Search results for: bioactive glasses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 617

Search results for: bioactive glasses

377 Polarization of Glass with Positive and Negative Charge Carriers

Authors: Valentina V. Zhurikhina, Mihail I. Petrov, Alexandra A. Rtischeva, Mark Dussauze, Thierry Cardinal, Andrey A. Lipovskii

Abstract:

Polarization of glass, often referred to as thermal poling, is a well-known method to modify the glass physical and chemical properties, that manifest themselves in loosing central symmetry of the medium, glass structure and refractive index modification. The usage of the poling for second optical harmonic generation, fabrication of optical waveguides and electrooptic modulators was also reported. Nevertheless, the detailed description of the poling of glasses, containing multiple charge carriers is still under discussion. In particular, the role of possible migration of electrons in the space charge formation usually remains out of the question. In this work, we performed the numerical simulation of thermal poling of a silicate glass, containing Na, K, Mg, and Ca. We took into consideration the contribution of electrons in the polarization process. The possible explanation of migration of electrons can be the break of non-bridging oxygen bonds. It was found, that the modeled depth of the space charge region is about 10 times higher if the migration of the negative charges is taken under consideration. The simulated profiles of cations, participating in the polarization process, are in a good agreement with the experimental data, obtained by glow discharge spectroscopy.

Keywords: glass poling, charge transport, modeling, concentration profiles

Procedia PDF Downloads 328
376 Acerola and Orange By-Products as Sources of Bioactive Compounds for Probiotic Fermented Milks

Authors: Tatyane Lopes de Freitas, Antonio Diogo S. Vieira, Susana Marta Isay Saad, Maria Ines Genovese

Abstract:

The fruit processing industries generate a large volume of residues to produce juices, pulps, and jams. These residues, or by-products, consisting of peels, seeds, and pulps, are routinely discarded. Fruits are rich in bioactive compounds, including polyphenols, which have positive effects on health. Dry residues from two fruits, acerola (M. emarginata D. C.) and orange (C. sinensis), were characterized in relation to contents of ascorbic acid, minerals, total dietary fibers, moisture, ash, lipids, proteins, and carbohydrates, and also high performance liquid chromatographic profile of flavonoids, total polyphenols and proanthocyanidins contents, and antioxidant capacity by three different methods (Ferric reducing antioxidant power assay-FRAP, Oxygen Radical Absorbance Capacity-ORAC, 1,1-diphenyl-2-picrylhydrazil (DPPH) radical scavenging activity). Acerola by-products presented the highest acid ascorbic content (605 mg/100 g), and better antioxidant capacity than orange by-products. The dry residues from acerola demonstrated high contents of proanthocyanidins (617 µg CE/g) and total polyphenols (2525 mg gallic acid equivalents - GAE/100 g). Both presented high total dietary fiber (above 60%) and protein contents (acerola: 10.4%; orange: 9.9%), and reduced fat content (acerola: 1.6%; orange: 2.6%). Both residues showed high levels of potassium, calcium, and magnesium, and were considered sources of these minerals. With acerola by-product, four formulations of probiotics fermented milks were produced: F0 (without the addition of acerola residue (AR)), F2 (2% AR), F5 (5% AR) and F10 (10% AR). The physicochemical characteristics of the fermented milks throughout of storage were investigated, as well as the impact of in vitro simulated gastrointestinal conditions on flavonoids and probiotics. The microorganisms analyzed maintained their populations around 8 log CFU/g during storage. After the gastric phase of the simulated digestion, the populations decreased, and after the enteric phase, no colonies were detected. On the other hand, the flavonoids increased after the gastric phase, maintaining or suffering small decrease after enteric phase. Acerola by-products powder is a valuable ingredient to be used in functional foods because is rich in vitamin C, fibers and flavonoids. These flavonoids appear to be highly resistant to the acids and salts of digestion.

Keywords: acerola, orange, by-products, fermented milk

Procedia PDF Downloads 102
375 Phytochemical Composition and Biological Activities of the Vegetal Extracts of Six Aromatic and Medicinal Plants of Algerian Flora and Their Uses in Food and Pharmaceutical Industries

Authors: Ziani Borhane Eddine Cherif, Hazzi Mohamed, Mouhouche Fazia

Abstract:

The vegetal extracts of aromatic and medicinal plants start to have much of interest like potential sources of natural bioactive molecules. Many features are conferred by the nature of the chemical function of their major constituents (phenol, alcohol, aldehyde, cetone). This biopotential lets us to focalize on the study of three main biological activities, the antioxidant, antibiotic and insecticidal activities of six Algerian aromatic plants in the aim of making in evidence by the chromatographic analysis (CPG and CG/SM) the phytochemical compounds implicating in this effects. The contents of Oxygenated monoterpenes represented the most prominent group of constituents in the majority of plants. However, the α-Terpineol (28,3%), Carvacrol (47,3%), pulégone (39,5%), Chrysanthenone (27,4%), Thymol 23,9%, γ-Terpinene 23,9% and 2-Undecanone(94%) were the main components. The antioxyding activity of the Essential oils and no-volatils extracts was evaluated in vitro using four tests: inhibition of free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) radical-scavenging activity (ABTS•+), the thiobarbituric acid reactive substances (TBARS) assays and the reducing power. The measures of the IC50 of these natural compounds revealed potent activity (between 254.64-462.76mg.l-1), almost similar to that of BHT, BHA, Tocopherol and Ascorbic acid (126,4-369,1 mg.l-1) and so far than the Trolox one (IC50= 2,82mg.l-1). Furthermore, three ethanol extracts were found to be remarkably effective toward DPPH and ABTS inhibition, compared to chemical antioxidant BHA and BHT (IC = 9.8±0.1 and 28±0.7 mg.l-1, respectively); for reducing power test it has also exhibited high activity. The study on the insecticidal activity effect by contact, inhalation, fecundity and fertility of Callosobruchus maculatus and Tribolium confusum showed a strong potential biocide reaching 95-100% mortality only after 24 hours. The antibiotic activity of our essential oils were evaluated by a qualitative study (aromatogramme) and quantitative (MIC, MBC and CML) on four bacteria (Gram+ and Gram-) and one strain of pathogenic yeast, the results of these tests showed very interesting action than that induced by the same reference antibiotics (Gentamycin, and Nystatin Ceftatidine) such that the inhibition diameters and MIC values for tested microorganisms were in the range of 23–58 mm and 0.015–0.25%(v/v) respectively.

Keywords: aromatic plants, essential oils, no-volatils extracts, bioactive molecules, antioxidant activity, insecticidal activity, antibiotic activity

Procedia PDF Downloads 193
374 MARISTEM: A COST Action Focused on Stem Cells of Aquatic Invertebrates

Authors: Arzu Karahan, Loriano Ballarin, Baruch Rinkevich

Abstract:

Marine invertebrates, the highly diverse phyla of multicellular organisms, represent phenomena that are either not found or highly restricted in the vertebrates. These include phenomena like budding, fission, a fusion of ramets, and high regeneration power, such as the ability to create whole new organisms from either tiny parental fragment, many of which are controlled by totipotent, pluripotent, and multipotent stem cells. Thus, there is very much that can be learned from these organisms on the practical and evolutionary levels, further resembling Darwin's words, “It is not the strongest of the species that survives, nor the most intelligent, but the one most responsive to change”. The ‘stem cell’ notion highlights a cell that has the ability to continuously divide and differentiate into various progenitors and daughter cells. In vertebrates, adult stem cells are rare cells defined as lineage-restricted (multipotent at best) with tissue or organ-specific activities that are located in defined niches and further regulate the machinery of homeostasis, repair, and regeneration. They are usually categorized by their morphology, tissue of origin, plasticity, and potency. The above description not always holds when comparing the vertebrates with marine invertebrates’ stem cells that display wider ranges of plasticity and diversity at the taxonomic and the cellular levels. While marine/aquatic invertebrates stem cells (MISC) have recently raised more scientific interest, the know-how is still behind the attraction they deserve. MISC, not only are highly potent but, in many cases, are abundant (e.g., 1/3 of the entire animal cells), do not locate in permanent niches, participates in delayed-aging and whole-body regeneration phenomena, the knowledge of which can be clinically relevant. Moreover, they have massive hidden potential for the discovery of new bioactive molecules that can be used for human health (antitumor, antimicrobial) and biotechnology. The MARISTEM COST action (Stem Cells of Marine/Aquatic Invertebrates: From Basic Research to Innovative Applications) aims to connect the European fragmented MISC community. Under this scientific umbrella, the action conceptualizes the idea for adult stem cells that do not share many properties with the vertebrates’ stem cells, organizes meetings, summer schools, and workshops, stimulating young researchers, supplying technical and adviser support via short-term scientific studies, making new bridges between the MISC community and biomedical disciplines.

Keywords: aquatic/marine invertebrates, adult stem cell, regeneration, cell cultures, bioactive molecules

Procedia PDF Downloads 132
373 Antiglycemic Activity of Raw Plant Materials as Potential Components of Functional Food

Authors: Ewa Flaczyk, Monika Przeor, Joanna Kobus-Cisowska, Józef Korczak

Abstract:

The aim of this paper was to collect the information concerning the most popular raw plant materials of antidiabetic activity, in a context of functional food developing production. The elaboration discusses morphological elements possible for an application in functional food production of the plants such as: common bean, ginger, Ceylon cinnamon, white mulberry, fenugreek, French lilac, ginseng, jambolão, and bitter melon. An activity of bioactive substances contained in these raw plant materials was presented, pointing their antiglycemic and also hypocholesterolemic, antiarthritic, antirheumatic, antibacterial, and antiviral activity in the studies on humans and animals. Also the genesis of functional food definition was presented.

Keywords: antiglycemic activity, raw plant materials, functional food, food, nutritional sciences

Procedia PDF Downloads 444
372 Cardioprotective Effect of the Leaf Extract of Andrographis Paniculata in Isoproterenol-Induced Myocardial Infarction

Authors: Emmanuel Ikechuckwu Onwubuya, Afees Adebayo Oladejo

Abstract:

Background: The use of medicinal plants in the treatment of chronic diseases especially myocardial infarction, is gaining wide acceptance globally. Andrographis paniculata (Acanthaceae) is a medicinal plant commonly known as the king of bitters in Nigeria and has been acclaimed for several therapeutic activities. Materials and methods: This study investigated the cardio-protective effect of the leaf extract of A. paniculata in isoproterenol-induced myocardial infarction. Fresh green leaves of A paniculata were harvested from the Faculty of Agriculture farmland, Nnamdi Azikiwe University, Awka, Nigeria. Identification and authentication of the plant were carried out at the Department of Botany, Nnamdi Azikiwe University and a voucher specimen was deposited at the herbarium. The plant material was then shredded, air-dried under shade and pulverized. The fine powders obtained were weighed and extraction was done via a solvent combination of water and ethanol (3:7) for 72 hr via maceration. The filtrate gotten was evaporated to dryness to obtain the ethanol extract, which was used for further bioassay study. The bioactive constituents of the plant extract were quantitatively analyzed by Gas chromatography-mass spectrometry (GC-MS). The animals were administered the extract of A. paniculata orally for seven days at a divided dose of 100 mg/kg, 200 mg/kg and 400 mg/kg body weights. On the eighth day, myocardial infarction was induced through subcutaneous administration of isoproterenol at a dose of 150 mg/kg/day diluted in 2 ml of saline on two consecutive days. Subsequently, the blood pressures were monitored and blood was collected for bioassay studies. Results: The results of the study showed that the leaf extract of A. paniculata was rich in Dodecanoic acid (8.261%), 4-Dibenzofuranamine (6.03%), Cyclotrisiloxane (4.679 %). The findings also showed a significant decrease (p>0.05) in the Mean arterial blood pressure, heart rate, aspartate transaminase, alanine transaminase, creatinine kinase and lactate dehydrogenase activities of the treatment group compared with the untreated control group while the antioxidant (superoxide dismutase, catalase and glutathione) activities were significantly increased in the treatment group, compared with the untreated control group. Conclusion: The findings of this work have shown that the leaf of A. paniculata was rich in bioactive compounds, which could be synthesized to produce plant-based products to fight cardiovascular diseases, especially myocardial infarction.

Keywords: cardiovascular disease, myocardial infarction, medicinal plant, andrographis paniculata, isoproterenol

Procedia PDF Downloads 83
371 Thermo-Physical and Morphological Properties of Pdlcs Films Doped with Tio2 Nanoparticles.

Authors: Salima Bouadjela, Fatima Zohra Abdoune, Lahcene Mechernene

Abstract:

PDLCs are currently considered as promising materials for specific applications such as creation of window blinds controlled by electric field, fog simulators, UV protective glasses, high data storage device etc. We know that the electrical field inside the liquid crystal is low compare with the external electric field [1,2]. An addition of high magnetic and electrical, properties containing compounds to the polymer dispersed liquid crystal (PDLC) will enhance the electrical, optical, and magnetic properties of the PDLC [3,4]. Low Concentration of inorganic nanoparticles TiO2 added to nematic liquid crystals (E7) and also combined with monomers (TPGDA) and cured monomer/LC mixture to elaborate polymer-LC-NP dispersion. The presence of liquid crystal and nanoparticles in TPGDA matrix were conformed and the modified properties of PDLC due to doped nanoparticle were studied and explained by the results of FTIR, POM, UV. Incorporation of nanoparticles modifies the structure of PDLC and thus it makes increase the amount of droplets and decrease in droplet size. we found that the presence of TiO2 nanoparticles leads to a shift the nematic-isotropic transition temperature TNI.

Keywords: nanocomposites, PDLC, phases diagram, TiO2

Procedia PDF Downloads 331
370 Taraxacum Officinale (Dandelion) and Its Phytochemical Approach to Malignant Diseases

Authors: Angel Champion

Abstract:

Chemotherapy and radiation use an acidified approach to induce apoptosis, which only kills mature cancer cells while resulting in gene and cell damage with significant levels of toxicity in tumor-affected tissues and organs. The acid approach, where the cells exterminated are not differentiated, induces the disappearance of white blood cells from the blood. This increases susceptibility to infection in severe forms of cancer spread. However, chemotherapy and radiation cannot kill cancer stem cells that metastasize, being the leading cause of 98% of cancer fatalities. With over 12 million new cancer cases symptomatic each year, including common malignancies such as Hepatocellular Carcinoma (HCC), this study aims to assess the bioactive constituents and phytochemical composition of Taraxacum Officinale (Dandelion). This analysis enables pharmaceutical quality and potency to be applied to studies on cancer cell proliferation and apoptosis. A phytochemical screening is carried out to identify the antioxidant components of Dandelion root, stem, and flower extract. The constituents tested for are phlorotannins, carbohydrates, glycosides, saponins, flavonoids, alkaloids, sterols, triterpenes, and anthraquinone glycosides. To conserve the existing phenolic compounds, a portion of the constituent tests will be examined with an acid, alcohol, or aqueous solvent. As a result, the qualitative and quantitative variations within the Dandelion extract that measure uniform effective potency are vital to the conformity for producing medicinal products. These medicines will be constructed with a consistent, uniform composition that physicians can use to control and effectively eradicate malignant diseases safely. Taraxacum Officinale's phytochemical composition comprises a highly-graded potency due to present bioactive contents that will essentially drive out malignant disease within the human body. Its high potency rate is powerful enough to eliminate both mature cancer cells and cancer stem cells without the cell and gene damage induced by chemotherapy and radiation. Correspondingly, the high margins of cancer mortality on a global scale are mitigated. This remarkable contribution to modern therapeutics will essentially optimize the margins of natural products and their derivatives, which account for 50% of pharmaceuticals in modern therapeutics, while preventing the adverse effects of radiation and chemotherapy drugs.

Keywords: antioxidant, apoptosis, metastasize, phytochemical, proliferation, potency

Procedia PDF Downloads 44
369 Identification of Arglecins B and C and Actinofuranosin A from a Termite Gut-Associated Streptomyces Species

Authors: Christian A. Romero, Tanja Grkovic, John. R. J. French, D. İpek Kurtböke, Ronald J. Quinn

Abstract:

A high-throughput and automated 1H NMR metabolic fingerprinting dereplication approach was used to accelerate the discovery of unknown bioactive secondary metabolites. The applied dereplication strategy accelerated the discovery of natural products, provided rapid and competent identification and quantification of the known secondary metabolites and avoided time-consuming isolation procedures. The effectiveness of the technique was demonstrated by the isolation and elucidation of arglecins B (1), C (2) and actinofuranosin A (3) from a termite-gut associated Streptomyces sp. (USC 597) grown under solid state fermentation. The structures of these compounds were elucidated by extensive interpretation of 1H, 13C and 2D NMR spectroscopic data. These represent the first report of arglecin analogs isolated from a termite gut-associated Streptomyces species.

Keywords: actinomycetes, actinofuranosin, antibiotics, arglecins, NMR spectroscopy

Procedia PDF Downloads 23
368 Synthesis and Anticholinesterase Activity of Carvacrol Derivatives

Authors: Fatih Sonmez

Abstract:

Alzheimer’s disease (AD) is a progressive neurodegenerative disease and it is the most common form of dementia that affects aged people. Acetylcholinesterase is a hydrolase involved in the termination of impulse transmission at cholinergic synapses by rapid hydrolysis of the neurotransmitter ACh in the central and peripheral nervous system. Carvacrol (5-iso-propyl-2-methyl-phenol) is a main bioactive monoterpene isolated from many medicinal herbs, such as Thymus vulgaris, Monarda punctate and Origanum vulgare spp. It is known that carvacrol has been widely used as an active anti-inflammatory ingredient, which can inhibit the isoproterenol induced inflammation in myocardial infarcted rats. In this paper, a series of 12 carvacrol substituted carbamate derivatives (2a-l) was synthesized and their inhibitory activities on AChE and BuChE were evaluated. Among them, 2d exhibited the strongest inhibition against AChE with an IC50 value of 2.22 µM, which was 130-fold more than that of carvacrol (IC50 = 288.26 µM).

Keywords: Acetylcholinesterase, Butyrylcholinesterase, Carbamate, Carvacrol

Procedia PDF Downloads 329
367 Substantiate the Effects of Reactive Dyes and Aloe Vera on the Ultra Violet Protective Properties on Cotton Woven and Knitted Fabrics

Authors: Neha Singh

Abstract:

The incidence of skin cancer has been rising worldwide due to excessive exposure to sun light. Climatic changes and depletion of ozone layer allow the easy entry of UV rays on earth, resulting skin damages such as sunburn, premature skin ageing, allergies and skin cancer. Researches have suggested many modes for protection of human skin against ultraviolet radiation; avoidance to outdoor activities, using textiles for covering the skin, sunscreen and sun glasses. However, this paper gives an insight about how textile material specially woven and knitted cotton can be efficiently utilized for protecting human skin from the harmful ultraviolet radiations by combining reactive dyes with Aloe Vera. Selection of the fabric was based on their utility and suitability as per the climate condition of the country for the upper and lower garment. A standard dyeing process was used, and Aloe Vera molecules were applied by in-micro encapsulation technique. After combining vat dyes with Aloe Vera excellent UPF (Ultra violet Protective Factor) was observed. There is a significant change in the UPF of vat dyed cotton fabric after treatment with Aloe Vera.

Keywords: UV protection, aloe vera, protective clothing, reactive dyes, cotton, woven and knits

Procedia PDF Downloads 219
366 Preparation and Application of Biocompatible Nanobioactive Glass as Therapeutic Agents for Bone Tissue Engineering

Authors: P. Shrivastava, S. Vijayalakshmi, A. K. Singh, S. Dalai, R. Teotia, P. Sharma, J. Bellare

Abstract:

This paper focuses on the synthesis and application of nanobioactive glass for bone regeneration studies. Nanobioactive glass has been synthesized by sol gel method having a combination of silicon, calcium and phosphorous in the molar ratio of 75:21:4. The prepared particles were analyzed for surface morphology by FEG SEM and FEG TEM. Physiochemical properties were investigated using ICP AES, FTIR spectroscopy and X-ray diffraction (XRD) techniques. To ascertain their use for therapeutic use, biocompatibility evaluation of the particles was done by performing soaking studies in SBF and in vitro cell culture studies on MG63 cell lines. Cell morphology was observed by FE SEM and phase contrast microscopy. Nanobioactive glasses (NBG) thus prepared were of 30-200 nm in size, which makes them suitable for nano-biomedical applications. The spherical shape of the particles imparts high surface to volume ratio, promoting fast growth of hydroxyapatite (HA), which is the mineral component of bone. As evaluated by in vitro cell culture studies the NBG was found to enhance the surface activation which enhances osteoblast adhesion. This is an essential parameter to improve bone tissue integration, thereby making nanobioactive glass therapeutically suitable for correcting bone defects.

Keywords: biocompatibility, bone tissue engineering, hydroxyapatite, nanobioactive glass

Procedia PDF Downloads 429
365 Absent Theaters: A Virtual Reconstruction from Memories

Authors: P. Castillo Muñoz, A. Lara Ramírez

Abstract:

Absent Theaters is a project that virtually reconstructs three theaters that existed in the twentieth century, demolished in the city of Medellin, Colombia: Circo España, Bolívar, and Junín. Virtual reconstruction is used as an excuse to talk with those who lived in their childhood and youth cultural spaces that formed a whole generation. Around 100 people who witnessed these theaters were interviewed. The means used to perform the oral history work was the virtual reconstruction of the interior of the theaters that were presented to the interviewees through the Virtual Reality glasses. The voices of people between 60 and 103 years old were used to generate a transmission of knowledge to the new generations about the importance of theaters as essential places for the city, as spaces generating social relations and knowledge of other cultures. Oral stories about events, the historical and social context of the city, were mixed with archive images and animations of the architectural transformations of these places. Oral stories about events, the historical and social context of the city, were mixed with archive images and animations of the architectural transformations of these places, with the purpose of compiling a collective discourse around cultural activities, heritage, and memory of Medellin.

Keywords: culture, heritage, oral history, theaters, virtual reality

Procedia PDF Downloads 102
364 Preparation and Fabrication of Lithium Disilicate Glass Ceramic as Dental Crowns via Hot Pressing Method

Authors: A. Srion, W. Thepsuwan, N. Monmaturapoj

Abstract:

Two Lithium disilicate (LD) glass ceramics based on SiO2-Li2O-K2O-Al2O3 system were prepared through glass melting method and then fabricated into dental crowns via hot pressing at 850˚C and 900˚C in order to study the effect of the pressing temperatures on theirs phase formation and microstructure. The factor such as heat treatment temperature (as-cast glass, 600˚C and 700˚C) of the glass ceramics used to press was also investigated the effect of an initial microstructure before pressing. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine phase formation and microstructure of the samples, respectively. X-ray diffraction result shows that the main crystalline structure was Li2Si2O5 by having Li3PO4, Li0.6Al0.6Si2O6, Li2SiO3, Ca5 (PO4)3F, SiO2 as minor phases. Glass compositions with different heat treatment temperatures exhibited a difference phase formation but have less effect during pressing. Scanning electron microscopy analysis showed microstructure of lath-like of Li2Si2O5 in all glasses. With increasing the initial heat treatment temperature, the longer the lath-like crystals of lithium disilicate were increased especially when using glass heat treatment at 700˚C followed by pressing at 900˚C. This could be suggested that LD1 heat treatment at 700˚C which pressing at 900˚C presented the best formation by hot pressing and compiled microstructure.

Keywords: lithium disilicate, hot pressing, dental crown, microstructure

Procedia PDF Downloads 297
363 Variation of Biologically Active Compounds and Antioxidancy in the Process of Blueberry Storage

Authors: Meri Khakhutaishvili, Indira Djaparidze, Maia Vanidze, Aleko Kalandia

Abstract:

Cultivation of blueberry in Georgia started in 21st century. There are more than 20 species of blueberry cultivated in this region from all other the world. The species are mostly planted on acidic soil, previously occupied by tea plantations. Many of the plantations have pretty good yield. It is known that changing the location of a plant to a new soil or climate effects chemical compositions of the plant. However, even though these plants are brought from other countries, no research has been conducted to fully examine the blueberry fruit cultivated in Georgia. Shota Rustaveli National Science Foundation Grant FR/335/10-160/14, gave us an opportunity to continue our previous works and conduct research on several berries, among them of course the chemical composition of stored Blueberry. We were able to conduct the first study that included examining qualitative and quantitative features of bioactive compounds in Georgian Blueberry. This experiments were held in the ‘West Georgia Regional Chromatography center’ (Grant AP/96/13) of our university, that is equipped with modern equipment like HPLC UV-Vis, RI-detector, HPLC-conductivity detector, UPLC-MS-detector. Biochemical analysis was conducted using different physico-chemical and instrumental methods. Separation-identification and quantitative analysis were conducted using UPLC-MS (Waters Acquity QDa detector), HPLC (Waters Brceze 1525, UV-Vis 2489 detectors), pH-meters (Mettler Toledo). Refractrometer -Misco , Spectrometer –Cuvette Changer (Mettler Toledo UV5A), C18 Cartridge Solid Phase Extraction (SPE) Waters Sep-Pak C18 (500 mg), Chemicals – stability radical- 2,2-Diphenil-1-picrilhydrazyl (Aldrich-germany), Acetonitrile, Methanol, Acetic Acid (Merck-Germany), AlCl3, Folin Ciocalteu reagent (preparation), Standarts –Callic acid, Quercetin. Carbohydrate HPLC-RI analysis used systems acetonitrile-water (80-20). UPLC-MS analysis used systems- solvent A- Water +1 % acetic acid და solvent -B Methanol +1% acetic acid). It was concluded that the amount of sugars was in range of 5-9 %, mostly glucose and fructose. Also, the amount of organic acids was 0.2-1.2% most of which was malic and citric acid. Anthocians were also present in the sample 200-550mg/100g. We were able to identify up to 15 different compounds, most of which were products of delphinidine and cyanide. All species have high antioxidant level(DPPH). By rapidly freezing the sample and then keeping it in specific conditions allowed us to keep the sample for 12 months.

Keywords: antioxidants, bioactive, blueberry, storage

Procedia PDF Downloads 179
362 Potential of Visualization and Information Modeling on Productivity Improvement and Cost Saving: A Case Study of a Multi-Residential Construction Project

Authors: Sara Rankohi, Lloyd Waugh

Abstract:

Construction sites are information saturated. Digitalization is hitting construction sites to meet the incredible demand of knowledge sharing and information documentations. From flying drones, 3D Lasers scanners, pocket mobile applications, to augmented reality glasses and smart helmet, visualization technologies help real-time information imposed straight onto construction professional’s field of vision. Although these technologies are very applicable and can have the direct impact on project cost and productivity, experience shows that only a minority of construction professionals quickly adapt themselves to benefit from them in practice. The majority of construction managers still tend to apply traditional construction management methods. This paper investigates a) current applications of visualization technologies in construction projects management, b) the direct effect of these technologies on productivity improvement and cost saving of a multi-residential building project via a case study on Mac Taggart Senior Care project located in Edmonton, Alberta. The research shows the imaged based technologies have a direct impact on improving project productivity and cost savings.

Keywords: image-based technologies, project management, cost, productivity improvement

Procedia PDF Downloads 326
361 Qualitative and Quantitative Screening of Biochemical Compositions for Six Selected Marine Macroalgae from Mediterranean Coast of Egypt

Authors: Madelyn N. Moawad, Hermine R. Z. Tadros, Mary G. Ghobrial, Ahmad R. Bassiouny, Kamal M. Kandeel, Athar Ata

Abstract:

Seaweeds are potential renewable resources in marine environment. They provide an excellent source of bioactive substances such as dietary fibers and various functional polysaccharides that could potentially be used as ingredients for both human and animal health applications. The observations suggested that these bioactive compounds have strong antioxidant properties, which have beneficial effects on human health. The present research aimed at finding new chemical products from local marine macroalgae for natural medicinal uses and consumption for their nutritional values. Macroalgae samples were collected manually mainly from the Mediterranean Sea at shallow subtidal zone of Abu Qir Bay, Alexandria, Egypt. The chemical compositions of lyophilized materials of six selected macroalgal species; Colpomenia sinuosa, Sargassum linifolium, Padina pavonia, Pterocladiella capillacea, Laurencia pinnatifidia, and Caulerpa racemosa, were investigated for proteins using bovine serum albumin, and carbohydrates were assayed by phenol-sulfuric acid reaction. The macroalgae lipid was extracted with chloroform, methanol and phosphate buffer. Vitamins were extracted using trichloroacetic acid. Chlorophylls and total carotenoids were determined spectrophotometrically and total phenols were extracted with methanol. In addition, lipid-soluble, and water-soluble antioxidant, and anti α-glucosidase activities were measured spectrophotometrically. The antioxidant activity of hexane extracts was investigated using phosphomolybdenum reagent. The anti-α-glucosidase effect measurement was initiated by mixing α-glucosidase solution with p-nitrophenyl α-D-glucopyranoside. The results showed that the ash contents varied from 11.2 to 35.4 % on dry weight basis for P. capillacea and Laurencia pinnatifidia, respectively. The protein contents ranged from 5.63 % in brown macroalgae C. sinuosa to 8.73 % in P. pavonia. A relative wide range in carbohydrate contents was observed (20.06–46.75 %) for the test algal species. The highest lipid percentage was found in green alga C. racemosa (5.91%) followed by brown algae P. pavonia (3.57%) and C. sinuosa (2.64%). The phenolic contents varied from 1.32 mg GAE/g for C. sinuosa to 4.00 mg GAE/g in P. pavonia. The lipid-soluble compounds exhibited higher antioxidant capacity (73.18-145.95 µM/g) than that of the water-soluble ones ranging from 24.83 µM/g in C. racemosa to 74.07 µM/g in S. linifolium. The most potent anti-α-glucosidase activity was observed for P. pavonia with IC50 of 17.12 μg/ml followed by S. linifolium (IC50 = 71.75 μg/ml), C. racemosa (IC50 = 84.73 μg/ml), P. capillacea (IC50 = 92.16 μg/ml), C. sinuosa (IC50 = 112.44 μg/ml), and L. pinnatifida (IC50 = 115.11 μg/ml).

Keywords: α-glucosidase, lyophilized, macroalgae, spectrophotometrically

Procedia PDF Downloads 253
360 Immobilization of Horseradish Peroxidase onto Bio-Linked Magnetic Particles with Allium Cepa Peel Water Extracts

Authors: Mirjana Petronijević, Sanja Panić, Aleksandra Cvetanović, Branko Kordić, Nenad Grba

Abstract:

Enzyme peroxidases are biological catalysts and play a major role in phenolic wastewater treatments and other environmental applications. The most studied species from the peroxidases family is horseradish peroxidase (HRP). In environmental processes, HRP could be used in its free or immobilized form. Enzyme immobilization onto solid support is performed to improve the enzyme properties, prolong its lifespan and operational stability and allow its reuse in industrial applications. One of the enzyme supports of a newer generation is magnetic particles (MPs). Fe₃O₄ MPs are the most widely pursued immobilization of enzymes owing to their remarkable advantages of biocompatibility and non-toxicity. Also, MPs can be easily separated and recovered from the water by applying an external magnetic field. On the other hand, metals and metal oxides are not suitable for the covalent binding of enzymes, so it is necessary to perform their surface modification. Fe₃O₄ MPs functionalization could be performed during the process of their synthesis if it takes place in the presence of plant extracts. Extracts of plant material, such as wild plants, herbs, even waste materials of the food and agricultural industry (bark, shell, leaves, peel), are rich in various bioactive components such as polyphenols, flavonoids, sugars, etc. When the synthesis of magnetite is performed in the presence of plant extracts, bioactive components are incorporated into the surface of the magnetite, thereby affecting its functionalization. In this paper, the suitability of bio-magnetite as solid support for covalent immobilization of HRP across glutaraldehyde was examined. The activity of immobilized HRP at different pH values (4-9) and temperatures (20-80°C) and reusability were examined. Bio-MP was synthesized by co-precipitation method from Fe(II) and Fe(III) sulfate salts in the presence of water extract of the Allium cepa peel. The water extract showed 81% of antiradical potential (according to DPPH assay), which is connected with the high content of polyphenols. According to the FTIR analysis, the bio-magnetite contains oxygen functional groups (-OH, -COOH, C=O) suitable for binding to glutaraldehyde, after which the enzyme is covalently immobilized. The immobilized enzyme showed high activity at ambient temperature and pH 7 (30 U/g) and retained ≥ 80% of its activity at a wide range of pH (5-8) and temperature (20-50°C). The HRP immobilized onto bio-MPs showed remarkable stability towards temperature and pH variations compared to the free enzyme form. On the other hand, immobilized HRP showed low reusability after the first washing cycle enzyme retains 50% of its activity, while after the third washing cycle retains only 22%.

Keywords: bio-magnetite, enzyme immobilization, water extracts, environmental protection

Procedia PDF Downloads 182
359 The Effects of Grape Waste Bioactive Compounds on the Immune Response and Oxidative Stress in Pig Kidney

Authors: Mihai Palade, Gina Cecilia Pistol, Mariana Stancu, Veronica Chedea, Ionelia Taranu

Abstract:

Nutrition is an important determinant of general health status, with especially focus on prevention and/or attenuation of the inflammatory-associated pathologies. People with chronic kidney disease can experience chronic inflammation that can lead to cardiovascular disease and even an increased rate of death. There are important links between chronic kidney diseases, inflammation and nutritional strategies that may prevent or protect against undesirable inflammation and oxidative stress. The grape by-products either seeds or pomace are rich in polyphenols which may be beneficial in prevention of inflammatory, antioxidant and antimicrobial processes. As a model for studying the impact of grape seeds on renal inflammation and oxidative stress, we used in this study weaned piglets. After a feeding trial of 30 days with a control diet and an experimental diet containing 5% grape seed (GS), kidney samples were collected. In renal tissues were determined the expression and activity of important markers of immune respose and oxidative stress: pro-inflammatory cytokines (TNF-alpha, IL-1 beta, IL-6, IL-8, IFN-gamma), anti-inflammatory cytokines (IL-4, IL-10), anti-oxidant enzymes (catalase CAT, superoxide dismutase SOD, glutathione peroxidise GPx) and important mediators belonging to nuclear receptors (NF-kB1, Nrf-2 and PPAR-gamma). Gene expression was evaluated by qPCR, whereas protein concentration was determined using proteomic techniques (ELISA). The activity of anti-oxidant enzymes was determined using specific kits. Our results showed that GS enriched in polyphenols does not have effect on TNF-alpha, IL-6 and IL-1 beta gene expression and protein concentration in kidney. By contrast, the gene expression and protein level of IL-8 and IFN-gamma were decreased in GS kidney. Anti-inflammatory cytokines IL-4 and IL-10 gene levels were increased in kidneys collected from GS piglets in comparison with controls, with no modification of protein levels between the two groups. The activities of anti-oxidant enzymes CAT and GPx were increased in kidney by GS, whereas SOD activity was unmodified in comparison with control samples. Also, the GS diet was associated with no modulation of mRNAs for nuclear receptors NF-kB1, Nrf-2 and PPAR-gamma gene expressions in kidneys. In conclusion, our results demonstrated that GS enriched in bioactive compounds such polyphenols could modulate inflammation and oxidative stress markers in kidney tissues. Further studies are necessary to elucidate the mechanism of action of GS compounds in case kidney inflammation associated with oxidative stress, and signalling molecules involved in these mechanisms.

Keywords: animal model, kidney inflammation, oxidative stress, grape seed

Procedia PDF Downloads 271
358 Up-Scaling of Highly Transparent Quasi-Solid State Dye-Sensitized Solar Devices Composed of Nanocomposite Materials

Authors: Dimitra Sygkridou, Andreas Rapsomanikis, Elias Stathatos, Polycarpos Falaras, Evangelos Vitoratos

Abstract:

At the present work highly transparent strip type quasi-solid state dye-sensitized solar cells (DSSCs) were fabricated through inkjet printing using nanocomposite TiO2 inks as raw materials and tested under outdoor illumination conditions. The cells, which can be considered as the structural units of large area modules, were fully characterized electrically and electrochemically and after the evaluation of the received results a large area DSSC module was manufactured. The module design was a sandwich Z-interconnection where the working electrode is deposited on one conductive glass and the counter electrode on a second glass. Silver current collective fingers were printed on the conductive glasses to make the internal electrical connections and the adjacent cells were connected in series and finally insulated using a UV curing resin to protect them from the corrosive (I-/I3-) redox couple of the electrolyte. Finally, outdoor tests were carried out to the fabricated dye-sensitized solar module and its performance data were collected and assessed.

Keywords: dye-sensitized solar devices, inkjet printing, quasi-solid state electrolyte, transparency, up-scaling

Procedia PDF Downloads 306
357 Factory Virtual Environment Development for Augmented and Virtual Reality

Authors: Michal Gregor, Jiri Polcar, Petr Horejsi, Michal Simon

Abstract:

Machine visualization is an area of interest with fast and progressive development. We present a method of machine visualization which will be applicable in real industrial conditions according to current needs and demands. Real factory data were obtained in a newly built research plant. Methods described in this paper were validated on a case study. Input data were processed and the virtual environment was created. The environment contains information about dimensions, structure, disposition, and function. Hardware was enhanced by modular machines, prototypes, and accessories. We added new functionalities and machines into the virtual environment. The user is able to interact with objects such as testing and cutting machines, he/she can operate and move them. Proposed design consists of an environment with two degrees of freedom of movement. Users are in touch with items in the virtual world which are embedded into the real surroundings. This paper describes the development of the virtual environment. We compared and tested various options of factory layout virtualization and visualization. We analyzed possibilities of using a 3D scanner in the layout obtaining process and we also analyzed various virtual reality hardware visualization methods such as Stereoscopic (CAVE) projection, Head Mounted Display (HMD), and augmented reality (AR) projection provided by see-through glasses.

Keywords: augmented reality, spatial scanner, virtual environment, virtual reality

Procedia PDF Downloads 376
356 Recent Advances in the Valorization of Goat Milk: Nutritional Properties and Production Sustainability

Authors: A. M. Tarola, R. Preti, A. M. Girelli, P. Campana

Abstract:

Goat dairy products are gaining popularity worldwide. In developing countries, but also in many marginal regions of the Mediterranean area, goats represent a great part of the economy and ensure food security. In fact, these small ruminants are able to convert efficiently poor weedy plants and small trees into traditional products of high nutritional quality, showing great resilience to different climatic and environmental conditions. In developed countries, goat milk is appreciated for the presence of health-promoting compounds, bioactive compounds such as conjugated linoleic acids, oligosaccharides, sphingolipids and polyammines. This paper focuses on the recent advances in literature on the nutritional properties of goat milk and on innovative techniques to improve its quality as to become a promising functional food. The environmental sustainability of different methodologies of production has also been examined. Goat milk is valued today as a food of high nutritional value and functional properties as well as small environmental footprint. It is widely consumed in many countries due to high nutritional value, lower allergenic potential, and better digestibility when compared to bovine milk, that makes this product suitable for infants, elderly or sensitive patients. The main differences in chemical composition between a cow and goat milk rely on fat globules that in goat milk are smaller and in fatty acids that present a smaller chain length, while protein, fat, and lactose concentration are comparable. Milk nutritional properties have demonstrated to be strongly influenced by animal diet, genotype, and welfare, but also by season and production systems. Furthermore, there is a growing interest in the dairy industry in goat milk for its relatively high concentration of prebiotics and a good amount of probiotics, which have recently gained importance for their therapeutic potential. Therefore, goat milk is studied as a promising matrix to develop innovative functional foods. In addition to the economic and nutritional value, goat milk is considered a sustainable product for its small environmental footprint, as they require relatively little water and land, and less medical treatments, compared to cow, these characteristics make its production naturally vocated to organic farming. Organic goat milk production has becoming more and more interesting both for farmers and consumers as it can answer to several concerns like environment protection, animal welfare and economical sustainment of rural populations living in marginal lands. These evidences make goat milk an ancient food with novel properties and advantages to be valorized and exploited.

Keywords: goat milk, nutritional quality, bioactive compounds, sustainable production, animal welfare

Procedia PDF Downloads 119
355 Proposition of an Intelligent System Based on the Augmented Reality for Warehouse Logistics

Authors: Safa Gharbi, Hayfa Zgaya, Nesrine Zoghlami, Slim Hammadi, Cyril De Barbarin, Laurent Vinatier, Christiane Coupier

Abstract:

Increasing productivity and quality of service, improving the working comfort and ensuring the efficiency of all processes are important challenges for every warehouse. The order picking is recognized to be the most important and costly activity of all the process in warehouses. This paper presents a new approach using Augmented Reality (AR) in the field of logistics. It aims to create a Head-Up Display (HUD) interface with a Warehouse Management System (WMS), using AR glasses. Integrating AR technology allows the optimization of order picking by reducing time of picking process, increasing the efficiency and delivering quickly. The picker will be able to access immediately to all the information needed for his tasks. All the information is displayed when needed in the field of vision (FOV) of the operator, without any action requested from him. These research works are part of the industrial project RASL (Réalité Augmentée au Service de la Logistique) which gathers two major partners: the LAGIS (Laboratory of Automatics, Computer Engineering and Signal Processing in Lille-France) and Genrix Group, European leader in warehouses logistics, who provided his software for implementation, and his logistics expertise.

Keywords: Augmented Reality (AR), logistics and optimization, Warehouse Management System (WMS), Head-Up Display (HUD)

Procedia PDF Downloads 455
354 Chemical and Bioactive Constituents Isolated from the Formosa Zamia furfureace L.

Authors: Chien-Liang Chao, Yun-Sheng Lin

Abstract:

Secondary metabolites are applied in the human life of the Chinese herbal medicine. Many drugs are originally extracted from natural products with combination of pharmaceutical and chemical studies. Crude extract of the leaves from Zamia furfureace L. has been shown to exhibit anticancer activities. The first chemical investigation of this plant was carried out by our group. In this study, four known compounds were isolated from Zamia furfureace L. with three lignins (Sesamin (1), Wodeshiol (2) and Paulownin (3)), and one dipeptide (Aurantiamide acetate (4)). The structures of these compounds were analyzed through the 1D-NMR(1H-NMR,13C-NMR)、2D-NMR(COSY、HMQC、HMBC、NOESY) spectroscopic analysis, and by comparison of variety of physical data (IR, mass spectrometry, ultraviolet, optical rotation). Among them, Aurantiamide acetate (4) exhibited weak cytotoxic activity against human gastric cancer cells.

Keywords: Zamia furfureace L., AGS, sesamin, Aurantiamide acetate, secondary metabolites

Procedia PDF Downloads 456
353 Synergetic Effects of Water and Sulfur Dioxide Treatments on Wear of Soda Lime Silicate Glass

Authors: Qian Qiao, Tongjin Xiao, Hongtu He, Jiaxin Yu

Abstract:

This study is focused on the synergetic effects of water and sulfur dioxide treatments (SO₂ treatments) on the mechanochemical wear of SLS glass. It is found that the wear behavior of SLS glass in humid air is very sensitive to the water and SO₂ treatment environments based on the wear test using a ball-on-flat reciprocation tribometer. When SLS glass is treated with SO₂-without, the presence of water, the wear resistance of SLS glass in humid air becomes significantly higher compared to the pristine glass. However, when SLS glass is treated with SO₂ with the presence of water, the wear resistance of SLS glass decreases remarkably with increasing in the relative humidity (RH) from 0% to 90%. Further analyses indicate that when sodium ions are leached out of SLS glass surface via the water and SO₂ treatments, the mechanochemical properties of SLS glass surface become different depending on the RH. At lower humidity, the nano hardness of the Na⁺-leached surface is higher, and it can contribute to the enhanced wear resistance of SLS glass. In contrast, at higher humidity conditions, the SLS glass surface is more hydrophilic, and substantial wear debris can be found inside the wear track of SLS glass. Those phenomena suggest that adhesive wear and abrasive wear dominate the wear mechanism of SLS glass in humid air, causing the decreased wear resistance of SLS glass with increasing the RH. These results may not only provide a deep understanding of the wear mechanism of SLS glass but also helpful for operation process of functional and engineering glasses.

Keywords: soda lime silicate glass, wear, water, SO₂

Procedia PDF Downloads 142
352 The Impact of Encapsulated Raspberry Juice on the Surface Colour of Enriched White Chocolate

Authors: Ivana Loncarevic, Biljana Pajin, Jovana Petrovic, Aleksandar Fistes, Vesna Tumbas Saponjac, Danica Zaric

Abstract:

Chocolate is a complex rheological system usually defined as a suspension consisting of non-fat particles dispersed in cocoa butter as a continuous fat phase. Dark chocolate possesses polyphenols as major constituents whose dietary consumption has been associated with beneficial effects. Milk chocolate is formulated with a lower percentage of cocoa bean liquor than dark chocolate and it often contains lower amounts of polyphenols, while in white chocolate the fat-free cocoa solids are left out completely. Following the current trend of development of functional foods, there is an idea to create enriched white chocolate with the addition of encapsulated bioactive compounds from berry fruits. The aim of this study was to examine the surface colour of enriched white chocolate with the addition of 6, 8, and 10% of raspberry juice encapsulated in maltodextrins, in order to preserve the stability, bioactivity, and bioavailability of the active ingredients. The surface color of samples was measured by MINOLTA Chroma Meter CR-400 (Minolta Co., Ltd., Osaka, Japan) using D 65 lighting, a 2º standard observer angle and an 8-mm aperture in the measuring head. The following CIELab color coordinates were determined: L* – lightness, a* – redness to greenness and b* – yellowness to blueness. The addition of raspberry encapsulates led to the creation of new type of enriched chocolate. Raspberry encapsulate changed the values of the lightness (L*), a* (red tone) and b* (yellow tone) measured on the surface of enriched chocolate in accordance with applied concentrations. White chocolate has significantly (p < 0.05) highest L* (74.6) and b* (20.31) values of all samples indicating the bright surface of the white chocolate, as well as a high share of a yellow tone. At the same time, white chocolate has the negative a* value (-1.00) on its surface which includes green tones. Raspberry juice encapsulate has the darkest surface with significantly (p < 0.05) lowest value of L* (42.75), where increasing of its concentration in enriched chocolates decreases their L* values. Chocolate with 6% of encapsulate has significantly (p < 0.05) highest value of L* (60.56) in relation to enriched chocolate with 8% of encapsulate (53.57), and 10% of encapsulate (51.01). a* value measured on the surface of white chocolate is negative (-1.00) tending towards green tones. Raspberry juice encapsulates increases red tone in enriched chocolates in accordance with the added amounts (23.22, 30.85, and 33.32 in enriched chocolates with 6, 8, and 10% encapsulated raspberry juice, respectively). The presence of yellow tones in enriched chocolates significantly (p < 0.05) decreases with the addition of E (with b* value 5.21), from 10.01 in enriched chocolate with a minimal amount of raspberry juice encapsulates to 8.91 in chocolate with a maximum concentration of raspberry juice encapsulate. The addition of encapsulated raspberry juice to white chocolate led to the creation of new type of enriched chocolate with attractive color. The research in this paper was conducted within the project titled ‘Development of innovative chocolate products fortified with bioactive compounds’ (Innovation Fund Project ID 50051).

Keywords: color, encapsulated raspberry juice, polyphenols, white chocolate

Procedia PDF Downloads 148
351 DNA Intercalating Alkaloids Isolated from Chelidonium majus (Papaveraceae)

Authors: Mohamed Tamer, Wink Michael

Abstract:

DNA intercalating agents increase the stability of DNA which can be demonstrated by measuring the melting temperature Tm. Tm can be determined in a spectrophotometer in which the cell temperature is increased gradually. The resulting absorption data comes as a sigmoidal curve from which melting temperature can be determined when half of the DNA has denatured. The current study aims to assess DNA intercalating activities of four pure bioactive isoquinoline alkaloids: sanguinarine, berberine, allocryptopine, and chelerythrine which were isolated from Chelidonium majus (Papaveraceae) by repeated silica gel column chromatography, recrystallization and preparative TLC. The isolated compounds were identified by comparing their physical properties and mass spectra with those of the published data. The results showed that sanguiarine is the most active intercalating agent with Tm value of 83.55 ± 0.49 followed by berberine, chelerythrine, and allocryptopine with Tm values 62.58 ± 0.47, 51.38 ± 0.37 and 50.94 ± 0.65, respectively, relative to 49.78 ± 1.05 of bacteriophage DNA alone and 86.09 ± 0.5 for ethidium bromide as a positive control.

Keywords: alkaloids, Chelidonium majus, DNA intercalation, Tm

Procedia PDF Downloads 472
350 Synthesis of Metal Curcumin Complexes with Iron(III) and Manganese(II): The Effects on Alzheimer's Disease

Authors: Emel Yildiz, Nurcan Biçer, Fazilet Aksu, Arash Alizadeh Yegani

Abstract:

Plants provide the wealth of bioactive compounds, which exert a substantial strategy for the treatment of neurological disorders such as Alzheimer's disease. Recently, a lot of studies have explored the medicinal properties of curcumin, including antitumoral, antimicrobial, anti-inflammatory, antioxidant, antiviral, and anti-Alzheimer's disease effects. Metal complexes of curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) were synthesized with Mn(II) and Fe(III). The structures of synthesized metal complexes have been characterized by using spectroscopic and analytic methods such as elemental analysis, magnetic susceptibility, FT-IR, AAS, TG and argentometric titration. It was determined that the complexes have octahedral geometry. The effects of the metal complexes on the disorder of memory, which is an important symptom of Alzheimer's Disease were studied on lab rats with Plus-Maze Tests at Behavioral Pharmacology Laboratory.

Keywords: curcumin, Mn(II), Fe(III), Alzheimer disease, beta amyloid 25-35

Procedia PDF Downloads 276
349 Biocompatibility of Calcium Phosphate Coatings With Different Crystallinity Deposited by Sputtering

Authors: Ekaterina S. Marchenko, Gulsharat A. Baigonakova, Kirill M. Dubovikov, Igor A. Khlusov

Abstract:

NiTi alloys combine biomechanical and biochemical properties. This makes them a perfect candidate for medical applications. However, there is a serious problem with these alloys, such as the release of Ni from the matrix. Ni ions are known to be toxic to living tissues and leach from the matrix into the surrounding implant tissues due to corrosion after prolonged use. To prevent the release of Ni ions, corrosive strong coatings are usually used. Titanium nitride-based coatings are perfect corrosion inhibitors and also have good bioactive properties. However, there is an opportunity to improve the biochemical compatibility of the surface by depositing another layer. This layer can consist of elements such as calcium and phosphorus. The Ca and P ions form different calcium phosphate phases, which are present in the mineral part of human bones. We therefore believe that these elements must promote osteogenesis and osteointegration. In view of the above, the aim of this study is to investigate the effect of crystallinity on the biocompatibility of a two-layer coating deposited on NiTi substrate by sputtering. The first step of the research, apart from the NiTi polishing, is the layer-by-layer deposition of Ti-Ni-Ti by magnetron sputtering and the subsequent synthesis of this composite in an N atmosphere at 900 °C. The total thickness of the corrosion resistant layer is 150 nm. Plasma assisted RF sputtering was then used to deposit a bioactive film on the titanium nitride layer. A Ca-P powder target was used to obtain such a film. We deposited three types of Ca-P layers with different crystallinity and compared them in terms of cytotoxicity. One group of samples had no Ca-P coating and was used as a control. We obtained different crystallinity by varying the sputtering parameters such as bias voltage, plasma source current and pressure. XRD analysis showed that all coatings are calcium phosphate, but the sample obtained at maximum bias and plasma source current and minimum pressure has the most intense peaks from the coating phase. SEM and EDS showed that all three coatings have a homogeneous and dense structure without cracks and consist of calcium, phosphorus and oxygen. Cytotoxic tests carried out on three types of samples with Ca-P coatings and a control group showed that the control sample and the sample with Ca-P coating obtained at maximum bias voltage and plasma source current and minimum pressure had the lowest number of dead cells on the surface, around 11 ± 4%. Two other types of samples with Ca-P coating have 40 ± 9% and 21 ± 7% dead cells on the surface. It can therefore be concluded that these two sputtering modes have a negative effect on the corrosion resistance of the whole samples. The third sputtering mode does not affect the corrosion resistance and has the same level of cytotoxicity as the control. It can be concluded that the most suitable sputtering mode is the third with maximum bias voltage and plasma source current and minimum pressure.

Keywords: calcium phosphate coating, cytotoxicity, NiTi alloy, two-layer coating

Procedia PDF Downloads 40
348 A Green Approach towards the Production of CaCO₃ Scaffolds for Bone Tissue Engineering

Authors: Sudhir Kumar Sharma, Abiy D. Woldetsadik, Mazin Magzoub, Ramesh Jagannathan

Abstract:

It is well known that bioactive ceramics exhibit specific biological affinities, especially in the area of tissue re-generation. In this context, we report the development of an eminently scalable, novel, supercritical CO₂ based process for the fabrication of hierarchically porous 'soft' CaCO₃ scaffolds. Porosity at the macro, micro, and nanoscales was obtained through process optimization of the so-called 'coffee-ring effect'. Exposure of these CaCO₃ scaffolds to monocytic THP-1 cells yielded negligible levels of tumor necrosis factor-alpha (TNF-α) thereby confirming the lack of immunogenicity of the scaffolds. ECM protein treatment of the scaffolds showed enhanced adsorption comparable to standard control such as glass. In vitro studies using osteoblast precursor cell line, MC3T3, also demonstrated the cytocompatibility of hierarchical porous CaCO₃ scaffolds.

Keywords: supercritical CO2, CaCO3 scaffolds, coffee-ring effect, ECM proteins

Procedia PDF Downloads 267