and 3 years later. The associations of cardiometabolic risk changes with mean intake of green FV were estimated. Results: The mean age of men and women at baseline was 39.8±12.7 and 37.3±12.1 years, respectively. Mean intake of green FV was 152±77 g/d. More intake from green FV was accompanied to more intake of vitamin A, α and β-carotene, lutein, β-criptoxanthine, potassium, magnesium and fiber. Consumption of green FV was inversely associated with 3-year change of waist circumference (β= -0.07, P=0.01), total cholesterol (β= -0.11, P=0.01) and triglycerides (β= -0.13, P=0.01). Each 25 g/d increase in consumption of green FV decreased the incidence of hyper-triglyceridemia by 12% (OR:0.88, 95%CI:0.71-0.99) in men. In women, no significant association was observed between consumption of green FV with cardiometabolic risk factors. Conclusion: Higher consumption of green FV could have preventive effects against abdominal fat gain and lipid disorders.

Keywords: cardiometabolic risk factors, abdominal obesity, lipid disorders, fruits, vegetables

Procedia PDF Downloads 382
466 Inhalable Lipid-Coated-Chitosan Nano-Embedded Microdroplets of an Antifungal Drug for Deep Lung Delivery

Authors: Ranjot Kaur, Om P. Katare, Anupama Sharma, Sarah R. Dennison, Kamalinder K. Singh, Bhupinder Singh

Abstract:

Respiratory microbial infections being among the top leading cause of death worldwide are difficult to treat as the microbes reside deep inside the airways, where only a small fraction of drug can access after traditional oral or parenteral routes. As a result, high doses of drugs are required to maintain drug levels above minimum inhibitory concentrations (MIC) at the infection site, unfortunately leading to severe systemic side-effects. Therefore, delivering antimicrobials directly to the respiratory tract provides an attractive way out in such situations. In this context, current study embarks on the systematic development of lung lia pid-modified chitosan nanoparticles for inhalation of voriconazole. Following the principles of quality by design, the chitosan nanoparticles were prepared by ionic gelation method and further coated with major lung lipid by precipitation method. The factor screening studies were performed by fractional factorial design, followed by optimization of the nanoparticles by Box-Behnken Design. The optimized formulation has a particle size range of 170-180nm, PDI 0.3-0.4, zeta potential 14-17, entrapment efficiency 45-50% and drug loading of 3-5%. The presence of a lipid coating was confirmed by FESEM, FTIR, and X-RD. Furthermore, the nanoparticles were found to be safe upto 40µg/ml on A549 and Calu-3 cell lines. The quantitative and qualitative uptake studies also revealed the uptake of nanoparticles in lung epithelial cells. Moreover, the data from Spraytec and next-generation impactor studies confirmed the deposition of nanoparticles in lower airways. Also, the interaction of nanoparticles with DPPC monolayers signifies its biocompatibility with lungs. Overall, the study describes the methodology and potential of lipid-coated chitosan nanoparticles in futuristic inhalation nanomedicine for the management of pulmonary aspergillosis.

Keywords: dipalmitoylphosphatidylcholine, nebulization, DPPC monolayers, quality-by-design

Procedia PDF Downloads 112
465 Exercise and Aging Process Related to Oxidative Stress

Authors: B. Dejanova, S. Petrovska, L. Todorovska, J. Pluncevic, S. Mancevska, V. Antevska, E. Sivevska, I. Karagjozova

Abstract:

Introduction: Aging process is mainly related to endothelial function which may be impaired by oxidative stress (OS). Exercise is known to be beneficial to aging process, which may improve health and prevent appearance of chronic diseases in elderly. The aim of the study was to investigate the OS markers related to exercise. Methods: A number of 80 subjects (healthy volunteers) were examined (38 male and 32 female), divided in 3 age groups: group I ≤ 30 years (n=24); group II – 31-50 years (n=24); group III - ≥ 51 year (n=32). Each group was divided to subgroups of sedentary subjects (SS) and subjects who exercise (SE). Group I: SS (n=11), SE (n=13); group II: SS (n=13), SE (n=10); group III: SS (n=23) SE (n=9). Lipid peroxidation (LP) as a fluorimetric method with thiobarbituric acid was used to estimate OS. Antioxidative status was determined by cell antioxidants such as enzymes - superoxide dismutase (SOD), glutathione peroxidase (GPx) and glucose 6 phosphate (G-6-PD); and by extra cell antioxidants such as glutathione reductase (GR), nitric oxide (NO) and total antioxidant capacity (TAC). Results: Increased values of LP were noticed along the aging process: group I – 3.30±0.3 µmol/L; group II – 3.91±0.2 µmol/L; group III – 3.94±0.8 µmol/L (p<0.05), while no statistical significance was found between male and female subjects. Statistical significance for OS was not found between SS and SE in group I as it was found in group II (p<0.05) and in group III (p<0.01). No statistical significance was found for all cell antioxidants and GR within the groups, while NO and TAC showed lower values in SS compared to SE in II (p<0.05) and in group III (p<0.05). Discussion and conclusion: Aging process showed increased OS which may be either due to impaired function of scavengers of free radicals or due to their enormous production. Well balanced exercise might be one of the factors that keep the integrity of blood vessel endothelium which slows down the aging process. Possible mechanism of exercise beneficial influence is shear stress by upregulation of genes coding for nitric oxide bioavailability. Thus, due to obtained results we may conclude that OS is found to be diminished in the subject groups who perform exercise.

Keywords: oxidative stress, aging process, exercise, endothelial function

Procedia PDF Downloads 361
464 Investigation of Nutritional Values, Sensorial, Flesh Productivity of Parapenaus longirostris between Populations in the Sea of Marmara and in the Northern Aegean Sea

Authors: Onur Gönülal, Zafer Ceylan, Gülgün F. Unal Sengor

Abstract:

The differences of Parapenaus longirostris caught from The North Aegean Sea and the Marmara Sea on proximate composition, sensorial analysis (for raw and cooked samples), flesh productivity of the samples were investigated. The moisture, protein, lipid, ash, carbohydrate, energy contents of shrimp caught from The North Aegean Sea were 74.92 ± 0.1, 20.32 ± 0.16, 2.55 ± 0.1, 2.13 ± 0.08, 0.08, 110.1 kcal/100g, respectively. The moisture, protein, lipid, ash, carbohydrate, energy contents of shrimp caught from Marmara Sea were 76.9 ± 0.02, 19.06 ± 0.03, 2.22 ± 0.08, 1.51 ± 0.04, 0.33, 102.77 kcal/100g, respectively. The protein, lipid, ash and energy values of the Northern Aegean Sea shrimp were higher than The Marmara Sea shrimp. On the other hand, The moisture, carbohydrate values of the Northern Aegean Sea shrimp were lower than the other one. Sensorial analysis was done for raw and cooked samples. Among all properties for raw samples, flesh color, shrimp connective tissue, shrimp body parameters were found different each other according to the result of the panel. According to the result of the cooked shrimp samples among all properties, cooked odour, flavours, texture were found to be different from each other, as well. Especially, flavours and textural properties of cooked shrimps of the Northern Aegean Sea were higher than the Marmara Sea shrimp. Flesh productivity of Northern Aegean Sea shrimp was found as 46.42 %, while that of the Marmara Sea shrimp was found as 47.74 %.

Keywords: shrimp, biological differences, proximate value, sensory, Parapenaus longirostris, flesh productivity

Procedia PDF Downloads 253
463 Protective Effects of Coenzyme Q10 and N-Acetylcysteine on Myocardial Oxidative Stress, Inflammation, and Impaired Energy metabolism in Carbon Tetrachloride Intoxicated Rats

Authors: Nayira A. Abd Elbaky, Amal J. Fatani, Hazar Yaqub, Nouf M. Al-Rasheed, Naglaa El-Orabi, Mai Osman

Abstract:

The present work is aimed to evaluate the protective effect of N-acetyl cystiene (NAC), coenzyme Q10 (CoQ10), and their combination against carbon tetrachloride (CCl4)-induced cardiotoxicity in rats. CCl4 treatment significantly elevated the levels of cardiac oxidative stress bio markers including nitric oxide (NO) and malondialdehyde (MDA). A concomitant decrease in the level of reduced glutathione and the activity of membrane bound enzyme, calcium-adenosine triphosphatase were observed in the hearts of rats exposed to CCl4 compared to respective values in normal group. Quantitative analysis of myocardial energy metabolism revealed a significant decrease in the glucose content coupled with depletion in the activities of myocardial glycolytic enzymes as hexokinase (HK), phosphofructokinase (PFK) and lactate dehydrogenase (LDH) after CCl4 treatment. In addition, a significant elevation in myocardial hydroxyproline level was observed in CCl4 intoxicated rats indicating interstitial collagen accumulation. Pretreatment with either NAC, CoQ10 or their combination successively alleviated the alterations in myocardial oxidative stress and antioxidant markers, as well as effectively up-regulated the decrease in cardiac energetic biomarkers in CCl4 intoxicated rats. Moreover, these antioxidants markedly reduced myocardial hydroxyproline level versus that of CCl4-treated animals. In conclusion, the present results illustrated that the prophylactic use of the current antioxidant resulted in a remarkable cardioprotective effect against CCl4 induced myocardial damage, which suggest that they may candidates as prophylactic agents against different cardio-toxins.

Keywords: carbon tetrachloride, lipid peroxidation, antioxidant, energy metabolism, hydroxyproline

Procedia PDF Downloads 375
462 Preparation and in vivo Assessment of Nystatin-Loaded Solid Lipid Nanoparticles for Topical Delivery against Cutaneous Candidiasis

Authors: Rawia M. Khalil, Ahmed A. Abd El Rahman, Mahfouz A. Kassem, Mohamed S. El Ridi, Mona M. Abou Samra, Ghada E. A. Awad, Soheir S. Mansy

Abstract:

Solid lipid nanoparticles (SLNs) have gained great attention for the topical treatment of skin associated fungal infection as they facilitate the skin penetration of loaded drugs. Our work deals with the preparation of nystatin loaded solid lipid nanoparticles (NystSLNs) using the hot homogenization and ultrasonication method. The prepared NystSLNs were characterized in terms of entrapment efficiency, particle size, zeta potential, transmission electron microscopy, differential scanning calorimetry, rheological behavior and in vitro drug release. A stability study for 6 months was performed. A microbiological study was conducted in male rats infected with Candida albicans, by counting the colonies and examining the histopathological changes induced on the skin of infected rats. The results showed that SLNs dispersions are spherical in shape with particle size ranging from 83.26±11.33 to 955.04±1.09 nm. The entrapment efficiencies are ranging from 19.73±1.21 to 72.46±0.66% with zeta potential ranging from -18.9 to -38.8 mV and shear-thinning rheological Behavior. The stability studies done for 6 months showed that nystatin (Nyst) is a good candidate for topical SLN formulations. A least number of colony forming unit/ ml (cfu/ml) was recorded for the selected NystSLN compared to the drug solution and the commercial Nystatin® cream present in the market. It can be fulfilled from this work that SLNs provide a good skin targeting effect and may represent promising carrier for topical delivery of Nyst offering the sustained release and maintaining the localized effect, resulting in an effective treatment of cutaneous fungal infection.

Keywords: candida infections, hot homogenization, nystatin, solid lipid nanoparticles, stability, topical delivery

Procedia PDF Downloads 360
461 A New Cytoprotective Drug on the Basis of Cytisine: Phase I Clinical Trial Results

Authors: B. Yermekbayeva, A. Gulyayaev, T. Nurgozhin, C. Bektur

Abstract:

Cytisine aminophosphonate under the name "Cytafat" was approved for clinical trials in Republic of Kazakhstan as a putative liver protecting drug for the treatment of acute toxic hepatitis. A method of conducting the clinical trial is a double blind study. Total number of patients -71, aged from 16 to 56 years. Research on healthy volunteers determined the maximal tolerable doze of "Cytafat" as 200 mg/kg. Side effects when administered at high dozes (100-200 mg/kg) are tachycardia and increase of arterial blood pressure. The drug is tested in the treatment of 28 patients with a syndrome of hepatocellular failure (a poisoning with substitutes of alcohol, rat poison, or medical products). "Cytafat" was intravenously administered at a dose of 10 mg/kg in 200 ml of 5 % glucose solution once daily. The number of administrations: 1-3. In the comparison group, 23 patients were treated intravenously once a day with “Essenciale H” at a dose of 10 ml. 20 patients received a placebo (10 ml of glucose intravenously). In all cases of toxic hepatopathology the significant positive clinical effect of the testing drug distinguishable from placebo and surpassing the alternative was observed. Within a day after administration a sharp reduction of cytolitic syndrome parameters (ALT, AST, alkaline phosphatase, thymol turbidity test, GGT) was registered, a reduction of the severity of cholestatic syndrome (bilirubin decreased) was recorded, significantly decreased indices of lipid peroxidation. The following day, in all cases the positive dynamics was determined with ultrasound study (reduction of diffuse changes and events of reactive pancreatitis), hepatomegaly disappeared. Normalization of all parameters occurred in 2-3 times faster, than when using the drug "Essenciale H" and placebo. Average term of elimination of toxic hepatopathy when using the drug "Cytafat" -2,8 days, "Essenciale H" -7,2 days, and placebo -10,6 days. The new drug "Cytafat" has expressed cytoprotective properties.

Keywords: cytisine, cytoprotection, hepatopathy, hepatoprotection

Procedia PDF Downloads 338
460 Relationship of Oxidative Stress to Elevated Homocysteine and DNA Damage in Coronary Artery Disease Patients

Authors: Shazia Anwer Bukhari, Madiha Javeed Ghani, Muhammad Ibrahim Rajoka

Abstract:

Objective: Biochemical, environmental, physical and genetic factors have a strong effect on the development of coronary disease (CAD). Plasma homocysteine (Hcy) level and DNA damage play a pivotal role in its development and progression. The aim of this study was to investigate the predictive strength of an oxidative stress, clinical biomarkers and total antioxidant status (TAS) in CAD patients to find the correlation of homocysteine, TOS and oxidative DNA damage with other clinical parameters. Methods: Sixty confirmed patients with CAD and 60 healthy individuals as control were included in this study. Different clinical and laboratory parameters were studied in blood samples obtained from patients and control subjects using commercially available biochemical kits and statistical software Results: As compared to healthy individuals, CAD patients had significantly higher concentrations of indices of oxidative stress: homocysteine (P=0.0001), total oxidative stress (TOS) (P=0.0001), serum cholesterol (P=0.04), low density lipoprotein cholesterol (LDL) (P=0.01), high density lipoprotein-cholesterol (HDL) (P=0.0001), and malondialdehyde (MDA) (P=0.001) than those of healthy individuals. Plasma homocysteine level and oxidative DNA damage were positively correlated with cholesterol, triglycerides, systolic blood pressure, urea, total protein and albumin (P values= 0.05). Both Hcy and oxidative DNA damage were negatively correlated with TAS and proteins. Conclusion: Coronary artery disease patients had a significant increase in homocysteine level and DNA damage due to increased oxidative stress. In conclusion, our study shows a significantly increase in lipid peroxidation, TOS, homocysteine and DNA damage in the erythrocytes of patients with CAD. A significant decrease level of HDL-C and TAS was observed only in CAD patients. Therefore these biomarkers may be useful diagnosis of patients with CAD and play an important role in the pathogenesis of CAD.

Keywords: antioxidants, coronary artery disease, DNA damage, homocysteine, oxidative stress, malondialdehyde, 8-Hydroxy-2’deoxyguanosine

Procedia PDF Downloads 459
459 Promotion of Lipid Syntheses of Microalgae by Microfluidic-Assisted Membrane Distortion

Authors: Seul Ki Min, Gwang Heum Yoon, Jung Hyun Joo, Hwa Sung Shin

Abstract:

Cellular membrane distortion is known as a factor to change intracellular signaling. However, progress of relevant studies is difficult because there are no facilities that can control membrane distortion finely. In this study, we developed microfluidic device which can inflict mechanical stress on cell membrane of Chlamydomonas reinhardtii using regular height of the channels. And cellular physiological changes were analyzed from cells cultured in the device. Excessive calcium ion influx through into cytoplasm was induced from mechanical stress. The results revealed that compressed cells had up-regulated Mat3 mRNA which regulates cell size and cell cycle from a prolonged G1 phase. Additionally, TAG used for the production of biodiesel was raised rapidly from 4 h after compression. Taken together, membrane distortion can be considered as an attractive inducer for biofuel production.

Keywords: mechanical stress, membrane distortion, Chlamydomonas reinhardtii, deflagellation, cell cycle, lipid metabolism

Procedia PDF Downloads 341
458 Renoprotective Effect of Alcoholic Extract of Bacopa monnieri via Inhibition of Advanced Glycation End Products and Oxidative Stress in Stz-Nicotinamide Induced Diabetic Nephropathy

Authors: Lalit Kishore, Randhir Singh

Abstract:

Diabetic nephropathy (DN) is the major cause of morbidity among diabetic patients. In this study, the effect of Bacopa monnieri Linn. (Brahmi, BM), was studied in a Streptozotocin (STZ)-induced experimental rat model of DN. Diabetic nephropathy was induced in Male Wistar rats (body weight- 300± 10 gms) by single intra-peritoneal injection of STZ (45mg/kg, i.p.) after 15 min of Nicotinamide (230 mg/kg) administration. Different doses of alcoholic extract i.e. 100, 200 and 400 mg/kg was given for 45 days by oral gavage after induction of DN. Blood glucose level, serum insulin, glycosylated haemoglobin, renal parameters (serum urea, uric acid, creatinine and BUN) and lipid profile (total cholesterol, triglycerides, HDL, LDL and VLDL levels) were measured. Concentration of thiobarbituric acid reactive species (TBARS) and levels of antioxidant enzymes of reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) were evaluated in the kidney, liver and pancreas. At the end of treatment period the alcoholic extract of BM reduced the elevated level of blood glucose, serum insulin, renal parameters, lipid levels, TBARS, AGE’s in kidney and significantly increased body weight, HDL and antioxidant enzymes in dose dependent manner as compared to diabetic control animals. These results suggested the BM possesses significant renoprotective activity.

Keywords: AGE's, lipid profile, oxidative stress, renal parameters

Procedia PDF Downloads 287
457 Surface Modified Core–Shell Type Lipid–Polymer Hybrid Nanoparticles of Trans-Resveratrol, an Anticancer Agent, for Long Circulation and Improved Efficacy against MCF-7 Cells

Authors: M. R. Vijayakumar, K. Priyanka, Ramoji Kosuru, Lakshmi, Sanjay Singh

Abstract:

Trans resveratrol (RES) is a non-flavonoid poly-phenolic compound proved for its therapeutic and preventive effect against various types of cancer. However, the practical application of RES in cancer treatment is limited because of its higher dose (up to 7.5 g/day in humans), low biological half life, rapid metabolism and faster elimination in mammals. PEGylated core-shell type lipid polymer hybrid nanoparticles are the novel drug delivery systems for long circulation and improved anti cancer effect of its therapeutic payloads. Therefore, the main objective of this study is to extend the biological half life (long circulation) and improve the therapeutic efficacy of RES through core shell type of nanoparticles. D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS), a novel surfactant is applied for the preparation of PEGylated lipid polymer hybrid nanoparticles. The prepared nanoparticles were evaluated by various state of the art techniques such as dynamic light scattering (DLS) technique for particle size and zeta potential, TEM for shape, differential scanning calorimetry (DSC) for interaction analysis and XRD for crystalline changes of drug. Entrapment efficiency and invitro drug release were determined by ultracentrifugation method and dialysis bag method, respectively. Cancer cell viability studies were performed by MTT assay, respectively. Pharmacokinetic studies after i.v administration were performed in sprague dawley rats. The prepared NPs were found to be spherical in shape with smooth surfaces. Particle size and zeta potential of prepared NPs were found to be in the range of 179.2±7.45 to 266.8±9.61 nm and -0.63 to -48.35 mV, respectively. DSC revealed absence of potential interaction. XRD study revealed presence of amorphous form in nanoparticles. Entrapment efficiency was found to be 83.7 % and drug release was found to be in controlled manner. MTT assay showed low MEC and pharmacokinetic studies showed higher AUC of nanoformulaition than its pristine drug. All these studies revealed that the RES loaded PEG modified core-shell type lipid polymer hybrid nanoparticles can be an alternative tool for chemopreventive and therapeutic application of RES in cancer.

Keywords: trans resveratrol, cancer nanotechnology, long circulating nanoparticles, bioavailability enhancement, core shell nanoparticles, lipid polymer hybrid nanoparticles

Procedia PDF Downloads 445
456 Effect of Anionic Lipid on Zeta Potential Values and Physical Stability of Liposomal Amikacin

Authors: Yulistiani, Muhammad Amin, Fasich

Abstract:

A surface charge of the nanoparticle is a very important consideration in pulmonal drug delivery system. The zeta potential (ZP) is related to the surface charge which can predict stability of nanoparticles as nebules of liposomal amikacin. Anionic lipid such as 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) is expected to contribute to the physical stability of liposomal amikacin and the optimal ZP value. Suitable ZP can improve drug release profiles at specific sites in alveoli as well as their stability in dosage form. This study aimed to analyze the effect of DPPG on ZP values and physical stability of liposomal amikacin. Liposomes were prepared by using the reserved phase evaporation method. Liposomes consisting of DPPG, 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), cholesterol and amikacin were formulated in five different compositions 0/150/5/100, 10//150/5/100, 20/150/5/100, 30/150/5/100 and 40/150/5/100 (w/v) respectively. A chloroform/methanol mixture in the ratio of 1 : 1 (v/v) was used as solvent to dissolve lipids. These systems were adjusted in the phosphate buffer at pH 7.4. Nebules of liposomal amikacin were produced by using the vibrating nebulizer and then characterized by the X-ray diffraction, differential scanning calorimetry, particle size and zeta potential analyzer, and scanning electron microscope. Amikacin concentration from liposome leakage was determined by the immunoassay method. The study revealed that presence of DPPG could increase the ZP value. The addition of 10 mg DPPG in the composition resulted in increasing of ZP value to 3.70 mV (negatively charged). The optimum ZP value was reached at -28.780 ± 0.70 mV and particle size of nebules 461.70 ± 21.79 nm. Nebulizing process altered parameters such as particle size, conformation of lipid components and the amount of surface charges of nanoparticles which could influence the ZP value. These parameters might have profound effects on the application of nebules in the alveoli; however, negatively charge nanoparticles were unexpected to have a high ZP value in this system due to increased macrophage uptake and pulmonal clearance. Therefore, the ratio of liposome 20/150/5/100 (w/v) resulted in the most stable colloidal system and might be applicable to pulmonal drug delivery system.

Keywords: anionic lipid, dipalmitoylphosphatidylglycerol, liposomal amikacin, stability, zeta potential

Procedia PDF Downloads 315
455 Antioxydant Properties and Gastroprotective Effect of Rosa canina Aqueous Extract against Alcohol-Induced Ulceration and Oxidative Stress in Rat Model

Authors: H. Sebai, M. A. Jabria, D. Wannes, H. Tounsi, L. Marzouki

Abstract:

We aimed in the present study to investigate the protective effects of Tunisian Rosa canina aqueous extract (RCAE) against ethanol-induced gastric ulceration and oxidative stress in a rat model. In this respect, adult male Wistar rats were used and divided into six groups of ten each: control, EtOH, EtOH plus various doses of RCAE, EtOH plus famotidine and EtOH + gallic acid. Phytochemical and biochemical analysis were performed using colorimetric methods. We found that RCAE is rich in total polyphenols, total flavonoids, and condensed tannins, and exhibited an importance in vitro antioxidant activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. In vivo, the results showed that oral administration of EtOH caused macroscopic and histological changes in gastric mucosa. These injuries are accompanied by an oxidative stress status as assessed by an increase of lipid peroxidation as well as a decrease of antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Alcohol intoxication also induced intracellular mediators deregulation as assessed by an increase of hydrogen peroxide (H2O2), calcium and free iron levels in gastric mucosa. More, importantly, RCAE pretreatment reversed all macroscopic, histological and biochemical changes induced by EtOH administration. In conclusion, we suggest that RCAE has potent protective effects on acute ethanol-induced gastric ulceration related in part in part its antioxidant properties and its opposite effect on intracellular mediators. Indeed, Rosa canina can be offered as a food additive to protect against alcohol consumption-induced gastric and oxidative damage.

Keywords: alcohol, antioxidant properties, food additive, gastric ulceration, rat model, Rosa canina

Procedia PDF Downloads 161
454 Toxic Chemicals from Industries into Pacific Biota. Investigation of Polychlorinated Biphenyls (PCBs), Dioxins (PCDD), Furans (PCDF) and Polybrominated Diphenyls (PBDE No. 47) in Tuna and Shellfish in Kiribati, Solomon Islands and the Fiji Islands

Authors: Waisea Votadroka, Bert Van Bavel

Abstract:

The most commonly consumed shellfish species produced in the Pacific, shellfish and tuna fish, were investigated for the occurrence of a range of brominated and chlorinated contaminants in order to establish current levels. Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were analysed in the muscle of tuna species Katsuwonis pelamis, yellow fin tuna, and shellfish species from the Fiji Islands. The investigation of polychlorinated biphenyls (PCBs), furans (PCDFs) and polybrominated diphenylethers (PBDE No.47) in tuna and shellfish in Kiribati, Solomon Islands and Fiji is necessary due to the lack of research data in the Pacific region. The health risks involved in the consumption of marine foods laced with toxic organo-chlorinated and brominated compounds makes in the analyses of these compounds in marine foods important particularly when Pacific communities rely on these resources as their main diet. The samples were homogenized in a motor with anhydrous sodium sulphate in the ratio of 1:3 (muscle) and 1:4-1:5 (roe and butter). The tuna and shellfish samples were homogenized and freeze dried at the sampling location at the Institute of Applied Science, Fiji. All samples were stored in amber glss jars at -18 ° C until extraction at Orebro University. PCDD/Fs, PCBs and pesticides were all analysed using an Autospec Ultina HRGC/HRMS operating at 10,000 resolutions with EI ionization at 35 eV. All the measurements were performed in the selective ion recording mode (SIR), monitoring the two most abundant ions of the molecular cluster (PCDD/Fs and PCBs). Results indicated that the Fiji Composite sample for Batissa violacea range 0.7-238.6 pg/g lipid; Fiji sample composite Anadara antiquate range 1.6 – 808.6 pg/g lipid; Solomon Islands Katsuwonis Pelamis 7.5-3770.7 pg/g lipid; Solomon Islands Yellow Fin tuna 2.1 -778.4 pg/g lipid; Kiribati Katsuwonis Pelamis 4.8-1410 pg/g lipids. The study has demonstrated that these species are good bio-indicators of the presence of these toxic organic pollutants in edible marine foods. Our results suggest that for pesticides levels, p,p-DDE is the most dominant for all the groups and seems to be highest at 565.48 pg/g lipid in composite Batissa violacea from Fiji. For PBDE no.47 in comparing all samples, the composite Batissa violacea from Fiji had the highest level of 118.20 pg/g lipid. Based upon this study, the contamination levels found in the study species were quite lower compared with levels reported in impacted ecosystems around the world

Keywords: polychlorinated biphenyl, polybrominated diphenylethers, pesticides, organoclorinated pesticides, PBDEs

Procedia PDF Downloads 350
453 Physicochemical and Biochemical Characterization of Olea europea Var. Oleaster Oil and Determination of Its Effects on Blood Parameters

Authors: Asma Gherib, Imen Merzougui, Cherifa Henchiri

Abstract:

This present study has allowed to evaluate the physico chemical characteristics, fatty acid composition and the hypolipidemic effect of Oleaster oil Olea europea var. Oleaster, from the area of El Kala, "Eastern Algeria" on rats "Wistar albinos". The physico chemical characteristics: acidity (0,73%), peroxide value (14, 16 meqO2/kg oil) and iodine value (74,08 g iodine/100 g of oil) are consistent with international standards. The dosage of FA revealed a wealth of oil with UFA (76,7%), mainly composed of 65.43% of MUFA whose major fatty acid is oleic acid (63,57%). The experiment on rats receiving a diet rich in saturated fats and hydrogenated oils revealed that the consumption of Oleaster oil at the dose of 10 g and 20 g for 15 and 30 days improves plasma lipid profile by decreasing the rates of TC, TG, TL, and LDL-C with an increase in the rate of HDL-C serum. The importance of these effects depends on the dose and period of treatment.

Keywords: oleaster oil, fatty acid, Olea europea, oleic acid, lipid profile

Procedia PDF Downloads 443
452 Copper Chelation by 3-(Bromoacetyl) Coumarin Derivative Induced Apoptosis in Cancer Cells: Influence of Copper Chelation Strategy in Cancer Treatment

Authors: Saman Khan, Imrana Naseem

Abstract:

Copper is an essential trace element required for pro-angiogenic co-factors including vascular endothelial growth factor (VEGF). Elevated levels of copper are found in various types of cancer including prostrate, colon, breast, lung and liver for angiogensis and metastasis. Therefore, targeting copper via copper-specific chelators in cancer cells can be developed as effective anticancer treatment strategy. In continuation of our pursuit to design and synthesize copper chelators, herein we opted for a reaction to incorporate di-(2-picolyl) amine in 3-(bromoacetyl) coumarin (parent backbone) for the synthesis of complex 1. We evaluated lipid peroxidation, protein carbonylation, ROS generation, DNA damage and consequent apoptosis by complex 1 in exogenously added Cu(II) in human peripheral lymphocytes (simulate malignancy condition). Results showed that Cu(II)-complex 1 interaction leads to cell proliferation inhibition, apoptosis, ROS generation and DNA damage in human lymphocytes, and these effects were abrogated by cuprous chelator neocuproine and ROS scavengers (thiourea, catalase, SOD). This indicates that complex 1 cytotoxicity is due to redox cycling of copper to generate ROS which leads to pro-oxidant cell death in cancer cells. To further confirm our hypothesis, using the rat model of diethylnitrosamine (DEN) induced hepatocellular carcinoma; we showed that complex 1 mediates DNA breakage and cell death in isolated carcinoma cells. Membrane permeant copper chelator, neocuproine, and ROS scavengers inhibited the complex 1-mediated cellular DNA degradation and apoptosis. In summary, complex 1 anticancer activity is due to its copper chelation capability. These results will provide copper chelation as an effective targeted cancer treatment strategy for selective cytotoxic action against malignant cells without affecting normal cells.

Keywords: cancer treatment, copper chelation, ROS generation, DNA damage, redox cycling, apoptosis

Procedia PDF Downloads 265