Search results for: cast
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 329

Search results for: cast

239 Experimental and Theoretical Study on Flexural Behaviors of Reinforced Concrete Cement (RCC) Beams by Using Carbonfiber Reinforcedpolymer (CFRP) Laminate as Retrofitting and Rehabilitation Method

Authors: Fils Olivier Kamanzi

Abstract:

This research Paper shows that materials CFRP were used to rehabilitate 9 Beams and retrofitting of 9 Beams with size (125x250x2300) mm each for M50 grade of concrete with 20% of Volume of Cement replaced by GGBS as a mineral Admixture. Superplasticizer (ForscoConplast SP430) used to reduce the water-cement ratio and maintaining good workability of fresh concrete (Slump test 57mm). Concrete Mix ratio 1:1.56:2.66 with a water-cement ratio of 0.31(ACI codebooks). A sample of 6cubes sized (150X150X150) mm, 6cylinders sized (150ФX300H) mm and 6Prisms sized (100X100X500) mm were cast, cured, and tested for 7,14&28days by compressive, tensile and flexure test; finally, mix design reaches the compressive strength of 59.84N/mm2. 21 Beams were cast and cured for up to 28 days, 3Beams were tested by a two-point loading machine as Control beams. 9 Beams were distressed in flexure by adopting failure up to final Yielding point under two-point loading conditions by taking 90% off Ultimate load. Three sets, each composed of three distressed beams, were rehabilitated by using CFRP sheets, one, two & three layers, respectively, and after being retested up to failure mode. Another three sets were freshly retrofitted also by using CFRP sheets one, two & three layers, respectively, and being tested by a two-point load method of compression strength testing machine. The aim of this study is to determine the flexural Strength & behaviors of repaired and retrofitted Beams by CFRP sheets for gaining good strength and considering economic aspects. The results show that rehabilitated beams increase its strength 47 %, 78 % & 89 %, respectively, to thickness of CFRP sheets and 41%, 51 %& 68 %, respectively too, for retrofitted Beams. The conclusion is that three layers of CFRP sheets are the best applicable in repairing and retrofitting the bonded beams method.

Keywords: retrofitting, rehabilitation, cfrp, rcc beam, flexural strength and behaviors, ggbs, and epoxy resin

Procedia PDF Downloads 69
238 Heat Loss Control in Stave Cooled Blast Furnace by Optimizing Gas Flow Pattern through Burden Distribution

Authors: Basant Kumar Singh, S. Subhachandhar, Vineet Ranjan Tripathi, Amit Kumar Singh, Uttam Singh, Santosh Kumar Lal

Abstract:

Productivity of Blast Furnace is largely impacted by fuel efficiency and controlling heat loss is one of the enabling parameters for achieving lower fuel rate. 'I' Blast Furnace is the latest and largest Blast Furnace of Tata Steel Jamshedpur with working volume of 3230 m³ and with rated capacity of 3.055 million tons per annum. Optimizing heat losses in Belly and Bosh zone remained major challenge for blast furnace operators after its commissioning. 'I' Blast has installed Cast Iron & Copper Staves cooling members where copper staves are installed in Belly, Bosh & Lower Stack whereas cast iron staves are installed in upper stack area. Stave cooled Blast Furnaces are prone to higher heat losses in Belly and Bosh region with an increase in coal injection rate as Bosh gas volume increases. Under these conditions, managing gas flow pattern through proper burden distribution, casting techniques & by maintaining desired raw material qualities are of utmost importance for sustaining high injection rates. This study details, the burden distribution control by Ore & Coke ratio adjustment at wall and center of Blast Furnace as the coal injection rates increased from 140 kg/thm to 210 kg/thm. Control of blowing parameters, casting philosophy, specification for raw materials & devising operational practice for controlling heat losses is also elaborated with the model that is used to visualize heat loss pattern in different zones of Blast Furnace.

Keywords: blast furnace, staves, gas flow pattern, belly/bosh heat losses, ore/coke ratio, blowing parameters, casting, operation practice

Procedia PDF Downloads 324
237 Everolimus Loaded Polyvinyl Alcohol Microspheres for Sustained Drug Delivery in the Treatment of Subependymal Giant Cell Astrocytoma

Authors: Lynn Louis, Bor Shin Chee, Marion McAfee, Michael Nugent

Abstract:

This article aims to develop a sustained release formulation of microspheres containing the mTOR inhibitor Everolimus (EVR) using Polyvinyl alcohol (PVA) to enhance the bioavailability of the drug and to overcome poor solubility characteristics of Everolimus. This paper builds on recent work in the manufacture of microspheres using the sessile droplet technique by freezing the polymer-drug solution by suspending the droplets into pre-cooled ethanol vials immersed in liquid nitrogen. The spheres were subjected to 6 freezing cycles and 3 freezing cycles with thawing to obtain proper geometry, prevent aggregation, and achieve physical cross-linking. The prepared microspheres were characterised for surface morphology by SEM, where a 3-D porous structure was observed. The in vitro release studies showed a 62.17% release over 12.5 days, indicating a sustained release due to good encapsulation. This result is comparatively much more than the 49.06% release achieved within 4 hours from the solvent cast Everolimus film as a control with no freeze-thaw cycles performed. The solvent cast films were made in this work for comparison. A prolonged release of Everolimus using a polymer-based drug delivery system is essential to reach optimal therapeutic concentrations in treating SEGA tumours without systemic exposure. These results suggest that the combination of PVA and Everolimus via a rheological synergism enhanced the bioavailability of the hydrophobic drug Everolimus. Physical-chemical characterisation using DSC and FTIR analysis showed compatibility of the drug with the polymer, and the stability of the drug was maintained owing to the high molecular weight of the PVA. The obtained results indicate that the developed PVA/EVR microsphere is highly suitable as a potential drug delivery system with improved bioavailability in treating Subependymal Giant cell astrocytoma (SEGA).

Keywords: drug delivery system, everolimus, freeze-thaw cycles, polyvinyl alcohol

Procedia PDF Downloads 83
236 “Everything, Everywhere, All at Once” Hollywoodization and Lack of Authenticity in Today’s Mainstream Cinema

Authors: Haniyeh Parhizkar

Abstract:

When Sarris came up with the "auteur theory" in 1962, he emphasized that the utmost premise of auteur theory is the inner meanings and concepts of a film and that a film is purely an art form. Today's mainstream movies are conceptually closer to what the Frankfurt School scholars regarded as "reproduced" and "mass culture" years ago. Hollywood goes on to be a huge movie-making machine that leads the dominant paradigms of films throughout the world and cinema is far from art. Although there are still movies, directors, and audiences who favor art cinema over Hollywood and mainstream movies, it's an almost undeniable fact that, for the most part, people's perception of movies is widely influenced by their American depiction and Hollywood's legacy of mass culture. With the uprising of Hollywood studios as the forerunners of the movie industry and cinema being largely dependent on economics rather than artistic values, this distinctive role of cinema has diminished and is replaced with a global standard. The Blockbuster 2022 film, 'Everything, Everywhere, All at Once' is now the most-awarded movie of all time, winning seven Oscars at the 95th Academy Awards. Despite its main cast being Asian, the movie is produced by American incorporation and is heavily influenced by Hollywood's dominant themes of superheroes, fantasy, action, and adventure. The New Yorker film critic, Richard Brody, called the movie "a pitch for a Marvel" and critiqued the film for being "universalized" and "empty of history and culture". Other critics of Variety pinpointed the movie's similarities to Marvel, particularly in their storylines of multi-universe which manifest traces of American legacy. As argued by these critics, 'Everything, Everywhere, All at Once' might appear as a unique and authentic film at first glance, but it can be argued that it is yet another version of a Marvel movie. While the movie's universal acclaim was regarded as recognition and an acknowledgment of its Asian cast, the issue that arises here is when the Hollywood influences and American themes are so robust in the film, is the movie industry honoring another culture or is it yet another celebration of Hollywood's dominant paradigm. This essay will employ a critical approach to Hollywood's dominance and mass-produced culture, which has deprived authenticity of non-American movies and is constantly reproducing the same formula of success.

Keywords: hollywoodization, universalization, blockbuster, dominant paradigm, marvel, authenticity, diversity

Procedia PDF Downloads 55
235 The Effect of Aluminum Oxide Nanoparticles on the Optical Properties of (PVP-PEG) Blend

Authors: Hussein Hakim, Zainab Al-Ramadhan, Ahmed Hashim

Abstract:

Polymer nano composites of polyvinylpyrrolidone and poly-ethylene glycol with different concentrations of aluminum oxide (Al2O3) nano particles have been prepared by solution cast method. The optical characterizations have been done by analyzing the absorption (A) spectra in the 300–800 nm spectral region. It was found that the optical energy gap decreases with the increasing of Al2O3 nano particles content. The optical constants (refractive index, extinction coefficient, real and imaginary parts of the dielectric constant) are changing with increasing aluminum oxide nano particle concentrations.

Keywords: nanocomposites, polyvinylpyrrolidone, optical constants, polymers, blend

Procedia PDF Downloads 394
234 Effect of Zinc Additions on the Microstructure and Mechanical Properties of Mg-3Al Alloy

Authors: Erkan Koç, Mehmet Ünal, Ercan Candan

Abstract:

In this study, the effect of zinc content (0.5-3.0 wt.%) in as-cast Mg-3Al alloy which were fabricated with high-purity raw materials towards the microstructure and mechanical properties was studied. Microstructure results showed that increase in zinc content changed the secondary phase distribution of the alloys. Mechanical test results demonstrate that with the increasing Zn addition the enhancement of the hardness value by 29%, ultimate tensile strength by 16% and yield strength by 15% can be achieved as well as decreasing of elongation by 33%. The improvement in mechanical properties for Mg-Al–Zn alloys with increasing Zn content up to 3% of weight may be ascribed to second phase strengthening.

Keywords: magnesium, zinc, mechanical properties, Mg17Al12

Procedia PDF Downloads 387
233 Analyzing Defects with Failure Assessment Diagrams of Gas Pipelines

Authors: Alfred Hasanaj , Ardit Gjeta, Miranda Kullolli

Abstract:

The approach in analyzing defects on different pipe lines is conducted through Failure Assessment Diagram (FAD). These methods of analyses have further extended in recent years. This approach is used to identify and stress out a solution for the defects which randomly occur with gas pipes such are corrosion defects, gauge defects, and combination of defects where gauge and dents are included. Few of the defects are to be analyzed in this paper where our main focus will be the fracture of cast Iron pipes, elastic-plastic failure and plastic collapse of X52 steel pipes for gas transport. We need to conduct a calculation of probability of the defects in order to predict and avoid such costly defects.

Keywords: defects, failure assessment diagrams, steel pipes, safety factor

Procedia PDF Downloads 418
232 Processes and Application of Casting Simulation and Its Software’s

Authors: Surinder Pal, Ajay Gupta, Johny Khajuria

Abstract:

Casting simulation helps visualize mold filling and casting solidification; predict related defects like cold shut, shrinkage porosity and hard spots; and optimize the casting design to achieve the desired quality with high yield. Flow and solidification of molten metals are, however, a very complex phenomenon that is difficult to simulate correctly by conventional computational techniques, especially when the part geometry is intricate and the required inputs (like thermo-physical properties and heat transfer coefficients) are not available. Simulation software is based on the process of modeling a real phenomenon with a set of mathematical formulas. It is, essentially, a program that allows the user to observe an operation through simulation without actually performing that operation. Simulation software is used widely to design equipment so that the final product will be as close to design specs as possible without expensive in process modification. Simulation software with real-time response is often used in gaming, but it also has important industrial applications. When the penalty for improper operation is costly, such as airplane pilots, nuclear power plant operators, or chemical plant operators, a mockup of the actual control panel is connected to a real-time simulation of the physical response, giving valuable training experience without fear of a disastrous outcome. The all casting simulation software has own requirements, like magma cast has only best for crack simulation. The latest generation software Auto CAST developed at IIT Bombay provides a host of functions to support method engineers, including part thickness visualization, core design, multi-cavity mold design with common gating and feeding, application of various feed aids (feeder sleeves, chills, padding, etc.), simulation of mold filling and casting solidification, automatic optimization of feeders and gating driven by the desired quality level, and what-if cost analysis. IIT Bombay has developed a set of applications for the foundry industry to improve casting yield and quality. Casting simulation is a fast and efficient solution for process for advanced tool which is the result of more than 20 years of collaboration with major industrial partners and academic institutions around the world. In this paper the process of casting simulation is studied.

Keywords: casting simulation software’s, simulation technique’s, casting simulation, processes

Procedia PDF Downloads 449
231 Fabricating Sheets of Mg-Zn Alloys by Thermomechanical Process

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

In the present study, hot-rolled sheets of Mg-xZn alloy s(x=6, 8, and 10 weight percent) were produced by employing casting, homogenization heat treatment, hot rolling, and annealing processes subsequently. Effect of Zn addition on the microstructure and mechanical properties of Mg-Zn alloys were also investigated in each process. Through calculation of phase equilibria of Mg-Zn alloys, solution treatment temperature was decided as temperatures from 350 oC, where supersaturated solid solution can be obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples as-cast, solution treated, hot-rolled and recrystallized after rolling.

Keywords: Mg-Zn alloy, heat treatment, microstructure, mechanical properties, hot rolling

Procedia PDF Downloads 288
230 Design and Production of Thin-Walled UHPFRC Footbridge

Authors: P. Tej, P. Kněž, M. Blank

Abstract:

The paper presents design and production of thin-walled U-profile footbridge made of UHPFRC. The main structure of the bridge is one prefabricated shell structure made of UHPFRC with dispersed steel fibers without any conventional reinforcement. The span of the bridge structure is 10 m and the clear width of 1.5 m. The thickness of the UHPFRC shell structure oscillated in an interval of 30-45 mm. Several calculations were made during the bridge design and compared with the experiments. For the purpose of verifying the calculations, a segment of 1.5 m was first produced, followed by the whole footbridge for testing. After the load tests were done, the design was optimized to cast the final footbridge.

Keywords: footbridge, non-linear analysis, shell structure, UHPFRC, Ultra-High Performance Fibre Reinforced Concrete

Procedia PDF Downloads 196
229 Influence of Thermal Ageing on Microstructural Features and Mechanical Properties of Reduced Activation Ferritic/Martensitic Grades

Authors: Athina Puype, Lorenzo Malerba, Nico De Wispelaere, Roumen Petrov, Jilt Sietsma

Abstract:

Reduced Activation Ferritic/Martensitic (FM) steels like EUROFER are of interest for first wall application in the future demonstration (DEMO) fusion reactor. Depending on the final design codes for the DEMO reactor, the first wall material will have to function in low-temperature mode or high-temperature mode, i.e. around 250-300°C of above 550°C respectively. However, the use of RAFM steels is limited up to a temperature of about 550°C. For the low-temperature application, the material suffers from irradiation embrittlement, due to a shift of ductile-to-brittle transition temperature (DBTT) towards higher temperatures upon irradiation. The high-temperature response of the material is equally insufficient for long-term use in fusion reactors, due to the instability of the matrix phase and coarsening of the precipitates at prolonged high-temperature exposure. The objective of this study is to investigate the influence of thermal ageing for 1000 hrs and 4000 hrs on microstructural features and mechanical properties of lab-cast EUROFER. Additionally, the ageing behavior of the lab-cast EUROFER is compared with the ageing behavior of standard EUROFER97-2 and T91. The microstructural features were investigated with light optical microscopy (LOM), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). Additionally, hardness measurements, tensile tests at elevated temperatures and Charpy V-notch impact testing of KLST-type MCVN specimens were performed to study the microstructural features and mechanical properties of four different F/M grades, i.e. T91, EUROFER97-2 and two lab-casted EUROFER grades. After ageing for 1000 hrs, the microstructures exhibit similar martensitic block sizes independent on the grain size before ageing. With respect to the initial coarser microstructures, the aged microstructures displayed a dislocation structure which is partially fragmented by polygonization. On the other hand, the initial finer microstructures tend to be more stable up to 1000hrs resulting in similar grain sizes for the four different steels. Increasing the ageing time to 4000 hrs, resulted in an increase of lath thickness and coarsening of M23C6 precipitates leading to a deterioration of tensile properties.

Keywords: ageing experiments, EUROFER, ferritic/martensitic steels, mechanical properties, microstructure, T91

Procedia PDF Downloads 231
228 Microtomographic Analysis of Friction Materials Used in the Brakes of Railway Vehicles

Authors: Mikołaj Szyca

Abstract:

Friction elements of rail vehicle brakes are more and more often made of composite materials that displace cast iron. Materials are tested primarily in terms of their dynamic abilities, but the material structure of brake pads and linings changes during operation. In connection with the above, the changes taking place in the tested rubbing materials were analyzed using X-ray computed tomography in order to obtain data on changes in the structure of the material immediately after production and after a certain number of operating cycles. The implementation of microtomography research for experimental work on new friction materials may result in increasing the potential for the production of new composites by eliminating unfavorable material factors and, consequently, improving the dynamic parameters.

Keywords: composite materials, friction pair, X-ray computed microtomography, railway

Procedia PDF Downloads 42
227 Briquetting of Metal Chips by Controlled Impact: Experimental Study

Authors: Todor Penchev, Dimitar Karastojanov, Ivan Altaparmakov

Abstract:

For briquetting of metal chips are used hydraulic and mechanical presses. The density of the briquettes in this case is about 60% - 70 % on the density of solid metal. In this work are presented the results of experimental studies for briquetting of metal chips, by using a new technology for impact briquetting. The used chips are by Armco iron, steel, cast iron, copper, aluminum and brass. It has been found that: (i) in a controlled impact the density of the briquettes can be increases up to 30%; (ii) at the same specific impact energy Es (J/sm3) the density of the briquettes increases with increasing of the impact velocity; (iii), realization of the repeated impact leads to decrease of chips density, which can be explained by distribution of elastic waves in the briquette.

Keywords: briquetting, chips briquetting, impact briquetting, controlled impact

Procedia PDF Downloads 369
226 Effect of Y Addition on the Microstructure and Mechanical Properties of Sn-Zn Eutectic Alloy

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

The effect of Yttrium addition on the microstructure and mechanical properties of Sn-Zn eutectic alloy, which has been attracting intensive focus as a Pb-free solder material, was investigated in this study. Phase equilibrium has been calculated by using FactSage® to evaluate the composition and fraction of equilibrium intermetallic compounds and construct a phase diagram. In the case of Sn-8.8 Zn eutectic alloy, the as-cast microstructure was typical lamellar. With addition of 0.25 wt. %Y, a large amount of pro-eutectic phases have been observed and various YZnx intermetallic compounds were expected to successively form during cooling. Hardness of Sn-8.8 Zn alloy was not affected by Y-addition and both alloys could be rolled by 90% at room temperature.

Keywords: Sn-Zn eutectic alloy, yttrium, FactSage®, microstructure, mechanical properties

Procedia PDF Downloads 437
225 Phase Equilibria in Zn-Al-Sn Alloy for Lead-free Solder Application

Authors: Ji Chan Kim, Seok Hong Min, Tae Kwon Ha

Abstract:

The effect of Yttrium addition on the microstructure and mechanical properties of Sn-Zn eutectic alloy, which has been attracting intensive focus as a Pb-free solder material, was investigated in this study. Phase equilibrium has been calculated by using FactSage® to evaluate the composition and fraction of equilibrium intermetallic compounds and construct a phase diagram. In the case of Sn-8.8 Zn eutectic alloy, the as-cast microstructure was typical lamellar. With addition of 0.25 wt. %Y, a large amount of pro-eutectic phases have been observed and various YZnx intermetallic compounds were expected to successively form during cooling. Hardness of Sn-8.8 Zn alloy was not affected by Y-addition and both alloys could be rolled by 90% at room temperature.

Keywords: lead-free solder, zn-al-sn alloy, phase equilibrium, rolling, microstructure, hardness

Procedia PDF Downloads 278
224 Hydrometallurgical Production of Nickel Ores from Field Bugetkol

Authors: A. T. Zhakiyenova, E. E. Zhatkanbaev, Zh. K. Zhatkanbaeva

Abstract:

Nickel plays an important role in mechanical engineering and creation of military equipment; practically all steel are alloyed by nickel and other metals for receiving more durable, heat-resistant, corrosion-resistant steel and cast iron. There are many ways of processing of nickel in the world. Generally, it is igneous metallurgy methods. In this article, the review of majority existing ways of technologies of processing silicate nickel - cobalt ores is considered. Leaching of ores of a field Bugetkol is investigated by solution of sulfuric acid. We defined a specific consumption of sulfuric acid in relation to the mass of ore and to the mass of metal.

Keywords: cobalt, degree of extraction, hydrometallurgy, igneous metallurgy, leaching, matte, nickel

Procedia PDF Downloads 341
223 Becoming a Warrior: Conspiracy, Dramaturgy, and Follower Charisma on the Far Right

Authors: Anthony Albanese

Abstract:

While much of the literature concerning Max Weber’s concept of charisma has addressed the importance of the follower’s recognition of and devotion to the charismatic leader, very little has been said about the processes that lead to the development of follower charisma. This article examines this largely overlooked aspect of the concept, as doing so (1) exacts the dynamics behind charisma’s transferability by moving beyond follower-centric models that focus on the recognition of the leader and toward one that emphasizes the follower’s generation and exhibition of charisma, (2) bridges a crucial gap between the rather wanting “losers of modernization” thesis and the social actor’s proclivity to produce stories and self-cast in said stories, (3) presents authoritarian dispositions as a reaction to the weakening effects everydayness have on charisma, and (4) complicates Weber’s formulation by reassessing the role of continually demonstrable mastery. To illustrate these dynamics, one should turn to the January 6th Capitol attack in the United States.

Keywords: max weber, extremism, right-wing populism, charisma

Procedia PDF Downloads 57
222 Recrystallization Behavior and Microstructural Evolution of Nickel Base Superalloy AD730 Billet during Hot Forging at Subsolvus Temperatures

Authors: Marcos Perez, Christian Dumont, Olivier Nodin, Sebastien Nouveau

Abstract:

Nickel superalloys are used to manufacture high-temperature rotary engine parts such as high-pressure disks in gas turbine engines. High strength at high operating temperatures is required due to the levels of stress and heat the disk must withstand. Therefore it is necessary parts made from materials that can maintain mechanical strength at high temperatures whilst remain comparatively low in cost. A manufacturing process referred to as the triple melt process has made the production of cast and wrought (C&W) nickel superalloys possible. This means that the balance of cost and performance at high temperature may be optimized. AD730TM is a newly developed Ni-based superalloy for turbine disk applications, with reported superior service properties around 700°C when compared to Inconel 718 and several other alloys. The cast ingot is converted into billet during either cogging process or open die forging. The semi-finished billet is then further processed into its final geometry by forging, heat treating, and machining. Conventional ingot-to-billet conversion is an expensive and complex operation, requiring a significant amount of steps to break up the coarse as-cast structure and interdendritic regions. Due to the size of conventional ingots, it is difficult to achieve a uniformly high level of strain for recrystallization, resulting in non-recrystallized regions that retain large unrecrystallized grains. Non-uniform grain distributions will also affect the ultrasonic inspectability response, which is used to find defects in the final component. The main aim is to analyze the recrystallization behavior and microstructural evolution of AD730 at subsolvus temperatures from a semi-finished product (billet) under conditions representative of both cogging and hot forging operations. Special attention to the presence of large unrecrystallized grains was paid. Double truncated cones (DTCs) were hot forged at subsolvus temperatures in hydraulic press, followed by air cooling. SEM and EBSD analysis were conducted in the as-received (billet) and the as-forged conditions. AD730 from billet alloy presents a complex microstructure characterized by a mixture of several constituents. Large unrecrystallized grains present a substructure characterized by large misorientation gradients with the formation of medium to high angle boundaries in their interior, especially close to the grain boundaries, denoting inhomogeneous strain distribution. A fine distribution of intragranular precipitates was found in their interior, playing a key role on strain distribution and subsequent recrystallization behaviour during hot forging. Continuous dynamic recrystallization (CDRX) mechanism was found to be operating in the large unrecrystallized grains, promoting the formation intragranular DRX grains and the gradual recrystallization of these grains. Evidences that hetero-epitaxial recrystallization mechanism is operating in AD730 billet material were found. Coherent γ-shells around primary γ’ precipitates were found. However, no significant contribution to the overall recrystallization during hot forging was found. By contrast, strain presents the strongest effect on the microstructural evolution of AD730, increasing the recrystallization fraction and refining the structure. Regions with low level of deformation (ε ≤ 0.6) were translated into large fractions of unrecrystallized structures (strain accumulation). The presence of undissolved secondary γ’ precipitates (pinning effect), prior to hot forging operations, could explain these results.

Keywords: AD730 alloy, continuous dynamic recrystallization, hot forging, γ’ precipitates

Procedia PDF Downloads 172
221 Analysis of Magnesium Alloy Wheel Forming Technologies for Light Vehicles

Authors: Anna Dziubinska

Abstract:

The applications of magnesium alloys in transport include all kinds of vehicle wheels for cars, motorcycles, bicycles, trolleys, etc. Modern technologies of manufacturing products from these materials have been noticeably improved recently, creating new possibilities for their application. Continuously developed technologies for forming Mg alloys must not be overlooked, which make it possible to manufacture products with better properties compared to those obtained by casting only. The article reviews the specialized literature on magnesium wheel forming and presents a concept of technology for forging magnesium wheels for light vehicles from cast preforms. The research leading to these results has received funding from the Norway Grants 2014-2021 via the National Centre for Research and Development.

Keywords: forming, forging, magnesium alloy, wheels, vehicles

Procedia PDF Downloads 101
220 Enhancement of Hardness Related Properties of Grey Cast Iron Powder Reinforced AA7075 Metal Matrix Composites Through T6 and T8 Heat Treatments

Authors: S. S. Sharma, P. R. Prabhu, K. Jagannath, Achutha Kini U., Gowri Shankar M. C.

Abstract:

In present global scenario, aluminum alloys are coining the attention of many innovators as competing structural materials for automotive and space applications. Comparing to other challenging alloys, especially, 7xxx series aluminum alloys have been studied seriously because of their benefits such as moderate strength; better deforming characteristics, excellent chemical decay resistance, and affordable cost. 7075 Al-alloys have been used in the transportation industry for the fabrication of several types of automobile parts, such as wheel covers, panels and structures. It is expected that substitution of such aluminum alloys for steels will result in great improvements in energy economy, durability and recyclability. However, it is necessary to improve the strength and the formability levels at low temperatures in aluminium alloys for still better applications. Aluminum–Zinc–Magnesium with or without other wetting agent denoted as 7XXX series alloys are medium strength heat treatable alloys. Cu, Mn and Si are the other solute elements which contribute for the improvement in mechanical properties achievable by selecting and tailoring the suitable heat treatment process. On subjecting to suitable treatments like age hardening or cold deformation assisted heat treatments, known as low temperature thermomechanical treatments (LTMT) the challenging properties might be incorporated. T6 is the age hardening or precipitation hardening process with artificial aging cycle whereas T8 comprises of LTMT treatment aged artificially with X% cold deformation. When the cold deformation is provided after solution treatment, there is increase in hardness related properties such as wear resistance, yield and ultimate strength, toughness with the expense of ductility. During precipitation hardening both hardness and strength of the samples are increasing. Decreasing peak hardness value with increasing aging temperature is the well-known behavior of age hardenable alloys. The peak hardness value is further increasing when room temperature deformation is positively supported with age hardening known as thermomechanical treatment. Considering these aspects, it is intended to perform heat treatment and evaluate hardness, tensile strength, wear resistance and distribution pattern of reinforcement in the matrix. 2 to 2.5 and 3 to 3.5 times increase in hardness is reported in age hardening and LTMT treatments respectively as compared to as-cast composite. There was better distribution of reinforcements in the matrix, nearly two fold increase in strength levels and upto 5 times increase in wear resistance are also observed in the present study.

Keywords: reinforcement, precipitation, thermomechanical, dislocation, strain hardening

Procedia PDF Downloads 286
219 Prospective Study on the Efficacy of Bio Absorbable Screws in Treatment of Osteochondral Fractures

Authors: S. Anwar Sathik, K. Manoj Deepak, K. Venkatachalam

Abstract:

Our study is a prospective study on the use of bio absorbable pins for the treatment of osteochondral fractures after patellar dislocation.22 patients who presented with osteochondral fractures were treated in our institution. They were followed for a minimum of 12 months by regular radiological evaluation. Of the 22 patients, 2 had fragments that detached from the fracture site which was treated arthroscopically. All the patients underwent open reduction and fixation of the pins using bio absorbable crews. They were immobilized in the cast for a minimum of 6 weeks after which mobilization was started according to our protocol. Fracture consolidation was found to occur in 20 of the 22 patients. Thus, Bio absorbable screws can be used as a reliable method of fixation of the osteochondral fragments.

Keywords: osteochondral fracture, bio absorbable pins, patella dislocation, physiotherapy

Procedia PDF Downloads 278
218 The Effect of Arabic Gum on Polyethersulfone Membranes

Authors: Yehia Manawi, Viktor Kochkodan, Muataz Hussien

Abstract:

In this paper, the effect of adding Arabic Gum (AG) to the dope solutions of polyethersulfone (PES) was studied. The aim of adding AG is to enhance the properties of ultrafiltration membranes such as hydrophilicity, porosity and selectivity. several AG loading (0.1-3.0 wt.%) in PES/ N-Methyl-2-pyrrolidone (NMP) casting solutions were prepared to fabricate PES membranes using phase inversion technique. The surface morphology, hydrophilicity and selectivity of the cast PES/AG membranes were analyzed using scanning electron microscopy and contact angle measurements. The selectivity of the fabricated membranes was also tested by filtration of oil solutions (1 ppm) and found to show quite high removal efficiency. The effect of adding AG to PES membranes was found to increase the permeate flux and porosity as well as reducing surface roughness and the contact angle of the membranes.

Keywords: antifouling, Arabic gum, polyethersulfone membrane, ultrafiltration

Procedia PDF Downloads 258
217 Melt Conditioned-Twin Roll Casting of Magnesium Alloy

Authors: Sanjeev Das

Abstract:

In the present investigation, magnesium strips were produced by twin roll casting (TRC) and melt conditioned twin roll casting (MC-TRC) processes. The microstructures showed uniform fine equiaxed grain morphology in the case of MC-TRC cast samples. In the case of TRC samples elongated grains with centerline segregation was observed. Further investigation showed both the process has different solidification mechanism. Tensile tests were performed at 250–400ºC for both TRC and MCTRC samples. At 250ºC, MC-TRC sample showed significant improvement in strength and ductility. However, at higher temperatures the tensile properties were almost comparable, despite of TRC samples having larger grains compared to MC-TRC samples. It was observed that homogenized MC-TRC samples were easily hot stamped compared to TRC samples.

Keywords: MC-TRC, magnesium alloy, solidification, nucleation

Procedia PDF Downloads 165
216 Effect of Stirrup Corrosion on Concrete Confinement Strength

Authors: Mucip Tapan, Ali Ozvan, Ismail Akkaya

Abstract:

This study investigated how the concrete confinement strength and axial load carrying capacity of reinforced concrete columns are affected by corrosion damage to the stirrups. A total of small-scale 12 test specimens were cast for evaluating the effect of stirrup corrosion on confinement strength of concrete. The results of this study show that the stirrup corrosion alone dramatically decreases the axial load carrying capacity of corroded reinforced concrete columns. Recommendations were presented for improved inspection practices which will allow estimating concrete confinement strength of corrosion-damaged reinforced concrete bridge columns.

Keywords: bridge, column, concrete, corrosion, inspection, stirrup reinforcement

Procedia PDF Downloads 417
215 Effect of Copper Addition at a Rate of 4% Weight on the Microstructure, Mechanical Characteristics, and Surface Roughness on the Hot Extrusion of Aluminum

Authors: S. M. A. Al Qawabah, A. I. O. Zaid

Abstract:

Al-4%Cu alloys are now widely used in many engineering applications especially in robotic, aerospace and vibration control area. The main problem arises from the weakness of their mechanical characteristics. Therefore, this study is directed towards enhancing the mechanical properties through severe plastic deformation. In this work, the hot direct extrusion process was chosen to provide the required hot work for this purpose. A direct extrusion die was designed and manufactured to be used in this investigation. The general microstructure, microhardness, surface roughness, and compression tests were performed on specimens from the produced Al-4%Cu alloy both in the as cast and after extrusion conditions. It was found that a pronounced enhancement in the mechanical characteristics of the produced Al-4%Cu after extrusion was achieved. The microhardness increased by 89.3%, the flow stress was decreased by 10% at 0.2 strain and finally the surface roughness was reduced by 81.6%.

Keywords: aluminum, copper, surface roughness, hot extrusion

Procedia PDF Downloads 543
214 Finite Element Modeling of Integral Abutment Bridge for Lateral Displacement

Authors: M. Naji, A. R. Khalim, M. Naji

Abstract:

Integral Abutment Bridges (IAB) are defined as simple or multiple span bridges in which the bridge deck is cast monolithically with the abutment walls. This kind of bridges are becoming very popular due to different aspects such as good response under seismic loading, low initial costs, elimination of bearings and less maintenance. However, the main issue related to the analysis of this type of structures is dealing with soil-structure interaction of the abutment walls and the supporting piles. A two-dimensional, non-linear finite element (FE) model of an integral abutment bridge has been developed to study the effect of lateral time history displacement loading on the soil system.

Keywords: integral abutment bridge, soil structure interaction, finite element modeling, soil-pile interaction

Procedia PDF Downloads 263
213 Rational Approach to Analysis and Construction of Curved Composite Box Girders in Bridges

Authors: Dongming Feng, Fangyin Zhang, Liling Cao

Abstract:

Horizontally curved steel-concrete composite box girders are extensively used in highway bridges. They consist of reinforced concrete deck on top of prefabricated steel box section beam which exhibits a high torsional rigidity to resist torsional effects induced by the curved structural geometry. This type of structural system is often constructed in two stages. The composite section will take the tension mainly by the steel box and, the compression by the concrete deck. The steel girders are delivered in large pre-fabricated U-shaped sections that are designed for ease of construction. They are then erected on site and overlaid by cast-in-place reinforced concrete deck. The functionality of the composite section is not achieved until the closed section is formed by fully cured concrete. Since this kind of composite section is built in two stages, the erection of the open steel box presents some challenges to contractors. When the reinforced concrete slab is cast-in-place, special care should be taken on bracings that can prevent the open U-shaped steel box from global and local buckling. In the case of multiple steel boxes, the design detailing should pay enough attention to the installation requirement of the bracings connecting adjacent steel boxes to prevent the global buckling. The slope in transverse direction and grade in longitudinal direction will result in some local deformation of the steel boxes that affect the connection of the bracings. During the design phase, it is common for engineers to model the curved composite box girder using one-dimensional beam elements. This is adequate to analyze the global behavior, however, it is unable to capture the local deformation which affects the installation of the field bracing connection. The presence of the local deformation may become a critical component to control the construction tolerance, and overlooking this deformation will produce inadequate structural details that eventually cause misalignment in field and erection failure. This paper will briefly describe the construction issues we encountered in real structures, investigate the difference between beam element modeling and shell/solid element modeling, and their impact on the different construction stages. P-delta effect due to the slope and curvature of the composite box girder is analyzed, and the secondary deformation is compared to the first-order response and evaluated for its impact on installation of lateral bracings. The paper will discuss the rational approach to prepare construction documents and recommendations are made on the communications between engineers, erectors, and fabricators to smooth out construction process.

Keywords: buckling, curved composite box girder, stage construction, structural detailing

Procedia PDF Downloads 99
212 The Effect of Increase in Aluminium Content on Fluidity of ZA Alloys Processed by Centrifugal Casting

Authors: P. N. Jyothi, A. Shailesh Rao, M. C. Jagath, K. Channakeshavalu

Abstract:

Uses of ZA alloys as bearing material have been increased due to their superior mechanical properties, wear characteristics and tribological properties. Among ZA alloys, ZA 27 alloy has higher strength, low density with excellent bearing and wear characteristics. From the past research work, it is observed that in continuous casting as Al content increases, the fluidity also increases. In present work, ZA 8, ZA 12 and ZA 27 alloys have been processed through centrifugal casting process at 600 rotational speed of the mould. Uniform full cylinder is casted with ZA 8 alloy. For ZA 12 and ZA 27 alloys where the Al content is higher, cast tubes were not complete and uniform. The reason is Al may be acting as a refiner and reduce the melt flow in the rotating mould. This is mainly due to macro-segregation of Al, which has occurred due to difference in densities of Al and Zn.

Keywords: centrifugal casting, metal flow, characterization, systems engineering

Procedia PDF Downloads 296
211 The Energy Consumption by the Sector of Transport and His Impact on the Atmospheric Pollution

Authors: Mme Hamani Née Guessas Ghaniya

Abstract:

The transport is the base of the development of the exchanges and the business, being both a recognized determiner of the economic and social development. The development of the transport is in the center of the big challenges of development of countries, but it is also at the heart of big contradictions, since we integrate the environmental issues which are bound to him, in particular through the questions of energy. Indeed, the energy consumption by the sector of transport is one of bigger concerns, because it is increasing and it has a big impact on our environment. The main consequences are, the atmospheric pollution causing an increase of the greenhouse effect which causes a global warming. These global warming risks to engender a partial cast iron of polar caps so raising the level of seas, flooding the low coastal zones, certain islands and the deltas. Thus, the purpose of this communication is to present the impact of the energy consumption by the sector of transport on the air quality, showing its effect on the health and on the global warming.

Keywords: energy consumption, sector of transport, air quality, atmospheric pollution

Procedia PDF Downloads 300
210 Thermal Effects of Disc Brake Rotor Design for Automotive Brake Application

Authors: K. Shahril, M. Ridzuan, M. Sabri

Abstract:

The disc rotor is solid, ventilated or drilled. The ventilated type disc rotor consists of a wider disc with cooling fins cast through the middle to ensure good cooling. The disc brakes use pads that are pressed axially against a rotor or disc. Solid and ventilated disc design are same which it free with any form, unless inside the ventilated disc has several ventilation holes. Different with drilled disc has some construction on the surface which is has six lines of drill hole penetrate the disc and a little bit deep twelve curves. From the thermal analysis that was conducted by using ANSYS Software, temperature distribution and heat transfer rate on the disc were obtained on each design. Temperature occurred on the drilled disc was lowest than ventilated and solid disc, it is 66% better than ventilated while ventilated is 21% good than solid disc.

Keywords: disc brakes, drilled disc, thermal analysis, ANSYS software

Procedia PDF Downloads 357