Search results for: batch reactor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1151

Search results for: batch reactor

341 Bioremoval of Malachite Green Dye from Aqueous Solution Using Marine Algae: Isotherm, Kinetic and Mechanistic Study

Authors: M. Jerold, V. Sivasubramanian

Abstract:

This study reports the removal of Malachite Green (MG) from simulated wastewater by using marine macro algae Ulva lactuca. Batch biosorption experiments were carried out to determine the biosorption capacity. The biosorption capacity was found to be maximum at pH 10. The effect of various other operation parameters such as biosorbent dosage, initial dye concentration, contact time and agitation was also investigated. The equilibrium attained at 120 min with 0.1 g/L of biosorbent. The isotherm experimental data fitted well with Langmuir Model with R² value of 0.994. The maximum Langmuir biosorption capacity was found to be 76.92 mg/g. Further, Langmuir separation factor RL value was found to be 0.004. Therefore, the adsorption is favorable. The biosorption kinetics of MG was found to follow pseudo second-order kinetic model. The mechanistic study revealed that the biosorption of malachite onto Ulva lactuca was controlled by film diffusion. The solute transfer in a solid-liquid adsorption process is characterized by the film diffusion and/or particle diffusion. Thermodynamic study shows ΔG° is negative indicates the feasibility and spontaneous nature for the biosorption of malachite green. The biosorbent was characterized using Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and elemental analysis (CHNS: Carbon, Hydrogen, Nitrogen, Sulphur). This study showed that Ulva lactuca can be used as promising biosorbent for the removal of MG from wastewater.

Keywords: biosorption, Ulva lactuca, wastewater, malachite green, isotherm, kinetics

Procedia PDF Downloads 129
340 Green Amphiphilic Nanostructures from CNSL

Authors: Ermelinda Bloise, Giuseppe Mele

Abstract:

In recent years, Cashew Nut Shell Liquid (CNSL) has received great attention from researchers because it is an abundant waste material from the agri-food industry that fits perfectly into the idea of reusing waste from renewable resources for the production of new functional materials. The different components of this waste showed a certain chemical versatility and, above all, various biological activities. Take advantage of their surface-active capacity in particular conditions, various amphiphilic nanostructures have been prepared through sustainable chemical processes using cardanol (CA) and anacardic acid (AA) as two main components of the CNSL. In-batch solvent-free method has been developed to obtain new versatile green nanovesicles capable of effectively incorporating and stabilizing both hydrophobic and hydrophilic bioactive molecules. Furthermore, these nanosystems have shown antioxidant and cytotoxic properties and, in vitroinvestigations, established that they efficiently taken-up some human cells. With the idea of meeting the principles of green chemistry, even more, some improvements of the synthetic procedure have been implemented in terms of milder temperature and pH conditions, producing one-component nanovesicles, in which the AA and CA-derivatives are the sole building block of the green nanosystems. Finally, a new experimental approach has been carried out by a microfluidic route, with the advantage to operate at continuous flows, with a reduced amount of reagents, waste, and at lower temperatures, ensuring the achievement of size-monodisperse amphiphilic nanostructures that do not need further purification steps.

Keywords: bioactive nanosystems, bio-based renewables, cashew oil, green nanoformulations

Procedia PDF Downloads 62
339 Adsorptive Performance of Surface Modified Montmorillonite in Vanadium Removal from Real Mine Water

Authors: Opeyemi Atiba-Oyewo, Taile Y. Leswfi, Maurice S. Onyango, Christian Wolkersdorfer

Abstract:

This paper describes the preparation of surface modified montmorillonite using hexadecyltrimethylammonium bromide (HDTMA-Br) for the removal of vanadium from mine water. The adsorbent before and after adsorption was characterised by Fourier transform infra-red (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM), while the amount of vanadium adsorbed was determined by ICP-OES. The batch adsorption method was employed using vanadium concentrations in solution ranging from 50 to 320 mg/L and vanadium tailings seepage water from a South African mine. Also, solution pH, temperature and sorbent mass were varied. Results show that the adsorption capacity was affected by solution pH, temperature, sorbent mass and the initial concentration. Electrical conductivity of the mine water before and after adsorption was measured to estimate the total dissolved solids in the mine water. Equilibrium isotherm results revealed that vanadium sorption follows the Freundlich isotherm, indicating that the surface of the sorbent was heterogeneous. The pseudo-second order kinetic model gave the best fit to the kinetic experimental data compared to the first order and Elovich models. The results of this study may be used to predict the uptake efficiency of South Africa montmorillonite in view of its application for the removal of vanadium from mine water. However, the choice of this adsorbent for the uptake of vanadium or other contaminants will depend on the composition of the effluent to be treated.

Keywords: adsorption, vanadium, modified montmorillonite, equilibrium, kinetics, mine water

Procedia PDF Downloads 402
338 Desalination via Electrodialysis: A Newly Designed Fixed Bed Reactor Powered by Renewable Energy Source

Authors: Hend Mesbah, Yehia Youssef, Ibrahim Hassan, Shaaban Nosier, Ahmed El-Shazly, Ahmed Helal

Abstract:

The problem of drinking water shortage is becoming more crucial nowadays as a result of the increased demand due to the population growth and the rise in the standard living. In recent years, desalination using electrodialysis powered by solar energy (PV-ED) is being widely used to help provide treated water and reduce the scarcity in water supply. In the present study, a water desalination laboratory scale ED cell with a fixed bed circulation system was designed, developed, and tested. The effect of three parameters (namely, cell voltage , flowrate, and salt concentration) on the removal percentage of salt ions was studied. The cell voltage was adjusted at 3 , 4 and 6 V. A flow rate of 5, 10, and 20 ml/s and an initial salt concentration of 2000, 5000, and 7000 ppm were investigated. The maximum salt percentage removal obtained was 52.5% at the lowest initial concentration (2000 ppm) and at the highest cell voltage (6 V). There was no significant effect of the flow rate on the removal percentage. A model of PV module has also been developed to calculate the dimensions of a solar cell based on the amount of energy consumed and it was calculated from the Overall ED cell voltage.

Keywords: desalination, electrodialysis, solar desalination, photovoltaic electrodialysis

Procedia PDF Downloads 117
337 Finite-Sum Optimization: Adaptivity to Smoothness and Loopless Variance Reduction

Authors: Bastien Batardière, Joon Kwon

Abstract:

For finite-sum optimization, variance-reduced gradient methods (VR) compute at each iteration the gradient of a single function (or of a mini-batch), and yet achieve faster convergence than SGD thanks to a carefully crafted lower-variance stochastic gradient estimator that reuses past gradients. Another important line of research of the past decade in continuous optimization is the adaptive algorithms such as AdaGrad, that dynamically adjust the (possibly coordinate-wise) learning rate to past gradients and thereby adapt to the geometry of the objective function. Variants such as RMSprop and Adam demonstrate outstanding practical performance that have contributed to the success of deep learning. In this work, we present AdaLVR, which combines the AdaGrad algorithm with loopless variance-reduced gradient estimators such as SAGA or L-SVRG that benefits from a straightforward construction and a streamlined analysis. We assess that AdaLVR inherits both good convergence properties from VR methods and the adaptive nature of AdaGrad: in the case of L-smooth convex functions we establish a gradient complexity of O(n + (L + √ nL)/ε) without prior knowledge of L. Numerical experiments demonstrate the superiority of AdaLVR over state-of-the-art methods. Moreover, we empirically show that the RMSprop and Adam algorithm combined with variance-reduced gradients estimators achieve even faster convergence.

Keywords: convex optimization, variance reduction, adaptive algorithms, loopless

Procedia PDF Downloads 30
336 Assessment of Adsorption Properties of Neem Leaves Wastes for the Removal of Congo Red and Methyl Orange

Authors: Muhammad B. Ibrahim, Muhammad S. Sulaiman, Sadiq Sani

Abstract:

Neem leaves were studied as plant wastes derived adsorbents for detoxification of Congo Red (CR) and Methyl Orange (MO) from aqueous solutions using batch adsorption technique. The objectives involved determining the effects of the basic adsorption parameters are namely, agitation time, adsorbent dosage, adsorbents particle size, adsorbate loading concentrations and initial pH, on the adsorption process as well as characterizing the adsorbents by determining their physicochemical properties, functional groups responsible for the adsorption process using Fourier Transform Infrared (FTIR) spectroscopy and surface morphology using scanning electron microscopy (SEM) coupled with energy dispersion X – ray spectroscopy (EDS). The adsorption behaviours of the materials were tested against Langmuir, Freundlich, etc. isotherm models. Percent adsorption increased with increase in agitation time (5 – 240 minutes), adsorbent dosage (100-500mg), initial concentration (100-300mg/L), and with decrease in particle size (≥75μm to ≤300μm) of the adsorbents. Both processes are dye pH-dependent, increasing or decreasing percent adsorption in acidic (2-6) or alkaline (8-12) range over the studied pH (2-12) range. From the experimental data the Langmuir’s separation factor (RL) suggests unfavourable adsorption for all processes, Freundlich constant (nF) indicates unfavourable process for CR and MO adsorption; while the mean free energy of adsorption

Keywords: adsorption, congo red, methyl orange, neem leave

Procedia PDF Downloads 334
335 Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments

Authors: A. Kampker, K. Kreisköther, C. Reinders

Abstract:

Since additive manufacturing technologies constantly advance, the use of this technology in mold making seems reasonable. Many manufacturers of additive manufacturing machines, however, do not offer any suggestions on how to parameterize the machine to achieve optimal results for mold making. The purpose of this research is to determine the interdependencies of different materials and parameters within the PolyJet process by using design of experiments (DoE), to additively manufacture molds, e.g. for thermoforming and injection molding applications. Therefore, the general requirements of thermoforming molds, such as heat resistance, surface quality and hardness, have been identified. Then, different materials and parameters of the PolyJet process, such as the orientation of the printed part, the layer thickness, the printing mode (matte or glossy), the distance between printed parts and the scaling of parts, have been examined. The multifactorial analysis covers the following properties of the printed samples: Tensile strength, tensile modulus, bending strength, elongation at break, surface quality, heat deflection temperature and surface hardness. The key objective of this research is that by joining the results from the DoE with the requirements of the mold making, optimal and tailored molds can be additively manufactured with the PolyJet process. These additively manufactured molds can then be used in prototyping processes, in process testing and in small to medium batch production.

Keywords: additive manufacturing, design of experiments, mold making, PolyJet, 3D-Printing

Procedia PDF Downloads 229
334 TiO2 Nanowires as Efficient Heterogeneous Photocatalysts for Waste-Water Treatment

Authors: Gul Afreen, Sreedevi Upadhyayula, Mahendra K. Sunkara

Abstract:

One-dimensional (1D) nanostructures like nanowires, nanotubes, and nanorods find variety of practical application owing to their unique physico-chemical properties. In this work, TiO2 nanowires were synthesized by direct oxidation of titanium particles in a unique microwave plasma jet reactor. The prepared TiO2 nanowires manifested the flexible features, and were characterized by using X-ray diffraction, Brunauer-Emmett-Teller (BET) surface area analyzer, UV-Visible and FTIR spectrophotometers, Scanning electron microscope, and Transmission electron microscope. Further, the photodegradation efficiency of these nanowires were tested against toxic organic dye like methylene blue (MB) and the results were compared with the commercial TiO2. It was found that TiO2 nanowires exhibited superior photocatalytic performance (89%) as compared to commercial TiO2 (75%) after 60 min of reaction. This is attributed to the lower recombination rate and increased interfacial charge transfer in TiO2 nanowire. Pseudo-first order kinetic modelling performed with the experimental results revealed that the rate constant of photodegradation in case of TiO2 nanowire was 1.3 times higher than that of commercial TiO2. Superoxide radical (O2˙) was found to be the major contributor in the photodegradation mechanism. Based on the trapping experiments, a plausible mechanism of the photocatalytic reaction is discussed.

Keywords: heterogeneous catalysis, photodegradation, reactive oxygen species, TiO₂ nanowires

Procedia PDF Downloads 109
333 Bioremediation as a Treatment of Aromatic Hydrocarbons in Wastewater

Authors: Hen Friman, Alex Schechter, Yeshayahu Nitzan, Rivka Cahan

Abstract:

The treatment of aromatic hydrocarbons in wastewater resulting from oil spills and chemical manufactories is becoming a key concern in many modern countries. Benzene, ethylbenzene, toluene and xylene (BETX) contaminate groundwater as well as soil. These compounds have an acute effect on human health and are known to be carcinogenic. Conventional removal of these toxic materials involves separation and burning of the wastes, however, the cost of chemical treatment is very high and energy consuming. Bioremediation methods for removal of toxic organic compounds constitute an attractive alternative to the conventional chemical or physical techniques. Bioremediation methods use microorganisms to reduce the concentration and toxicity of various chemical pollutants Toluene is biodegradable both aerobically and anaerobically, it can be growth inhibitory to microorganisms at elevated concentrations, even to those species that can use it as a substrate. In this research culture of Pseudomonas putida was grown in bath bio-reactor (BBR) with toluene 100 mg/l as a single carbon source under constant voltage of 125 mV, 250 mV and 500 mV. The culture grown in BBR reached to 0.8 OD660nm while the control culture that grown without external voltage reached only to 0.6 OD660nm. The residual toluene concentration after 147 h, in the BBR operated under external voltage (125 mV) was 22 % on average, while in the control BBR it was 81 % on average.

Keywords: bioremediation, aromatic hydrocarbons, BETX, toluene, pseudomonas putida

Procedia PDF Downloads 284
332 Effect of Key Parameters on Performances of an Adsorption Solar Cooling Machine

Authors: Allouache Nadia

Abstract:

Solid adsorption cooling machines have been extensively studied recently. They constitute very attractive solutions recover important amount of industrial waste heat medium temperature and to use renewable energy sources such as solar energy. The development of the technology of these machines can be carried out by experimental studies and by mathematical modelisation. This last method allows saving time and money because it is suppler to use to simulate the variation of different parameters. The adsorption cooling machines consist essentially of an evaporator, a condenser and a reactor (object of this work) containing a porous medium, which is in our case the activated carbon reacting by adsorption with ammoniac. The principle can be described as follows: When the adsorbent (at temperature T) is in exclusive contact with vapour of adsorbate (at pressure P), an amount of adsorbate is trapped inside the micro-pores in an almost liquid state. This adsorbed mass m, is a function of T and P according to a divariant equilibrium m=f (T,P). Moreover, at constant pressure, m decreases as T increases, and at constant adsorbed mass P increases with T. This makes it possible to imagine an ideal refrigerating cycle consisting of a period of heating/desorption/condensation followed by a period of cooling/adsorption/evaporation. Effect of key parameters on the machine performances are analysed and discussed.

Keywords: activated carbon-ammoniac pair, effect of key parameters, numerical modeling, solar cooling machine

Procedia PDF Downloads 234
331 Comparing UV-based and O₃-Based AOPs for Removal of Emerging Contaminants from Food Processing Digestate Sludge

Authors: N. Moradi, C. M. Lopez-Vazquez, H. Garcia Hernandez, F. Rubio Rincon, D. Brdanovic, Mark van Loosdrecht

Abstract:

Advanced oxidation processes have been widely used for disinfection, removal of residual organic material, and for the removal of emerging contaminants from drinking water and wastewater. Yet, the application of these technologies to sludge treatment processes has not gained enough attention, mostly, considering the complexity of the sludge matrix. In this research, ozone and UV/H₂O₂ treatment were applied for the removal of emerging contaminants from a digestate supernatant. The removal of the following compounds was assessed:(i) salicylic acid (SA) (a surrogate of non-stradiol anti-inflammatory drugs (NSAIDs)), and (ii) sulfamethoxazole (SMX), sulfamethazine (SMN), and tetracycline (TCN) (the most frequent human and animal antibiotics). The ozone treatment was carried out in a plexiglass bubble column reactor with a capacity of 2.7 L; the system was equipped with a stirrer and a gas diffuser. The UV and UV/H₂O₂ treatments were done using a LED set-up (PearlLab beam device) dosing H₂O₂. In the ozone treatment evaluations, 95 % of the three antibiotics were removed during the first 20 min of exposure time, while an SA removal of 91 % occurred after 8 hours of exposure time. In the UV treatment evaluations, when adding the optimum dose of hydrogen peroxide (H₂O₂:COD molar ratio of 0.634), 36% of SA, 82% of TCN, and more than 90 % of both SMX and SMN were removed after 8 hours of exposure time. This study concluded that O₃ was more effective than UV/H₂O₂ in removing emerging contaminants from the digestate supernatant.

Keywords: digestate sludge, emerging contaminants, ozone, UV-AOP

Procedia PDF Downloads 78
330 Process Integration of Natural Gas Hydrate Production by CH₄-CO₂/H₂ Replacement Coupling Steam Methane Reforming

Authors: Mengying Wang, Xiaohui Wang, Chun Deng, Bei Liu, Changyu Sun, Guangjin Chen, Mahmoud El-Halwagi

Abstract:

Significant amounts of natural gas hydrates (NGHs) are considered potential new sustainable energy resources in the future. However, common used methods for methane gas recovery from hydrate sediments require high investment but with low gas production efficiency, and may cause potential environment and security problems. Therefore, there is a need for effective gas production from hydrates. The natural gas hydrate production method by CO₂/H₂ replacement coupling steam methane reforming can improve the replacement effect and reduce the cost of gas separation. This paper develops a simulation model of the gas production process integrated with steam reforming and membrane separation. The process parameters (i.e., reactor temperature, pressure, H₂O/CH₄ ratio) and the composition of CO₂ and H₂ in the feed gas are analyzed. Energy analysis is also conducted. Two design scenarios with different composition of CO₂ and H₂ in the feed gas are proposed and evaluated to assess the energy efficiency of the novel system. Results show that when the composition of CO₂ in the feed gas is between 43 % and 72 %, there is a certain composition that can meet the requirement that the flow rate of recycled gas is equal to that of feed gas, so as to ensure that the subsequent production process does not need to add feed gas or discharge recycled gas. The energy efficiency of the CO₂ in feed gas at 43 % and 72 % is greater than 1, and the energy efficiency is relatively higher when the CO₂ mole fraction in feed gas is 72 %.

Keywords: Gas production, hydrate, process integration, steam reforming

Procedia PDF Downloads 151
329 Removal of Heavy Metals Pb, Zn and Cu from Sludge Waste of Paper Industries Using Biosurfactant

Authors: Nurul Hidayati

Abstract:

Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as metals. Sludge waste of paper industries as toxic and hazardous material from specific source contains Pb, Zn, and Cu metal from waste soluble ink. An alternative and eco-friendly method of remediation technology is the use of biosurfactants and biosurfactant-producing microorganisms. Soil washing is among the methods available to remove heavy metal from sediments. The purpose of this research is to study effectiveness of biosurfactant with concentration = CMC for the removal of heavy metals, lead, zinc and copper in batch washing test under four different biosurfactant production by microbial origin. Pseudomonas putida T1(8), Bacillus subtilis 3K, Acinetobacter sp, and Actinobacillus sp was grown on mineral salt medium that had been already added with 2% concentration of molasses that it is a low cost application. The samples were kept in a shaker 120 rpm at room temperature for 3 days. Supernatants and sediments of sludge were separated by using a centrifuge and samples from supernatants were measured by atomic absorption spectrophotometer. The highest removal of Pb was up to 14,04% by Acinetobacter sp. Biosurfactant of Pseudomonas putida T1(8) have the highest removal for Zn and Cu up to 6,5% and 2,01% respectively. Biosurfactants have a role for removal process of the metals, including wetting, contact of biosurfactant to the surface of the sediments and detachment of the metals from the sediment. Biosurfactant has proven its ability as a washing agent in heavy metals removal from sediments, but more research is needed to optimize the process of removal heavy metals.

Keywords: biosurfactant, removal of heavy metals, sludge waste, paper industries

Procedia PDF Downloads 295
328 Feasibility Studies on the Removal of Fluoride from Aqueous Solution by Adsorption Using Agro-Based Waste Materials

Authors: G. Anusha, J. Raja Murugadoss

Abstract:

In recent years, the problem of water contaminant is drastically increasing due to the disposal of industrial wastewater containing iron, fluoride, mercury, lead, cadmium, phosphorus, silver etc. into water bodies. The non-biodegradable heavy metals could accumulate in the human system through food chain and cause various dreadful diseases and permanent disabilities and in worst cases it leads to casual losses. Further, the presence of the excess quantity of such heavy metals viz. Lead, Cadmium, Chromium, Nickel, Zinc, Copper, Iron etc. seriously affect the natural quality of potable water and necessitates the treatment process for removal. Though there are dozens of standard procedures available for the removal of heavy metals, their cost keeps the industrialists away from adopting such technologies. In the present work, an attempt has been made to remove such contaminants particularly fluoride and to study the efficiency of the removal of fluoride by adsorption using a new agro-based materials namely Limonia acidissima and Emblica officinalis which is commonly referred as wood apple and gooseberry respectively. Accordingly a set of experiments has been conducted using batch and column processes, with the help of activated carbon prepared from the shell of wood apple and seeds of gooseberries. Experiments reveal that the adsorption capacity of the shell of wood apple is significant to yield promising solutions.

Keywords: adsorption, fluoride, agro-based waste materials, Limonia acidissima, Emblica officinalis

Procedia PDF Downloads 410
327 Facile Synthesis and Structure Characterization of Europium (III) Tungstate Nanoparticles

Authors: Mehdi Rahimi-Nasrabadi, Seied Mahdi Pourmortazavi

Abstract:

Taguchi robust design as a statistical method was applied for optimization of the process parameters in order to tunable, simple and fast synthesis of europium (III) tungstate nanoparticles. Europium (III) tungstate nanoparticles were synthesized by a chemical precipitation reaction involving direct addition of europium ion aqueous solution to the tungstate reagent solved in aqueous media. Effects of some synthesis procedure variables i.e., europium and tungstate concentrations, flow rate of cation reagent addition, and temperature of reaction reactor on the particle size of europium (III) tungstate nanoparticles were studied experimentally in order to tune particle size of europium (III) tungstate. Analysis of variance shows the importance of controlling tungstate concentration, cation feeding flow rate and temperature for preparation of europium (III) tungstate nanoparticles by the proposed chemical precipitation reaction. Finally, europium (III) tungstate nanoparticles were synthesized at the optimum conditions of the proposed method and the morphology and chemical composition of the prepared nano-material were characterized by means of X-Ray diffraction, scanning electron microscopy, transmission electron microscopy, FT-IR spectroscopy, and fluorescence.

Keywords: europium (III) tungstate, nano-material, particle size control, procedure optimization

Procedia PDF Downloads 361
326 Pyrolysis of Mixed Plastic Fractions with PP, PET and PA

Authors: Rudi P. Nielsen, Karina H. Hansen, Morten E. Simonsen

Abstract:

To improve the possibility of the chemical recycling of mixed plastic waste, such as municipal plastic waste, work has been conducted to gain an understanding of the effect of typical polymers from waste (PP, PET, and PA) on the quality of the pyrolysis oil produced. Plastic fractions were pyrolyzed in a lab-scale reactor system, with mixture compositions of up to 15 wt.% PET and five wt.% PA in a PP matrix and processing conditions from 400 to 450°C. The experiments were conducted as a full factorial design and in duplicates to provide reliable results and the possibility to determine any interactions between the parameters. The products were analyzed using FT-IR and GC-MS for compositional information as well as the determination of calorific value, ash content, acid number, density, viscosity, and elemental analysis to provide further data on the fuel quality of the pyrolysis oil. Oil yield was found to be between 61 and 84 wt.%, while char yield was below 2.6 wt.% in all cases. The calorific value of the produced oil was between 32 and 46 MJ/kg, averaging at approx. 41 MJ/kg, thus close to that of heavy fuel oil. The oil product was characterized to contain aliphatic and cyclic hydrocarbons, alcohols, and ethers with chain lengths between 10 and 25 carbon atoms. Overall, it was found that the addition of PET decreased oil yield, while the addition of both PA and PET decreased oil quality in general by increasing acid number (PET), decreasing calorific value (PA), and increasing nitrogen content (PA). Furthermore, it was identified that temperature increased ammonia production from PA during pyrolysis, while ammonia production was decreased by the addition of PET.

Keywords: PET, plastic waste, polyamide, polypropylene, pyrolysis

Procedia PDF Downloads 117
325 Thermal-Fluid Characteristics of Heating Element in Rotary Heat Exchanger in Accordance with Fouling Phenomena

Authors: Young Mun Lee, Seon Ho Kim, Seok Min Choi, JeongJu Kim, Seungyeong Choi, Hyung Hee Cho

Abstract:

To decrease sulfur oxide in the flue gas from coal power plant, a flue gas de-sulfurization facility is operated. In the reactor, a chemical reaction occurs with a temperature change of the gas so that sulfur oxide is removed and cleaned air is emitted. In this process, temperature change induces a serious problem which is a cold erosion of stack. To solve this problem, the rotary heat exchanger is managed before the stack. In the heat exchanger, a heating element is equipped to increase a heat transfer area. Heat transfer and pressure loss is a big issue to improve a performance. In this research, thermal-fluid characteristics of the heating element are analyzed by computational fluid dynamics. Fouling simulation is also conducted to calculate a performance of heating element. Numerical analysis is performed on the situation where plugging phenomenon has already occurred and existed in the inlet region of the heating element. As the pressure of the rear part of the plugging decreases suddenly and the flow velocity becomes slower, it is found that the flow is gathered from both sides as it develops in the flow direction, and it is confirmed that the pressure difference due to plugging is increased.

Keywords: heating element, plugging, rotary heat exchanger, thermal fluid characteristics

Procedia PDF Downloads 464
324 The Potential for Cyclotron and Generator-produced Positron Emission Tomography Radiopharmaceuticals: An Overview

Authors: Ng Yen, Shafii Khamis, Rehir Bin Dahalan

Abstract:

Cyclotrons in the energy range 10-30 MeV are widely used for the production of clincally relevant radiosiotopes used in positron emission tomography (PET) nuclear imaging. Positron emmision tomography is a powerful nuclear imaging tool that produces high quality 3-dimentional images of functional processes of body. The advantage of PET among all other imaging devices is that it allows the study of an impressive array of discrete biochemical and physiologic processes, within a single imaging session. The number of PET scanner increases every year globally due to high clinical demand. However, not all PET centers can afford a cyclotron, due to the expense associated with operation of an in-house cyclotron. Therefore, current research has also focused on the development of parent/daughter generators that can reliably provide PET nuclides. These generators (68Ge/68Ga generator, 62Zn/62Cu, 82Sr/82Rb, etc) can provide even short-lived radionuclides at any time on demand, without the need of an ‘in-house cyclotron’. The parent isotope is produced at a cyclotron/reactor facility, and can be shipped to remote clinical sites (regionally/overseas), where the daughter isotope is eluted, a model similar to the 99Mo/99mTc generator system. The specific aim for this presentation is to talk about the potential for both of the cyclotron and generator-produced PET radiopharmaceuticals used in clinical imaging.

Keywords: positron emission tomography, radiopharmaceutical, cyclotron, generator

Procedia PDF Downloads 460
323 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier

Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu

Abstract:

Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.

Keywords: bias, augmentation, melanoma, convolutional neural network

Procedia PDF Downloads 177
322 Continuous Fixed Bed Reactor Application for Decolourization of Textile Effluent by Adsorption on NaOH Treated Eggshell

Authors: M. Chafi, S. Akazdam, C. Asrir, L. Sebbahi, B. Gourich, N. Barka, M. Essahli

Abstract:

Fixed bed adsorption has become a frequently used industrial application in wastewater treatment processes. Various low cost adsorbents have been studied for their applicability in treatment of different types of effluents. In this work, the intention of the study was to explore the efficacy and feasibility for azo dye, Acid Orange 7 (AO7) adsorption onto fixed bed column of NaOH Treated eggshell (TES). The effect of various parameters like flow rate, initial dye concentration, and bed height were exploited in this study. The studies confirmed that the breakthrough curves were dependent on flow rate, initial dye concentration solution of AO7 and bed depth. The Thomas, Yoon–Nelson, and Adams and Bohart models were analysed to evaluate the column adsorption performance. The adsorption capacity, rate constant and correlation coefficient associated to each model for column adsorption was calculated and mentioned. The column experimental data were fitted well with Thomas model with coefficients of correlation R2 ≥0.93 at different conditions but the Yoon–Nelson, BDST and Bohart–Adams model (R2=0.911), predicted poor performance of fixed-bed column. The (TES) was shown to be suitable adsorbent for adsorption of AO7 using fixed-bed adsorption column.

Keywords: adsorption models, acid orange 7, bed depth, breakthrough, dye adsorption, fixed-bed column, treated eggshell

Procedia PDF Downloads 347
321 Production of Biotechnological Chondroitin from Recombinant E, Coli K4 Strains on Renewable Substrates

Authors: Donatella Cimini, Sergio D’ambrosio, Saba Sadiq, Chiara Schiraldi

Abstract:

Chondroitin sulfate (CS), as well as modified CS, and unsulfated chondroitin, are largely applied in research today. CS is a linear glycosaminoglycan normally present in cartilage-rich tissues and bones in the form of proteoglycans decorated with sulfate groups in different positions. CS is used as an effective non-pharmacological alternative for the treatment of osteoarthritis, and other potential applications in the biomedical field are being investigated. Some bacteria, such as E. coli K4, produce a polysaccharide that is a precursor of CS (unsulfated chondroitin). This work focused on the construction of integrative E. coli K4 recombinant strains overexpressing genes (kfoA, kfoF, pgm and galU in different combinations) involved in the biosynthesis of the nucleotide sugars necessary for polysaccharide synthesis. Strain growth and polymer production were evaluated using renewable waste materials as substrates in shake flasks and small-scale batch fermentation processes. Results demonstrated the potential to replace pure sugars with cheaper medium components to establish environmentally sustainable and cost-effective production routes for potential industrial development. In fact, although excellent fermentation results have been described so far by employing strains that naturally produce chondroitin-like polysaccharides on semi-defined media, there is still the need to reduce manufacturing costs by providing a cost-effective biotechnological alternative to currently used animal-based extraction procedures.

Keywords: E. coli K4, chondroitin, microbial cell factories, glycosaminoglycans, renewable resources

Procedia PDF Downloads 48
320 Closed-Loop Supply Chain: A Study of Bullwhip Effect Using Simulation

Authors: Siddhartha Paul, Debabrata Das

Abstract:

Closed-loop supply chain (CLSC) management focuses on integrating forward and reverse flow of material as well as information to maximize value creation over the entire life-cycle of a product. Bullwhip effect in supply chain management refers to the phenomenon where a small variation in customers’ demand results in larger variation of orders at the upstream levels of supply chain. Since the quality and quantity of products returned to the collection centers (as a part of reverse logistics process) are uncertain, bullwhip effect is inevitable in CLSC. Therefore, in the present study, first, through an extensive literature survey, we identify all the important factors related to forward as well as reverse supply chain which causes bullwhip effect in CLSC. Second, we develop a system dynamics model to study the interrelationship among the factors and their effect on the performance of overall CLSC. Finally, the results of the simulation study suggest that demand forecasting, lead times, information sharing, inventory and work in progress adjustment rate, supply shortages, batch ordering, price variations, erratic human behavior, parameter correcting, delivery time delays, return rate of used products, manufacturing and remanufacturing capacity constraints are the important factors which have a significant influence on system’s performance, specifically on bullwhip effect in a CLSC.

Keywords: bullwhip effect, closed-loop supply chain, system dynamics, variance ratio

Procedia PDF Downloads 143
319 A Neural Network Control for Voltage Balancing in Three-Phase Electric Power System

Authors: Dana M. Ragab, Jasim A. Ghaeb

Abstract:

The three-phase power system suffers from different challenging problems, e.g. voltage unbalance conditions at the load side. The voltage unbalance usually degrades the power quality of the electric power system. Several techniques can be considered for load balancing including load reconfiguration, static synchronous compensator and static reactive power compensator. In this work an efficient neural network is designed to control the unbalanced condition in the Aqaba-Qatrana-South Amman (AQSA) electric power system. It is designed for highly enhanced response time of the reactive compensator for voltage balancing. The neural network is developed to determine the appropriate set of firing angles required for the thyristor-controlled reactor to balance the three load voltages accurately and quickly. The parameters of AQSA power system are considered in the laboratory model, and several test cases have been conducted to test and validate the proposed technique capabilities. The results have shown a high performance of the proposed Neural Network Control (NNC) technique for correcting the voltage unbalance conditions at three-phase load based on accuracy and response time.

Keywords: three-phase power system, reactive power control, voltage unbalance factor, neural network, power quality

Procedia PDF Downloads 165
318 Batch Adsorption Studies for the Removal of Textile Dyes from Aqueous Solution on Three Different Pine Bark

Authors: B. Cheknane, F. Zermane

Abstract:

The main objective of the present study is the valorization of natural raw materials of plant origin for the treatment of textile industry wastewater. Selected bark was: maritime (MP), pinyon (PP) and Aleppo pine (AP) bark. The efficiency of these barks were tested for the removal of three dye; rhodamine B (RhB), Green Malachite (GM) and X Methyl Orange (MO). At the first time we focus to study the different parameters which can influence the adsorption processes such as: nature of the adsorbents, nature of the pollutants (dyes) and the effect of pH. Obtained results reveals that the speed adsorption is strongly influencing by the pH medium and the comparative study show that adsorption is favorable in the acidic medium with amount adsorbed of (Q=40mg/g) for rhodamine B and (Q=46mg/g) for orange methyl. Results of adsorption kinetics reveals that the molecules of GM are adsorbed better (Q=48mg/g) than the molecules of RhB (Q=46mg/g) and methyl orange (Q=18mg/g), with equilibrium time of 6 hours. The results of adsorption isotherms show clearly that the maritime pine bark is the most effective adsorbents with adsorbed amount of (QRhB=200mg/g) and (QMO=88mg/g) followed by pinyon pine (PP) with (QRhB=184mg/g) and (QMO=56mg/g) and finally Aleppo pine (AP) bark with (QRhB=131mg/g) and (QMO= 46mg/g). The different obtained isotherms were modeled using the Langmuir and Freundlich models and according to the adjustment coefficient values R2, the obtained isotherms are well represented by Freundlich model.

Keywords: maritime pine bark (MP), pinyon pine bark (PP), Aleppo pine (AP) bark, adsorption, dyes

Procedia PDF Downloads 296
317 Modelling and Control of Binary Distillation Column

Authors: Narava Manose

Abstract:

Distillation is a very old separation technology for separating liquid mixtures that can be traced back to the chemists in Alexandria in the first century A. D. Today distillation is the most important industrial separation technology. By the eleventh century, distillation was being used in Italy to produce alcoholic beverages. At that time, distillation was probably a batch process based on the use of just a single stage, the boiler. The word distillation is derived from the Latin word destillare, which means dripping or trickling down. By at least the sixteenth century, it was known that the extent of separation could be improved by providing multiple vapor-liquid contacts (stages) in a so called Rectifactorium. The term rectification is derived from the Latin words rectefacere, meaning to improve. Modern distillation derives its ability to produce almost pure products from the use of multi-stage contacting. Throughout the twentieth century, multistage distillation was by far the most widely used industrial method for separating liquid mixtures of chemical components.The basic principle behind this technique relies on the different boiling temperatures for the various components of the mixture, allowing the separation between the vapor from the most volatile component and the liquid of other(s) component(s). •Developed a simple non-linear model of a binary distillation column using Skogestad equations in Simulink. •We have computed the steady-state operating point around which to base our analysis and controller design. However, the model contains two integrators because the condenser and reboiler levels are not controlled. One particular way of stabilizing the column is the LV-configuration where we use D to control M_D, and B to control M_B; such a model is given in cola_lv.m where we have used two P-controllers with gains equal to 10.

Keywords: modelling, distillation column, control, binary distillation

Procedia PDF Downloads 253
316 Bio-Electro Chemical Catalysis: Redox Interactions, Storm and Waste Water Treatment

Authors: Michael Radwan Omary

Abstract:

Context: This scientific innovation demonstrate organic catalysis engineered media effective desalination of surface and groundwater. The author has developed a technology called “Storm-Water Ions Filtration Treatment” (SWIFTTM) cold reactor modules designed to retrofit typical urban street storm drains or catch basins. SWIFT triggers biochemical redox reactions with water stream-embedded toxic total dissolved solids (TDS) and electrical conductivity (EC). SWIFTTM Catalysts media unlock the sub-molecular bond energy, break down toxic chemical bonds, and neutralize toxic molecules, bacteria and pathogens. Research Aim: This research aims to develop and design lower O&M cost, zero-brine discharge, energy input-free, chemical-free water desalination and disinfection systems. The objective is to provide an effective resilient and sustainable solution to urban storm-water and groundwater decontamination and disinfection. Methodology: We focused on the development of organic, non-chemical, no-plugs, no pumping, non-polymer and non-allergenic approaches for water and waste water desalination and disinfection. SWIFT modules operate by directing the water stream to flow freely through the electrically charged media cold reactor, generating weak interactions with a water-dissolved electrically conductive molecule, resulting in the neutralization of toxic molecules. The system is powered by harvesting sub-molecular bonds embedded in energy. Findings: The SWIFTTM Technology case studies at CSU-CI and CSU-Fresno Water Institute, demonstrated consistently high reduction of all 40 detected waste-water pollutants including pathogens to levels below a state of California Department of Water Resources “Drinking Water Maximum Contaminants Levels”. The technology has proved effective in reducing pollutants such as arsenic, beryllium, mercury, selenium, glyphosate, benzene, and E. coli bacteria. The technology has also been successfully applied to the decontamination of dissolved chemicals, water pathogens, organic compounds and radiological agents. Theoretical Importance: SWIFT technology development, design, engineering, and manufacturing, offer cutting-edge advancement in achieving clean-energy source bio-catalysis media solution, an energy input free water and waste water desalination and disinfection. A significant contribution to institutions and municipalities achieving sustainable, lower cost, zero-brine and zero CO2 discharges clean energy water desalination. Data Collection and Analysis Procedures: The researchers collected data on the performance of the SWIFTTM technology in reducing the levels of various pollutants in water. The data was analyzed by comparing the reduction achieved by the SWIFTTM technology to the Drinking Water Maximum Contaminants Levels set by the state of California. The researchers also conducted live oral presentations to showcase the applications of SWIFTTM technology in storm water capture and decontamination as well as providing clean drinking water during emergencies. Conclusion: The SWIFTTM Technology has demonstrated its capability to effectively reduce pollutants in water and waste water to levels below regulatory standards. The Technology offers a sustainable solution to groundwater and storm-water treatments. Further development and implementation of the SWIFTTM Technology have the potential to treat storm water to be reused as a new source of drinking water and an ambient source of clean and healthy local water for recharge of ground water.

Keywords: catalysis, bio electro interactions, water desalination, weak-interactions

Procedia PDF Downloads 39
315 Decontamination of Chromium Containing Ground Water by Adsorption Using Chemically Modified Activated Carbon Fabric

Authors: J. R. Mudakavi, K. Puttanna

Abstract:

Chromium in the environment is considered as one of the most toxic elements probably next only to mercury and arsenic. It is acutely toxic, mutagenic and carcinogenic in the environment. Chromium contamination of soil and underground water due to industrial activities is a very serious problem in several parts of India covering Karnataka, Tamil Nadu, Andhra Pradesh etc. Functionally modified Activated Carbon Fabrics (ACF) offer targeted chromium removal from drinking water and industrial effluents. Activated carbon fabric is a light weight adsorbing material with high surface area and low resistance to fluid flow. We have investigated surface modification of ACF using various acids in the laboratory through batch as well as through continuous flow column experiments with a view to develop the optimum conditions for chromium removal. Among the various acids investigated, phosphoric acid modified ACF gave best results with a removal efficiency of 95% under optimum conditions. Optimum pH was around 2 – 4 with 2 hours contact time. Continuous column experiments with an effective bed contact time (EBCT) of 5 minutes indicated that breakthrough occurred after 300 bed volumes. Adsorption data followed a Freundlich isotherm pattern. Nickel adsorbs preferentially and sulphate reduces chromium adsorption by 50%. The ACF could be regenerated up to 52.3% using 3 M NaOH under optimal conditions. The process is simple, economical, energy efficient and applicable to industrial effluents and drinking water.

Keywords: activated carbon fabric, hexavalent chromium, adsorption, drinking water

Procedia PDF Downloads 296
314 Wet Flue Gas Desulfurization Using a New O-Element Design Which Replaces the Venturi Scrubber

Authors: P. Lestinsky, D. Jecha, V. Brummer, P. Stehlik

Abstract:

Scrubbing by a liquid spraying is one of the most effective processes used for removal of fine particles and soluble gas pollutants (such as SO2, HCl, HF) from the flue gas. There are many configurations of scrubbers designed to provide contact between the liquid and gas stream for effectively capturing particles or soluble gas pollutants, such as spray plates, packed bed towers, jet scrubbers, cyclones, vortex and venturi scrubbers. The primary function of venturi scrubber is the capture of fine particles as well as HCl, HF or SO2 removal with effect of the flue gas temperature decrease before input to the absorption column. In this paper, sulfur dioxide (SO2) from flue gas was captured using new design replacing venturi scrubber (1st degree of wet scrubbing). The flue gas was prepared by the combustion of the carbon disulfide solution in toluene (1:1 vol.) in the flame in the reactor. Such prepared flue gas with temperature around 150 °C was processed in designed laboratory O-element scrubber. Water was used as absorbent liquid. The efficiency of SO2 removal, pressure drop and temperature drop were measured on our experimental device. The dependence of these variables on liquid-gas ratio was observed. The average temperature drop was in the range from 150 °C to 40 °C. The pressure drop was increased with increasing of a liquid-gas ratio, but not as much as for the common venturi scrubber designs. The efficiency of SO2 removal was up to 70 %. The pressure drop of our new designed wet scrubber is similar to commonly used venturi scrubbers; nevertheless the influence of amount of the liquid on pressure drop is not so significant.

Keywords: desulphurization, absorption, flue gas, modeling

Procedia PDF Downloads 365
313 Synthesis of Modified Cellulose for the Capture of Uranyl Ions from Aqueous Solutions

Authors: Claudia Vergara, Oscar Valdes, Jaime Tapia, Leonardo Santos

Abstract:

The poly(amidoamine) dendrimers (PAMAM) are a class of material introduced by D. Tomalia. Modifications of the PAMAM dendrimer with several functional groups have attracted the attention for new interesting properties and new applications in many fields such as chemistry, physics, biology, and medicine. However, in the last few years, the use of dendrimers in environmental applications has increased due to pollution concerns. In this contribution, we report the synthesis of three new PAMAM derivates modified with asparagine aminoacid supported in cellulose: PG0-Asn (PAMAM-asparagine), PG0-Asn-Trt (with trityl group) and PG0-Asn-Boc-Trt (with tert-butyl oxycarbonyl group). The functionalization of generation 0 PAMAM dendrimer was carried out by amidation reaction by using an EDC/HOBt protocol. In a second step, functionalized dendrimer was covalently supported to the cellulose surface and used to study the capture of uranyl ions from aqueous solution by fluorescence spectroscopy. The structure and purity of the desired products were confirmed by conventional techniques such as FT-IR, MALDI, elemental analysis, and ESI-MS. Batch experiments were carried out to determine the affinity of uranyl ions with the dendrimer in aqueous solution. Firstly, the optimal conditions for uranyl capture were obtained, where the optimum pH for the removal was 6, the contact time was 4 hours, the initial concentration of uranyl was 100 ppm, and the amount of the adsorbent to be used was 2.5 mg. PAMAM significantly increased the capture of uranyl ions with respect to cellulose as the starting substrate, reaching 94.8% of capture (PG0), followed by 91.2% corresponding to PG0-Asn-Trt, then 70.3% PG0-Asn and 24.2% PG0-Asn-Boc-Trt. These results show that the PAMAM dendrimer is a good option to remove uranyl ions from aqueous solutions.

Keywords: asparagine, cellulose, PAMAM dendrimer, uranyl ions

Procedia PDF Downloads 115
312 Refined Edge Detection Network

Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni

Abstract:

Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.

Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone

Procedia PDF Downloads 70