Search results for: Krzysztof Zieliński
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 71

Search results for: Krzysztof Zieliński

41 Dissimilar Welding Of New High Oxidation Material – Thor™ 115 With Vm-12 Shc

Authors: Michal Urzynicok, Krzysztof Kwiecinski

Abstract:

The development of materials used in the power generation industry for the production of boilers and their parts is characterized by high steam parameters, which present new challenges. Implementation of new combinations of alloying elements that lead to the best possible mechanical properties, including creep resistance, greatly affects new steels' weldability. All new grades have to undergo many different examinations, in regards to bending and welding, in order to enable the development of fabrication technologies, ensuring failure-free production and assembly of boiler components. 12% Cr martensitic steels like THOR™ 115 or VM-12 SHC are characterized by high oxidation resistance in high-temperature environments. At the moment, VM-12 SHC can be found in many boilers where both headers and superheater coils were produced. As this material is very difficult to obtain, a search for a proper replacement has begun. A new creep strength-enhanced ferritic steel for service in supercritical and ultra-supercritical boiler applications was developed by Tenaris in Italy and it is designated as Thor™115 (Tenaris High Oxidation Resistance). As high demand in power plants occurred to replace some parts of existing installations fabricated from VM12-SHC with other alternatives, a new development of welding procedures has begun to prepare fabricators for the challenges of joining old components with new THOR™ 115 material. This paper covers the first research of welding of dissimilar joints made out of VM12-SHC and THOR™ 115.

Keywords: thor, vm12, dissimilar welding, weldability

Procedia PDF Downloads 132
40 Poultry as a Carrier of Chlamydia gallinacea

Authors: Monika Szymańska-Czerwińsk, Kinga Zaręba-Marchewka, Krzysztof Niemczuk

Abstract:

Chlamydiaceae are Gram-negative bacteria distributed worldwide in animals and humans. One of them is Chlamydia gallinacea recently discovered. Available data show that C. gallinacea is dominant chlamydial agent found in poultry in European and Asian countries. The aim of the studies was screening of poultry flocks in order to evaluate frequency of C. gallinacea shedding and genetic diversity. Sampling was conducted in different regions of Poland in 2019-2020. Overall, 1466 cloacal/oral swabs were collected in duplicate from 146 apparently healthy poultry flocks including chickens, turkeys, ducks, geese and quails. Dry swabs were used for DNA extraction. DNA extracts were screened using a Chlamydiaceae 23S rRNA real-time PCR assay. To identify Chlamydia species, specific real-time PCR assays were performed. Furthermore, selected samples were used for sequencing based on ompA gene fragments and variable domains (VD1-2, VD3-4). In total, 10.3% of the tested flocks were Chlamydiaceae-positive (15/146 farms). The presence of Chlamydiaceae was confirmed mainly in chickens (13/92 farms) but also in turkey (1/19 farms) and goose (1/26 farms) flocks. Eleven flocks were identified as C. gallinacea-positive while four flocks remained unclassified. Phylogenetic analysis revealed at least 16 genetic variants of C. gallinacea. Research showed that Chlamydiaceae occur in a poultry flock in Poland. The strains of C. gallinacea as dominant species show genetic variability.

Keywords: C. gallinacea, emerging agent, poultry, real-time PCR

Procedia PDF Downloads 76
39 Comparison of Physicochemical Properties of DNA-Ionic Liquids Complexes

Authors: Ewelina Nowak, Anna Wisla-Swider, Gohar Khachatryan, Krzysztof Danel

Abstract:

Complexes of ionic liquids with different heterocyclic-rings were synthesized by ion exchange reactions with pure salmon DNA. Ionic liquids (ILs) like 1-hexyl-3-methylimidazolium chloride, 1-butyl-4-methylpyridinium chloride and 1-ethyl-1-methylpyrrolidinium bromide were used. The ILs were built into helical state and confirmed by IR spectrometric techniques. Patterns of UV-Vis, photoluminescence, IR, and CD spectra indicated inclusion of small molecules into DNA structure. Molecular weight and radii of gyrations values of ILs-DNA complexes chains were established by HPSEC–MALLS–RI method. Modification DNA with 1-ethyl-1-methylpyrrolidinium bromide gives more uniform material and leads to elimination of high molecular weight chains. Thus, the incorporation DNA double helical structure with both 1-hexyl-3-methylimidazolium chloride and 1-butyl-4-methylpyridinium chloride exhibited higher molecular weight values. Scanning electron microscopy images indicate formation of nanofibre structures in all DNA complexes. Fluorescence depends strongly on the environment in which the chromophores are inserted and simultaneously on the molecular interactions with the biopolymer matrix. The most intensive emission was observed for DNA-imidazole ring complex. Decrease in intensity UV-Vis peak absorption is a consequence of a reduction in the spatial order of polynucleotide strands and provides different π–π stacking structure. Changes in optical properties confirmed by spectroscopy methods make DNA-ILs complexes potential biosensor applications.

Keywords: biopolymers, biosensors, cationic surfactant, DNA, DNA-gels

Procedia PDF Downloads 161
38 Amine Hardeners with Carbon Nanotubes Dispersing Ability for Epoxy Coating Systems

Authors: Szymon Kugler, Krzysztof Kowalczyk, Tadeusz Spychaj

Abstract:

An addition of carbon nanotubes (CNT) can simultaneously improve many features of epoxy coatings, i.e. electrical, mechanical, functional and thermal. Unfortunately, this nanofiller negatively affects visual properties of the coatings, such as transparency and gloss. The main reason for the low visual performance of CNT-modified epoxy coatings is the lack of compatibility between CNT and popular amine curing agents, although epoxy resins based on bisphenol A are indisputable good CNT dispersants. This is a serious obstacle in utilization of the coatings in advanced applications, demanding both high transparency and electrical conductivity. The aim of performed investigations was to find amine curing agents exhibiting affinity for CNT, and ensuring good performance of epoxy coatings with them. Commercially available CNT was dispersed in epoxy resin, as well as in different aliphatic, cycloaliphatic and aromatic amines, using one of two dispergation methods: ultrasonic or mechanical. The CNT dispersions were subsequently used in the preparation of epoxy coating compositions and coatings on a transparent substrate. It was found that amine derivative of bio-based cardanol, as well as modified o-tolylbiguanide exhibit significant CNT, dispersing properties, resulting in improved transparent/electroconductive performance of epoxy coatings. In one of prepared coating systems just 0.025 wt.% (250 ppm) of CNT was enough to obtain coatings with semi conductive properties, 83% of transparency as well as perfect chemical resistance to methyl-ethyl ketone and improved thermal stability. Additionally, a theory of the influence of amine chemical structure on CNT dispersing properties was proposed.

Keywords: bio-based cardanol, carbon nanotubes, epoxy coatings, tolylbiguanide

Procedia PDF Downloads 179
37 Transformation of Positron Emission Tomography Raw Data into Images for Classification Using Convolutional Neural Network

Authors: Paweł Konieczka, Lech Raczyński, Wojciech Wiślicki, Oleksandr Fedoruk, Konrad Klimaszewski, Przemysław Kopka, Wojciech Krzemień, Roman Shopa, Jakub Baran, Aurélien Coussat, Neha Chug, Catalina Curceanu, Eryk Czerwiński, Meysam Dadgar, Kamil Dulski, Aleksander Gajos, Beatrix C. Hiesmayr, Krzysztof Kacprzak, łukasz Kapłon, Grzegorz Korcyl, Tomasz Kozik, Deepak Kumar, Szymon Niedźwiecki, Dominik Panek, Szymon Parzych, Elena Pérez Del Río, Sushil Sharma, Shivani Shivani, Magdalena Skurzok, Ewa łucja Stępień, Faranak Tayefi, Paweł Moskal

Abstract:

This paper develops the transformation of non-image data into 2-dimensional matrices, as a preparation stage for classification based on convolutional neural networks (CNNs). In positron emission tomography (PET) studies, CNN may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, much PET data still exists in non-image format and this fact opens a question on whether they can be used for training CNN. In this contribution, the main focus of this paper is the problem of processing vectors with a small number of features in comparison to the number of pixels in the output images. The proposed methodology was applied to the classification of PET coincidence events.

Keywords: convolutional neural network, kernel principal component analysis, medical imaging, positron emission tomography

Procedia PDF Downloads 104
36 Current Epizootic Situation of Q Fever in Polish Cattle

Authors: Monika Szymańska-Czerwińska, Agnieszka Jodełko, Krzysztof Niemczuk

Abstract:

Q fever (coxiellosis) is an infectious disease of animals and humans causes by C. burnetii and widely distributed throughout the world. Cattle and small ruminants are commonly known as shedders of C. burnetii. The aims of this study were the evaluation of seroprevalence and shedding of C. burnetii in cattle. Genotypes of the pathogen present in the tested specimens were also identified using MLVA (Multiple Locus Variable-Number Tandem Repeat Analysis) and MST (multispacer sequence typing) methods. Sampling was conducted in different regions of Poland in 2018-2021. In total, 2180 bovine serum samples from 801 cattle herds were tested by ELISA (enzyme-linked immunosorbent assay). 489 specimens from 157 cattle herds such as: individual milk samples (n=407), bulk tank milk (n=58), vaginal swabs (n=20), placenta (n=3) and feces (n=1) were subjected to C. burnetii specific qPCR. The qPCR (IS1111 transposon-like repetitive region) was performed using Adiavet COX RealTime PCR kit. Genotypic characterization of the strains was conducted utilizing MLVA and MST methods. MLVA was performed using 6 variable loci. The overall herd-level seroprevalence of C. burnetii infection was 36.74% (801/2180). Shedders were detected in 29.3% (46/157) cattle herds in all tested regions. ST 61 sequence type was identified in 10 out of 18 genotyped strains. Interestingly one strain represents sequence type which has never been recorded previously. MLVA method identified three previously known genotypes: most common was J but also I and BE were recognized. Moreover, a one genotype has never been described previously. Seroprevalence and shedding of C. burnetii in cattle is common and strains are genetically diverse.

Keywords: Coxiella burnetii, cattle, MST, MLVA, Q fever

Procedia PDF Downloads 48
35 Stress-Strain Relation for Human Trabecular Bone Based on Nanoindentation Measurements

Authors: Marek Pawlikowski, Krzysztof Jankowski, Konstanty Skalski, Anna Makuch

Abstract:

Nanoindentation or depth-sensing indentation (DSI) technique has proven to be very useful to measure mechanical properties of various tissues at a micro-scale. Bone tissue, both trabecular and cortical one, is one of the most commonly tested tissues by means of DSI. Most often such tests on bone samples are carried out to compare the mechanical properties of lamellar and interlamellar bone, osteonal bone as well as compact and cancellous bone. In the paper, a relation between stress and strain for human trabecular bone is presented. The relation is based on the results of nanoindentation tests. The formulation of a constitutive model for human trabecular bone is based on nanoindentation tests. In the study, the approach proposed by Olivier-Pharr is adapted. The tests were carried out on samples of trabecular tissue extracted from human femoral heads. The heads were harvested during surgeries of artificial hip joint implantation. Before samples preparation, the heads were kept in 95% alcohol in temperature 4 Celsius degrees. The cubic samples cut out of the heads were stored in the same conditions. The dimensions of the specimens were 25 mm x 25 mm x 20 mm. The number of 20 samples have been tested. The age range of donors was between 56 and 83 years old. The tests were conducted with the indenter spherical tip of the diameter 0.200 mm. The maximum load was P = 500 mN and the loading rate 500 mN/min. The data obtained from the DSI tests allows one only to determine bone behoviour in terms of nanoindentation force vs. nanoindentation depth. However, it is more interesting and useful to know the characteristics of trabecular bone in the stress-strain domain. This allows one to simulate trabecular bone behaviour in a more realistic way. The stress-strain curves obtained in the study show relation between the age and the mechanical behaviour of trabecular bone. It was also observed that the bone matrix of trabecular tissue indicates an ability of energy absorption.

Keywords: constitutive model, mechanical behaviour, nanoindentation, trabecular bone

Procedia PDF Downloads 186
34 Structural Characterization of TIR Domains Interaction

Authors: Sara Przetocka, Krzysztof Żak, Grzegorz Dubin, Tadeusz Holak

Abstract:

Toll-like receptors (TLRs) play central role in the innate immune response and inflammation by recognizing pathogen-associated molecular patterns (PAMPs). A fundamental basis of TLR signalling is dependent upon the recruitment and association of adaptor molecules that contain the structurally conserved Toll/interleukin-1 receptor (TIR) domain. MyD88 (myeloid differentiation primary response gene 88) is the universal adaptor for TLRs and cooperates with Mal (MyD88 adapter-like protein, also known as TIRAP) in TLR4 response which is predominantly used in inflammation, host defence and carcinogenesis. Up to date two possible models of MyD88, Mal and TLR4 interactions have been proposed. The aim of our studies is to confirm or abolish presented models and accomplish the full structural characterisation of TIR domains interaction. Using molecular cloning methods we obtained several construct of MyD88 and Mal TIR domain with GST or 6xHis tag. Gel filtration method as well as pull-down analysis confirmed that recombinant TIR domains from MyD88 and Mal are binding in complexes. To examine whether obtained complexes are homo- or heterodimers we carried out cross-linking reaction of TIR domains with BS3 compound combined with mass spectrometry. To investigate which amino acid residues are involved in this interaction the NMR titration experiments were performed. 15N MyD88-TIR solution was complemented with non-labelled Mal-TIR. The results undoubtedly indicate that MyD88-TIR interact with Mal-TIR. Moreover 2D spectra demonstrated that simultaneously Mal-TIR self-dimerization occurs which is necessary to create proper scaffold for Mal-TIR and MyD88-TIR interaction. Final step of this study will be crystallization of MyD88 and Mal TIR domains complex. This crystal structure and characterisation of its interface will have an impact in understanding the TLR signalling pathway and possibly will be used in development of new anti-cancer treatment.

Keywords: cancer, MyD88, TIR domains, Toll-like receptors

Procedia PDF Downloads 259
33 Corrosion Resistance of 17-4 Precipitation Hardenable Stainless Steel Fabricated by Selective Laser Melting

Authors: Michella Alnajjar, Frederic Christien, Krzysztof Wolski, Cedric Bosch

Abstract:

Additive manufacturing (AM) has gained more interest in the past few years because it allows 3D parts often having a complex geometry to be directly fabricated, layer by layer according to a CAD model. One of the AM techniques is the selective laser melting (SLM) which is based on powder bed fusion. In this work, the corrosion resistance of 17-4 PH steel obtained by SLM is investigated. Wrought 17-4 PH steel is a martensitic precipitation hardenable stainless steel. It is widely used in a variety of applications such as aerospace, medical and food industries, due to its high strength and relatively good corrosion resistance. However, the combined findings of X-Ray diffraction and electron backscatter diffraction (EBSD) proved that SLM-ed 17-4 PH steel has a fully ferritic microstructure, more specifically δ ferrite. The microstructure consists of coarse ferritic grains elongated along the build direction, with a pronounced solidification crystallographic texture. These results were associated with the high cooling and heating rates experienced throughout the SLM process (10⁵-10⁶ K/s) that suppressed the austenite formation and produced a 'by-passing' phenomenon of this phase during the numerous thermal cycles. Furthermore, EDS measurements revealed a uniform distribution of elements without any dendritic structure. The extremely high cooling kinetics induced a diffusionless solidification, resulting in a homogeneous elemental composition. Consequently, the corrosion properties of this steel are altered from that of conventional ones. By using electrochemical means, it was found that SLM-ed 17-4 PH is more resistant to general corrosion than the wrought steel. However, the SLM-ed material exhibits metastable pitting due to its high porosity density. In addition, the hydrogen embrittlement of SLM-ed 17-4 PH steel is investigated, and a correlation between its behavior and the observed microstructure is made.

Keywords: corrosion resistance, 17-4 PH stainless steel, selective laser melting, hydrogen embrittlement

Procedia PDF Downloads 118
32 Architecture of Contemporary Museums Located in the Historic Center of Cracow: One City, One Architect, Three Projects

Authors: A. Brach

Abstract:

The architecture of modern museums in the historical center should refer to a place in a cultural, historical, urban and architectural sense, using adequate and contemporary forms of architecture. The research and architectural analysis of selected museums in Cracow were conducted to illustrate which elements were decisive for the choice of architectural form. The evaluation of selected objects took into the consideration the following aspects: continuation of the historical form, contemporary form referring to the place, the individual-author form omitting the cultural aspect of the place. The presented projects showed the compromise as positive solutions rejecting both the direct imitation or 'historical continuation' as well as an individual form focused on an abstract form. In order to carry out research and confirm the thesis, three designs of Assoc. Prof. Eng. Arch. Krzysztof Ingarden in the historic city of Cracow were selected. Despite being constructed in one city, the neighborhood and cultural contexts of the locations are completely different. The neighborhood of the historical Royal Road and gothic church with unique decorations from the Polish Art Nouveau, artist Stanislaw Wyspianski (Wyspianski Pavilion), the bend of the Vistula hosting the Japanese culture (Museum of Japanese Art and Technology Manggha) and finally the old area of a horse riding school from the Austrian Empire times (Malopolska Garden of Art). All three buildings are dedicated to the culture of Japan, Polish artist Stanislaw Wyspianski, contemporary achievements and the promotion of art at its widest sense. Important fact for this research is that there is one author of all presented projects.

Keywords: adaptation of existing buildings, architecture in cracow, modern architecture, museums located in historic center

Procedia PDF Downloads 136
31 Microvesicles in Peripheral and Uterine Blood in Women with Atypical Hyperplasia and Endometrioid Endometrial Cancer

Authors: Barbara Zapala, Marek Dziechciowski, Olaf Chmura, Monika Piwowar, Katarzyna Gawlik, Dorota Pawlicka-Gosiewska, Krzysztof Skotniczny, Bogdan Solnica, Kazimierz Pitynski

Abstract:

BACKGROUND: Endometrial cancer is one of the most common gynecologic malignancy in developed countries.We hypothesized that amount of circulating micro-particles in blood may be connected with the development of endometrial hyperplasia and endometrial cancer. The aim of this study was to measure the micro-particles amount in uterine venous blood and in peripheral venous blood in women with atypical endometrial hyperplasia and endometrioid endometrial cancer. MATERIALS AND METHODS: By using flow cytometry (BD Canto II cytometer) we measured micro-particles amount in citrate plasma samples from peripheral and uterine venous blood of women with atypical hyperplasia of endometrium or endometrial cancer. We determined the amount of total (TF+), endothelial (CD144+) and monocytic (CD14+) micro- particles. RESULTS: Here we show statistically significant higher micro-particle levels in women with atypical hyperplasia of endometrium or endometrial cancer in comparison to healthy women. Performing measurements of the amounts of total, endothelial and monocytic microparticles allow for reliable differentiation between healthy, atypical hyperplasia and endometrial cancer groups. In blood samples from uterine veins the circulating micro-particle levels were significantly different from peripheral blood samples. The micro-particle levels in uterine blood samples were 7-fold higher than in those from peripheral blood of women with both atypical hyperplasia of endometrium and endometrial cancer when compared to the control group of healthy women. CONCLUSION: These results strongly suggested that the level of circulating micro-particles may be a sign of endometrial cancer development, however the detailed study is needed focusing on molecular processes passed through this small circulating molecules.

Keywords: endometrial cancer, endometrial hyperplasia, microvesicles, uterine blood

Procedia PDF Downloads 105
30 Possibility of Membrane Filtration to Treatment of Effluent from Digestate

Authors: Marcin Debowski, Marcin Zielinski, Magdalena Zielinska, Paulina Rusanowska

Abstract:

The problem with digestate management is one of the most important factors influencing on the development and operation of biogas plant. Turbidity and bacterial contamination negatively affect the growth of algae, which can limit the use of the effluent in the production of algae biomass on a large scale. These problems can be overcome by cultivating of algae species resistant to environmental factors, such as Chlorella sp., Scenedesmus sp., or reducing load of organic compounds to prevent bacterial contamination. The effluent requires dilution and/or purification. One of the methods of effluent treatment is the use of a membrane technology such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), depending on the membrane pore size and the cut off point. Membranes are a physical barrier to solids and particles larger than the size of the pores. MF membranes have the largest pores and are used to remove turbidity, suspensions, bacteria and some viruses. UF membranes remove also color, odor and organic compounds with high molecular weight. In treatment of wastewater or other waste streams, MF and UF can provide a sufficient degree of purification. NF membranes are used to remove natural organic matter from waters, water disinfection products and sulfates. RO membranes are applied to remove monovalent ions such as Na⁺ or K⁺. The effluent was used in UF for medium to cultivation of two microalgae: Chlorella sp. and Phaeodactylum tricornutum. Growth rates of Chlorella sp. and P. tricornutum were similar: 0.216 d⁻¹ and 0.200 d⁻¹ (Chlorella sp.); 0.128 d⁻¹ and 0.126 d⁻¹ (P. tricornutum), on synthetic medium and permeate from UF, respectively. The final biomass composition was also similar, regardless of the medium. Removal of nitrogen was 92% and 71% by Chlorella sp. and P. tricornutum, respectively. The fermentation effluents after UF and dilution were also used for cultivation of algae Scenedesmus sp. that is resistant to environmental conditions. The authors recommended the development of biorafinery based on the production of algae for the biogas production. There are examples of using a multi-stage membrane system to purify the liquid fraction from digestate. After the initial UF, RO is used to remove ammonium nitrogen and COD. To obtain a permeate with a concentration of ammonium nitrogen allowing to discharge it into the environment, it was necessary to apply three-stage RO. The composition of the permeate after two-stage RO was: COD 50–60 mg/dm³, dry solids 0 mg/dm³, ammonium nitrogen 300–320 mg/dm³, total nitrogen 320–340 mg/dm³, total phosphorus 53 mg/dm³. However compostion of permeate after three-stage RO was: COD < 5 mg/dm³, dry solids 0 mg/dm³, ammonium nitrogen 0 mg/dm³, total nitrogen 3.5 mg/dm³, total phosphorus < 0,05 mg/dm³. Last stage of RO might be replaced by ion exchange process. The negative aspect of membrane filtration systems is the fact that the permeate is about 50% of the introduced volume, the remainder is the retentate. The management of a retentate might involve recirculation to a biogas plant.

Keywords: digestate, membrane filtration, microalgae cultivation, Chlorella sp.

Procedia PDF Downloads 325
29 Reactors with Effective Mixing as a Solutions for Micro-Biogas Plant

Authors: M. Zielinski, M. Debowski, P. Rusanowska, A. Glowacka-Gil, M. Zielinska, A. Cydzik-Kwiatkowska, J. Kazimierowicz

Abstract:

Technologies for the micro-biogas plant with heating and mixing systems are presented as a part of the Research Coordination for a Low-Cost Biomethane Production at Small and Medium Scale Applications (Record Biomap). The main objective of the Record Biomap project is to build a network of operators and scientific institutions interested in cooperation and the development of promising technologies in the sector of small and medium-sized biogas plants. The activities carried out in the project will bridge the gap between research and market and reduce the time of implementation of new, efficient technological and technical solutions. Reactor with simultaneously mixing and heating system is a concrete tank with a rectangular cross-section. In the reactor, heating is integrated with the mixing of substrate and anaerobic sludge. This reactor is solution dedicated for substrates with high solids content, which cannot be introduced to the reactor with pumps, even with positive displacement pumps. Substrates are poured to the reactor and then with a screw pump, they are mixed with anaerobic sludge. The pumped sludge, flowing through the screw pump, is simultaneously heated by a heat exchanger. The level of the fermentation sludge inside the reactor chamber is above the bottom edge of the cover. Cover of the reactor is equipped with the screw pump driver. Inside the reactor, an electric motor is installed that is driving a screw pump. The heated sludge circulates in the digester. The post-fermented sludge is collected using a drain well. The inlet to the drain well is below the level of the sludge in the digester. The biogas is discharged from the reactor by the biogas intake valve located on the cover. The technology is very useful for fermentation of lignocellulosic biomass and substrates with high content of dry mass (organic wastes). The other technology is a reactor for micro-biogas plant with a pressure mixing system. The reactor has a form of plastic or concrete tank with a circular cross-section. The effective mixing of sludge is ensured by profiled at 90° bottom of the tank. Substrates for fermentation are supplied by an inlet well. The inlet well is equipped with a cover that eliminates odour release. The introduction of a new portion of substrates is preceded by pumping of digestate to the disposal well. Optionally, digestate can gravitationally flow to digestate storage tank. The obtained biogas is discharged into the separator. The valve supplies biogas to the blower. The blower presses the biogas from the fermentation chamber in such a way as to facilitate the introduction of a new portion of substrates. Biogas is discharged from the reactor by valve that enables biogas removal but prevents suction from outside the reactor.

Keywords: biogas, digestion, heating system, mixing system

Procedia PDF Downloads 123
28 Aerodynamic Interference of Propellers Group with Adjustable Mutual Position

Authors: Michal Biały, Krzysztof Skiba, Zdzislaw Kaminski

Abstract:

The research results of the influence of the adjustable mutual position of the propellers for getting optimal lift force on a specially designed bench. The bench consists of frame with electric motors and with attached propellers. Engines were arranged in a matrix of two columns and three rows. The distance between the columns averages from 0 to 20”, while the engine was placed at a height of 8”, 15.5” and 23.6”. By adjusting the tilt of an electric motor, an angle of the propeller in the range of 0° to 60°, by 15° was controlled. Propellers with a diameter of 8" and pitch of 4.5” were driven by brushless model engines Roxxy BL-Outrunner 2827/26 with a power of 110W (each). Rotational speed control of electric motors were realized parallel for all propellers. The speed adjustment was realized using an aggregate of radio-controlled regulators. Electric power supplied to the engines from zero to maximum power, by the setting for every 14W, was controlled by radio system. Measurement system was placed on a laboratory scale. The lift was measured and recorded by an electronic scale. The lift force for different configurations of propellers arrangement was recorded during the test. All propellers were driven in one rotational direction and in different directions when they were in the same pairs. Propellers were driven concurrently and contra-concurrently along one of the columns and along the selected rows. During the tests, except the lift, parameters such as: rotational speed of propellers, voltage and current to the electric engines were recorded. The main aim of the research was to show the influence of aerodynamic interference between the propellers to receive lift force depending on the drive configuration of individual propellers. The research has shown that, this interference exists. The increase of the lift force for a distance between columns above 26.6” was noticed during the driving propellers in different directions. The optimum tilt angle of the propeller was 45°. Furthermore there has been also approx. 12% increase of the lift for propellers driven alternately in column and contra-concurrently in relation to the contra-rotating drive in the row.

Keywords: aerodynamic, interference, lift force, propeller, propulsion system

Procedia PDF Downloads 313
27 Influence of Disintegration of Sida hermaphrodita Silage on Methane Fermentation Efficiency

Authors: Marcin Zielinski, Marcin Debowski, Paulina Rusanowska, Magda Dudek

Abstract:

As a result of sonification, the destruction of complex biomass structures results in an increase in the biogas yield from the conditioned material. First, the amount of organic matter released into the solution due to disintegration was determined. This parameter was determined by changes in the carbon content in liquid phase of the conditioned substrate. The amount of carbon in the liquid phase increased with the prolongation of the sonication time to 16 min. Further increase in the duration of sonication did not cause a statistically significant increase in the amount of organic carbon in the liquid phase. The disintegrated material was then used for respirometric measurements for determination of the impact of the conditioning process used on methane fermentation effectiveness. The relationship between the amount of energy introduced into the lignocellulosic substrate and the amount of biogas produced has been demonstrated. Statistically significant increase in the amount of biogas was observed until sonication of 16 min. Further increase in energy in the conditioning process did not significantly increase the production of biogas from the treated substrate. The biogas production from the conditioned substrate was 17% higher than from the reference biomass at that time. The ultrasonic disintegration method did not significantly affect the observed biogas composition. In all series, the methane content in the produced biogas from the conditioned substrate was similar to that obtained with the raw substrate sample (51.1%). Another method of substrate conditioning was hydrothermal depolymerization. This method consists in application of increased temperature and pressure to substrate. These phenomena destroy the structure of the processed material, the release of organic compounds to the solution, which should lead to increase the amount of produced biogas from such treated biomass. The hydrothermal depolymerization was conducted using an innovative microwave heating method. Control measurements were performed using conventional heating. The obtained results indicate the relationship between depolymerization temperature and the amount of biogas. Statistically significant value of the biogas production coefficients increased as the depolymerization temperature increased to 150°C. Further raising the depolymerization temperature to 180°C did not significantly increase the amount of produced biogas in the respirometric tests. As a result of the hydrothermal depolymerization obtained using microwave at 150°C for 20 min, the rate of biogas production from the Sida silage was 780 L/kg VS, which accounted for nearly 50% increase compared to 370 L/kg VS obtained from the same silage but not depolymerised. The study showed that by microwave heating it is possible to effectively depolymerized substrate. Significant differences occurred especially in the temperature range of 130-150ºC. The pre-treatment of Sida hermaphrodita silage (biogas substrate) did not significantly affect the quality of the biogas produced. The methane concentration was about 51.5% on average. The study was carried out in the framework of the project under program BIOSTRATEG funded by the National Centre for Research and Development No. 1/270745/2/NCBR/2015 'Dietary, power, and economic potential of Sida hermaphrodita cultivation on fallow land'.

Keywords: disintegration, biogas, methane fermentation, Virginia fanpetals, biomass

Procedia PDF Downloads 269
26 Cadmium Telluride Quantum Dots (CdTe QDs)-Thymine Conjugate Based Fluorescence Biosensor for Sensitive Determination of Nucleobases/Nucleosides

Authors: Lucja Rodzik, Joanna Lewandowska-Lancucka, Michal Szuwarzynski, Krzysztof Szczubialka, Maria Nowakowska

Abstract:

The analysis of nucleobases is of great importance for bioscience since their abnormal concentration in body fluids suggests the deficiency and mutation of the immune system, and it is considered to be an important parameter for diagnosis of various diseases. The presented conjugate meets the need for development of the effective, selective and highly sensitive sensor for nucleobase/nucleoside detection. The novel, highly fluorescent cadmium telluride quantum dots (CdTe QDs) functionalized with thymine and stabilized with thioglycolic acid (TGA) conjugates has been developed and thoroughly characterized. Successful formation of the material was confirmed by elemental analysis, and UV–Vis fluorescence and FTIR spectroscopies. The crystalline structure of the obtained product was characterized with X-ray diffraction (XRD) method. The composition of CdTe QDs and their thymine conjugate was also examined using X-ray photoelectron spectroscopy (XPS). The size of the CdTe-thymine was 3-6 nm as demonstrated using atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM) imaging. The plasmon resonance fluorescence band at 540 nm on excitation at 351 nm was observed for these nanoparticles. The intensity of this band increased with the increase in the amount of conjugated thymine with no shift in its position. Based on the fluorescence measurements, it was found that the CdTe-thymine conjugate interacted efficiently and selectively not only with adenine, a nucleobase complementary to thymine, but also with nucleosides and adenine-containing modified nucleosides, i.e., 5′-deoxy-5′-(methylthio)adenosine (MTA) and 2’-O-methyladenosine, the urinary tumor markers which allow monitoring of the disease progression. The applicability of the CdTe-thymine sensor for the real sample analysis was also investigated in simulated urine conditions. High sensitivity and selectivity of CdTe-thymine fluorescence towards adenine, adenosine and modified adenosine suggest that obtained conjugate can be potentially useful for development of the biosensor for complementary nucleobase/nucleoside detection.

Keywords: CdTe quantum dots, conjugate, sensor, thymine

Procedia PDF Downloads 377
25 Reconstruction of Signal in Plastic Scintillator of PET Using Tikhonov Regularization

Authors: L. Raczynski, P. Moskal, P. Kowalski, W. Wislicki, T. Bednarski, P. Bialas, E. Czerwinski, A. Gajos, L. Kaplon, A. Kochanowski, G. Korcyl, J. Kowal, T. Kozik, W. Krzemien, E. Kubicz, Sz. Niedzwiecki, M. Palka, Z. Rudy, O. Rundel, P. Salabura, N.G. Sharma, M. Silarski, A. Slomski, J. Smyrski, A. Strzelecki, A. Wieczorek, M. Zielinski, N. Zon

Abstract:

The J-PET scanner, which allows for single bed imaging of the whole human body, is currently under development at the Jagiellonian University. The J-PET detector improves the TOF resolution due to the use of fast plastic scintillators. Since registration of the waveform of signals with duration times of few nanoseconds is not feasible, a novel front-end electronics allowing for sampling in a voltage domain at four thresholds was developed. To take fully advantage of these fast signals a novel scheme of recovery of the waveform of the signal, based on ideas from the Tikhonov regularization (TR) and Compressive Sensing methods, is presented. The prior distribution of sparse representation is evaluated based on the linear transformation of the training set of waveform of the signals by using the Principal Component Analysis (PCA) decomposition. Beside the advantage of including the additional information from training signals, a further benefit of the TR approach is that the problem of signal recovery has an optimal solution which can be determined explicitly. Moreover, from the Bayes theory the properties of regularized solution, especially its covariance matrix, may be easily derived. This step is crucial to introduce and prove the formula for calculations of the signal recovery error. It has been proven that an average recovery error is approximately inversely proportional to the number of samples at voltage levels. The method is tested using signals registered by means of the single detection module of the J-PET detector built out from the 30 cm long BC-420 plastic scintillator strip. It is demonstrated that the experimental and theoretical functions describing the recovery errors in the J-PET scenario are largely consistent. The specificity and limitations of the signal recovery method in this application are discussed. It is shown that the PCA basis offers high level of information compression and an accurate recovery with just eight samples, from four voltage levels, for each signal waveform. Moreover, it is demonstrated that using the recovered waveform of the signals, instead of samples at four voltage levels alone, improves the spatial resolution of the hit position reconstruction. The experiment shows that spatial resolution evaluated based on information from four voltage levels, without a recovery of the waveform of the signal, is equal to 1.05 cm. After the application of an information from four voltage levels to the recovery of the signal waveform, the spatial resolution is improved to 0.94 cm. Moreover, the obtained result is only slightly worse than the one evaluated using the original raw-signal. The spatial resolution calculated under these conditions is equal to 0.93 cm. It is very important information since, limiting the number of threshold levels in the electronic devices to four, leads to significant reduction of the overall cost of the scanner. The developed recovery scheme is general and may be incorporated in any other investigation where a prior knowledge about the signals of interest may be utilized.

Keywords: plastic scintillators, positron emission tomography, statistical analysis, tikhonov regularization

Procedia PDF Downloads 416
24 Technology for Biogas Upgrading with Immobilized Algae Biomass

Authors: Marcin Debowski, Marcin Zielinski, Miroslaw Krzemieniewski, Agata Glowacka-Gil, Paulina Rusanowska, Magdalena Zielinska, Agnieszka Cydzik-Kwiatkowska

Abstract:

Technologies of biogas upgrading are now perceived as competitive solution combustion and production of electricity and heat. Biomethane production will ensure broader application as energy carrier than biogas. Biomethane can be used as fuel in internal combustion engines or introduced into the natural gas transmission network. Therefore, there is a need to search for innovative, economically and technically justified methods for biogas enrichment. The aim of this paper is to present a technology solution for biogas upgrading with immobilized algae biomass. Reactor for biogas upgrading with immobilized algae biomass can be used for removing CO₂ from the biogas, flue gases and the waste gases especially coming from different industry sectors, e.g. from the food industry from yeast production process, biogas production systems, liquid and gaseous fuels combustion systems, hydrocarbon processing technology. The basis for the technological assumptions of presented technology were laboratory works and analyses that tested technological variants of biogas upgrading. The enrichment of biogas with a methane content of 90-97% pointed to technological assumptions for installation on a technical scale. Reactor for biogas upgrading with algae biomass is characterized by a significantly lower cubature in relation to the currently used solutions which use CO₂ removal processes. The invention, by its structure, assumes achieving a very high concentration of biomass of algae through its immobilization in capsules. This eliminates the phenomenon of lowering the pH value, i.e. acidification of the environment in which algae grow, resulting from the introduction of waste gases at a high CO₂ concentration. The system for introducing light into algae capsules is characterized by a higher degree of its use, due to lower losses resulting from the phenomenon of absorption of light energy by water. The light from the light source is continuously supplied to the formed biomass of algae or cyanobacteria in capsules by the light tubes. The light source may be sunlight or a light generator of a different wavelength of light from 300 nm to 800 nm. A portion of gas containing CO₂, accumulated in the tank and conveyed by the pump is periodically introduced into the housing of the photobioreactor tank. When conveying the gas that contains CO₂, it penetrates the algal biomass in capsules through the outer envelope, displacing, from the algal biomass, gaseous metabolic products which are discharged by the outlet duct for gases. It contributes to eliminating the negative impact of this factor on CO₂ binding processes. As a result of the cyclic dosing of gases containing carbon dioxide, gaseous metabolic products of algae are displaced and removed outside the technological system. Technology for biogas upgrading with immobilized algae biomass is suitable for the small biogas plant. The advantages of this technology are high efficiency as well as useful algae biomass which can be used mainly as animal feed, fertilizers and in the power industry. The construction of the device allows effective removal of carbon dioxide from gases at a high CO₂ concentration.

Keywords: biogas, carbon dioxide, immobilised biomass, microalgae, upgrading

Procedia PDF Downloads 121
23 Change of Taste Preference after Bariatric Surgery

Authors: Piotr Tylec, Julia Wierzbicka, Natalia Gajewska, Krzysztof Przeczek, Grzegorz Torbicz, Alicja Dudek, Magdalena Pisarska-Adamczyk, Mateusz Wierdak, Michal Pedziwiatr

Abstract:

Introduction: Many patients have described changes in taste perception after weight loss surgery. However, little data is available about short term changes in taste after surgery. Aim: We aimed to evaluate short-term changes in taste preference after bariatric surgeries in comparison to colorectal surgeries. Material and Methods: Between April 2018 and April 2019, a total of 121 bariatric patients and 63 controls participated. Bariatric patients underwent laparoscopic sleeve gastrectomy or Roux-en-Y gastric by-pass. Controls underwent oncological colorectal surgeries. Patients who developed clinical complications requiring restriction of oral intake after surgery or withdraw their consent were excluded from the study. In the end, 85 bariatric patients and 44 controls were included. In all of them, the 16-item ERAS Protocol was applied. Using 10-points Numeric Rating Scale (1-10) patients completed questionnaire and rated their appetite and thirst (1 - no appetite/not thirsty, 10 – normal appetite/very thirsty) and flavoured standardized liquids' taste (1- horrible, 10-very tasty) and food images for the 6 group of taste (sweet, umami, sour, spicy, bitter and salty) (1 - not appetizing, 10 - very appetizing) preoperatively and on the first postoperative day. Data were analysed with Statistica 13.0 PL. Results: Analysed group consist of 129 patients (85 bariatric, 44 controls). Mean age and BMI in a research group was 44.91 years old, 46.22 kg/m² and in control group 62.09 years old, 25.87 kg/m², respectively. Our analysis revealed significant differences in changes of appetite between both groups (research: -4.55 ± 3.76 vs. control: -0.85 ± 4.37; p < 0.05), ratings bitter (research: 0.60 ± 2.98 vs. control: -0.88 ± 2.58; p < 0.05) and salty (research: 1.20 ± 3.50 vs. control: -0.52 ± 2.90; p < 0.05) flavoured liquids and ratings for sweet (research: 1.62 ± 3.31 vs. control: 0.01 ± 2.63; p < 0.05) and bitter (research: 1.21 ± 3.15 vs. control: -0.09 ± 2.25; p < 0.05) food images. There were statistically significant results in the ratings of other images, but in comparison to the control group, they were not statistically significant. Conclusion: The study showed that bariatric surgeries quickly decreases appetite and desire to eat certain types of food, such as salty. Moreover, the bitter taste was more desirable in the research group in comparison to control group. Nevertheless, the sweet taste was more appetible in the bariatric group than in control.

Keywords: bariatric surgery, general surgery, obesity, taste preference

Procedia PDF Downloads 106
22 Ultrasound Disintegration as a Potential Method for the Pre-Treatment of Virginia Fanpetals (Sida hermaphrodita) Biomass before Methane Fermentation Process

Authors: Marcin Dębowski, Marcin Zieliński, Mirosław Krzemieniewski

Abstract:

As methane fermentation is a complex series of successive biochemical transformations, its subsequent stages are determined, to a various extent, by physical and chemical factors. A specific state of equilibrium is being settled in the functioning fermentation system between environmental conditions and the rate of biochemical reactions and products of successive transformations. In the case of physical factors that influence the effectiveness of methane fermentation transformations, the key significance is ascribed to temperature and intensity of biomass agitation. Among the chemical factors, significant are pH value, type, and availability of the culture medium (to put it simply: the C/N ratio) as well as the presence of toxic substances. One of the important elements which influence the effectiveness of methane fermentation is the pre-treatment of organic substrates and the mode in which the organic matter is made available to anaerobes. Out of all known and described methods for organic substrate pre-treatment before methane fermentation process, the ultrasound disintegration is one of the most interesting technologies. Investigations undertaken on the ultrasound field and the use of installations operating on the existing systems result principally from very wide and universal technological possibilities offered by the sonication process. This physical factor may induce deep physicochemical changes in ultrasonicated substrates that are highly beneficial from the viewpoint of methane fermentation processes. In this case, special role is ascribed to disintegration of biomass that is further subjected to methane fermentation. Once cell walls are damaged, cytoplasm and cellular enzymes are released. The released substances – either in dissolved or colloidal form – are immediately available to anaerobic bacteria for biodegradation. To ensure the maximal release of organic matter from dead biomass cells, disintegration processes are aimed to achieve particle size below 50 μm. It has been demonstrated in many research works and in systems operating in the technical scale that immediately after substrate supersonication the content of organic matter (characterized by COD, BOD5 and TOC indices) was increasing in the dissolved phase of sedimentation water. This phenomenon points to the immediate sonolysis of solid substances contained in the biomass and to the release of cell material, and consequently to the intensification of the hydrolytic phase of fermentation. It results in a significant reduction of fermentation time and increased effectiveness of production of gaseous metabolites of anaerobic bacteria. Because disintegration of Virginia fanpetals biomass via ultrasounds applied in order to intensify its conversion is a novel technique, it is often underestimated by exploiters of agri-biogas works. It has, however, many advantages that have a direct impact on its technological and economical superiority over thus far applied methods of biomass conversion. As for now, ultrasound disintegrators for biomass conversion are not produced on the mass-scale, but by specialized groups in scientific or R&D centers. Therefore, their quality and effectiveness are to a large extent determined by their manufacturers’ knowledge and skills in the fields of acoustics and electronic engineering.

Keywords: ultrasound disintegration, biomass, methane fermentation, biogas, Virginia fanpetals

Procedia PDF Downloads 337
21 Feasibility of Applying a Hydrodynamic Cavitation Generator as a Method for Intensification of Methane Fermentation Process of Virginia Fanpetals (Sida hermaphrodita) Biomass

Authors: Marcin Zieliński, Marcin Dębowski, Mirosław Krzemieniewski

Abstract:

The anaerobic degradation of substrates is limited especially by the rate and effectiveness of the first (hydrolytic) stage of fermentation. This stage may be intensified through pre-treatment of substrate aimed at disintegration of the solid phase and destruction of substrate tissues and cells. The most frequently applied criterion of disintegration outcomes evaluation is the increase in biogas recovery owing to the possibility of its use for energetic purposes and, simultaneously, recovery of input energy consumed for the pre-treatment of substrate before fermentation. Hydrodynamic cavitation is one of the methods for organic substrate disintegration that has a high implementation potential. Cavitation is explained as the phenomenon of the formation of discontinuity cavities filled with vapor or gas in a liquid induced by pressure drop to the critical value. It is induced by a varying field of pressures. A void needs to occur in the flow in which the pressure first drops to the value close to the pressure of saturated vapor and then increases. The process of cavitation conducted under controlled conditions was found to significantly improve the effectiveness of anaerobic conversion of organic substrates having various characteristics. This phenomenon allows effective damage and disintegration of cellular and tissue structures. Disintegration of structures and release of organic compounds to the dissolved phase has a direct effect on the intensification of biogas production in the process of anaerobic fermentation, on reduced dry matter content in the post-fermentation sludge as well as a high degree of its hygienization and its increased susceptibility to dehydration. A device the efficiency of which was confirmed both in laboratory conditions and in systems operating in the technical scale is a hydrodynamic generator of cavitation. Cavitators, agitators and emulsifiers constructed and tested worldwide so far have been characterized by low efficiency and high energy demand. Many of them proved effective under laboratory conditions but failed under industrial ones. The only task successfully realized by these appliances and utilized on a wider scale is the heating of liquids. For this reason, their usability was limited to the function of heating installations. Design of the presented cavitation generator allows achieving satisfactory energy efficiency and enables its use under industrial conditions in depolymerization processes of biomass with various characteristics. Investigations conducted on the laboratory and industrial scale confirmed the effectiveness of applying cavitation in the process of biomass destruction. The use of the cavitation generator in laboratory studies for disintegration of sewage sludge allowed increasing biogas production by ca. 30% and shortening the treatment process by ca. 20 - 25%. The shortening of the technological process and increase of wastewater treatment plant effectiveness may delay investments aimed at increasing system output. The use of a mechanical cavitator and application of repeated cavitation process (4-6 times) enables significant acceleration of the biogassing process. In addition, mechanical cavitation accelerates increases in COD and VFA levels.

Keywords: hydrodynamic cavitation, pretreatment, biomass, methane fermentation, Virginia fanpetals

Procedia PDF Downloads 406
20 Motor Coordination and Body Mass Index in Primary School Children

Authors: Ingrid Ruzbarska, Martin Zvonar, Piotr Oleśniewicz, Julita Markiewicz-Patkowska, Krzysztof Widawski, Daniel Puciato

Abstract:

Obese children will probably become obese adults, consequently exposed to an increased risk of comorbidity and premature mortality. Body weight may be indirectly determined by continuous development of coordination and motor skills. The level of motor skills and abilities is an important factor that promotes physical activity since early childhood. The aim of the study is to thoroughly understand the internal relations between motor coordination abilities and the somatic development of prepubertal children and to determine the effect of excess body weight on motor coordination by comparing the motor ability levels of children with different body mass index (BMI) values. The data were collected from 436 children aged 7–10 years, without health limitations, fully participating in school physical education classes. Body height was measured with portable stadiometers (Harpenden, Holtain Ltd.), and body mass—with a digital scale (HN-286, Omron). Motor coordination was evaluated with the Kiphard-Schilling body coordination test, Körperkoordinationstest für Kinder. The normality test by Shapiro-Wilk was used to verify the data distribution. The correlation analysis revealed a statistically significant negative association between the dynamic balance and BMI, as well as between the motor quotient and BMI (p<0.01) for both boys and girls. The results showed no effect of gender on the difference in the observed trends. The analysis of variance proved statistically significant differences between normal weight children and their overweight or obese counterparts. Coordination abilities probably play an important role in preventing or moderating the negative trajectory leading to childhood overweight and obesity. At this age, the development of coordination abilities should become a key strategy, targeted at long-term prevention of obesity and the promotion of an active lifestyle in adulthood. Motor performance is essential for implementing a healthy lifestyle in childhood already. Physical inactivity apparently results in motor deficits and a sedentary lifestyle in children, which may be accompanied by excess energy intake and overweight.

Keywords: childhood, KTK test, physical education, psychomotor competence

Procedia PDF Downloads 316
19 Technology of Electrokinetic Disintegration of Virginia Fanpetals (Sida hermaphrodita) Biomass in a Biogas Production System

Authors: Mirosław Krzemieniewski, Marcin Zieliński, Marcin Dębowski

Abstract:

Electrokinetic disintegration is one of the high-voltage electric methods. The design of systems is exceptionally simple. Biomass flows through a system of pipes with alongside mounted electrodes that generate an electric field. Discharges in the electric field deform cell walls and lead to their successive perforation, thereby making their contents easily available to bacteria. The spark-over occurs between electrode surface and pipe jacket which is the second pole and closes the circuit. The value of voltage ranges from 10 to 100kV. Electrodes are supplied by normal “power grid” monophase electric current (230V, 50Hz). Next, the electric current changes into direct current of 24V in modules serving for particular electrodes, and this current directly feeds the electrodes. The installation is completely safe because the value of generated current does not exceed 250mA and because conductors are grounded. Therefore, there is no risk of electric shock posed to the personnel, even in the case of failure or incorrect connection. Low values of the electric current mean small energy consumption by the electrode which is extremely low – only 35W per electrode – compared to other methods of disintegration. Pipes with electrodes with diameter of DN150 are made of acid-proof steel and connected from both sides with 90º elbows ended with flanges. The available S and U types of pipes enable very convenient fitting with system construction in the existing installations and rooms or facilitate space management in new applications. The system of pipes for electrokinetic disintegration may be installed horizontally, vertically, askew, on special stands or also directly on the wall of a room. The number of pipes and electrodes is determined by operating conditions as well as the quantity of substrate, type of biomass, content of dry matter, method of disintegration (single or circulatory), mounting site etc. The most effective method involves pre-treatment of substrate that may be pumped through the disintegration system on the way to the fermentation tank or recirculated in a buffered intermediate tank (substrate mixing tank). Biomass structure destruction in the process of electrokinetic disintegration causes shortening of substrate retention time in the tank and acceleration of biogas production. A significant intensification of the fermentation process was observed in the systems operating in the technical scale, with the greatest increase in biogas production reaching 18%. The secondary, but highly significant for the energetic balance, effect is a tangible decrease of energy input by agitators in tanks. It is due to reduced viscosity of the biomass after disintegration, and may result in energy savings reaching even 20-30% of the earlier noted consumption. Other observed phenomena include reduction in the layer of surface scum, reduced sewage capability for foaming and successive decrease in the quantity of bottom sludge banks. Considering the above, the system for electrokinetic disintegration seems a very interesting and valuable solutions meeting the offer of specialist equipment for the processing of plant biomass, including Virginia fanpetals, before the process of methane fermentation.

Keywords: electrokinetic disintegration, biomass, biogas production, fermentation, Virginia fanpetals

Procedia PDF Downloads 329
18 GC-MS-Based Untargeted Metabolomics to Study the Metabolism of Pectobacterium Strains

Authors: Magdalena Smoktunowicz, Renata Wawrzyniak, Malgorzata Waleron, Krzysztof Waleron

Abstract:

Pectobacterium spp. were previously classified into the Erwinia genus founded in 1917 to unite at that time all Gram-negative, fermentative, nonsporulating and peritrichous flagellated plant pathogenic bacteria. After work of Waldee (1945), on Approved Lists of Bacterial Names and bacteriology manuals in 1980, they were described either under the species named Erwinia or Pectobacterium. The Pectobacterium genus was formally described in 1998 of 265 Pectobacterium strains. Currently, there are 21 species of Pectobacterium bacteria, including Pectobacterium betavasculorum since 2003, which caused soft rot on sugar beet tubers. Based on the biochemical experiments carried out for this, it is known that these bacteria are gram-negative, catalase-positive, oxidase-negative, facultatively anaerobic, using gelatin and causing symptoms of soft rot on potato and sugar beet tubers. The mere fact of growing on sugar beet may indicate a metabolism characteristic only for this species. Metabolomics, broadly defined as the biology of the metabolic systems, which allows to make comprehensive measurements of metabolites. Metabolomics, in combination with genomics, are complementary tools for the identification of metabolites and their reactions, and thus for the reconstruction of metabolic networks. The aim of this study was to apply the GC-MS-based untargeted metabolomics to study the metabolism of P. betavasculorum in different growing conditions. The metabolomic profiles of biomass and biomass media were determined. For sample preparation the following protocol was used: extraction with 900 µl of methanol: chloroform: water mixture (10: 3: 1, v: v) were added to 900 µl of biomass from the bottom of the tube and up to 900 µl of nutrient medium from the bacterial biomass. After centrifugation (13,000 x g, 15 min, 4oC), 300µL of the obtained supernatants were concentrated by rotary vacuum and evaporated to dryness. Afterwards, two-step derivatization procedure was performed before GC-MS analyses. The obtained results were subjected to statistical calculations with the use of both uni- and multivariate tests. The obtained results were evaluated using KEGG database, to asses which metabolic pathways are activated and which genes are responsible for it, during the metabolism of given substrates contained in the growing environment. The observed metabolic changes, combined with biochemical and physiological tests, may enable pathway discovery, regulatory inference and understanding of the homeostatic abilities of P. betavasculorum.

Keywords: GC-MS chromatograpfy, metabolomics, metabolism, pectobacterium strains, pectobacterium betavasculorum

Procedia PDF Downloads 41
17 Safety Climate Assessment and Its Impact on the Productivity of Construction Enterprises

Authors: Krzysztof J. Czarnocki, F. Silveira, E. Czarnocka, K. Szaniawska

Abstract:

Research background: Problems related to the occupational health and decreasing level of safety occur commonly in the construction industry. Important factor in the occupational safety in construction industry is scaffold use. All scaffolds used in construction, renovation, and demolition shall be erected, dismantled and maintained in accordance with safety procedure. Increasing demand for new construction projects unfortunately still is linked to high level of occupational accidents. Therefore, it is crucial to implement concrete actions while dealing with scaffolds and risk assessment in construction industry, the way on doing assessment and liability of assessment is critical for both construction workers and regulatory framework. Unfortunately, professionals, who tend to rely heavily on their own experience and knowledge when taking decisions regarding risk assessment, may show lack of reliability in checking the results of decisions taken. Purpose of the article: The aim was to indicate crucial parameters that could be modeling with Risk Assessment Model (RAM) use for improving both building enterprise productivity and/or developing potential and safety climate. The developed RAM could be a benefit for predicting high-risk construction activities and thus preventing accidents occurred based on a set of historical accident data. Methodology/Methods: A RAM has been developed for assessing risk levels as various construction process stages with various work trades impacting different spheres of enterprise activity. This project includes research carried out by teams of researchers on over 60 construction sites in Poland and Portugal, under which over 450 individual research cycles were carried out. The conducted research trials included variable conditions of employee exposure to harmful physical and chemical factors, variable levels of stress of employees and differences in behaviors and habits of staff. Genetic modeling tool has been used for developing the RAM. Findings and value added: Common types of trades, accidents, and accident causes have been explored, in addition to suitable risk assessment methods and criteria. We have found that the initial worker stress level is more direct predictor for developing the unsafe chain leading to the accident rather than the workload, or concentration of harmful factors at the workplace or even training frequency and management involvement.

Keywords: safety climate, occupational health, civil engineering, productivity

Procedia PDF Downloads 285
16 Human Factors as the Main Reason of the Accident in Scaffold Use Assessment

Authors: Krzysztof J. Czarnocki, E. Czarnocka, K. Szaniawska

Abstract:

Main goal of the research project is Scaffold Use Risk Assessment Model (SURAM) formulation, developed for the assessment of risk levels as a various construction process stages with various work trades. Finally, in 2016, the project received financing by the National Center for Research and development according to PBS3/A2/19/2015–Research Grant. The presented data, calculations and analyzes discussed in this paper were created as a result of the completion on the first and second phase of the PBS3/A2/19/2015 project. Method: One of the arms of the research project is the assessment of worker visual concentration on the sight zones as well as risky visual point inadequate observation. In this part of research, the mobile eye-tracker was used to monitor the worker observation zones. SMI Eye Tracking Glasses is a tool, which allows us to analyze in real time and place where our eyesight is concentrated on and consequently build the map of worker's eyesight concentration during a shift. While the project is still running, currently 64 construction sites have been examined, and more than 600 workers took part in the experiment including monitoring of typical parameters of the work regimen, workload, microclimate, sound vibration, etc. Full equipment can also be useful in more advanced analyses. Because of that technology we have verified not only main focus of workers eyes during work on or next to scaffolding, but we have also examined which changes in the surrounding environment during their shift influenced their concentration. In the result of this study it has been proven that only up to 45.75% of the shift time, workers’ eye concentration was on one of three work-related areas. Workers seem to be distracted by noisy vehicles or people nearby. In opposite to our initial assumptions and other authors’ findings, we observed that the reflective parts of the scaffoldings were not more recognized by workers in their direct workplaces. We have noticed that the red curbs were the only well recognized part on a very few scaffoldings. Surprisingly on numbers of samples, we have not recognized any significant number of concentrations on those curbs. Conclusion: We have found the eye-tracking method useful for the construction of the SURAM model in the risk perception and worker’s behavior sub-modules. We also have found that the initial worker's stress and work visual conditions seem to be more predictive for assessment of the risky developing situation or an accident than other parameters relating to a work environment.

Keywords: accident assessment model, eye tracking, occupational safety, scaffolding

Procedia PDF Downloads 172
15 The Impact of Undisturbed Flow Speed on the Correlation of Aerodynamic Coefficients as a Function of the Angle of Attack for the Gyroplane Body

Authors: Zbigniew Czyz, Krzysztof Skiba, Miroslaw Wendeker

Abstract:

This paper discusses the results of aerodynamic investigation of the Tajfun gyroplane body designed by a Polish company, Aviation Artur Trendak. This gyroplane has been studied as a 1:8 scale model. Scaling objects for aerodynamic investigation is an inherent procedure in any kind of designing. If scaling, the criteria of similarity need to be satisfied. The basic criteria of similarity are geometric, kinematic and dynamic. Despite the results of aerodynamic research are often reduced to aerodynamic coefficients, one should pay attention to how values of coefficients behave if certain criteria are to be satisfied. To satisfy the dynamic criterion, for example, the Reynolds number should be focused on. This is the correlation of inertial to viscous forces. With the multiplied flow speed by the specific dimension as a numerator (with a constant kinematic viscosity coefficient), flow speed in a wind tunnel research should be increased as many times as an object is decreased. The aerodynamic coefficients specified in this research depend on the real forces that act on an object, its specific dimension, medium speed and variations in its density. Rapid prototyping with a 3D printer was applied to create the research object. The research was performed with a T-1 low-speed wind tunnel (its diameter of the measurement volume is 1.5 m) and a six-element aerodynamic internal scales, WDP1, at the Institute of Aviation in Warsaw. This T-1 wind tunnel is low-speed continuous operation with open space measurement. The research covered a number of the selected speeds of undisturbed flow, i.e. V = 20, 30 and 40 m/s, corresponding to the Reynolds numbers (as referred to 1 m) Re = 1.31∙106, 1.96∙106, 2.62∙106 for the angles of attack ranging -15° ≤ α ≤ 20°. Our research resulted in basic aerodynamic characteristics and observing the impact of undisturbed flow speed on the correlation of aerodynamic coefficients as a function of the angle of attack of the gyroplane body. If the speed of undisturbed flow in the wind tunnel changes, the aerodynamic coefficients are significantly impacted. At speed from 20 m/s to 30 m/s, drag coefficient, Cx, changes by 2.4% up to 9.9%, whereas lift coefficient, Cz, changes by -25.5% up to 15.7% if the angle of attack of 0° excluded or by -25.5% up to 236.9% if the angle of attack of 0° included. Within the same speed range, the coefficient of a pitching moment, Cmy, changes by -21.1% up to 7.3% if the angles of attack -15° and -10° excluded or by -142.8% up to 618.4% if the angle of attack -15° and -10° included. These discrepancies in the coefficients of aerodynamic forces definitely need to consider while designing the aircraft. For example, if load of certain aircraft surfaces is calculated, additional correction factors definitely need to be applied. This study allows us to estimate the discrepancies in the aerodynamic forces while scaling the aircraft. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: aerodynamics, criteria of similarity, gyroplane, research tunnel

Procedia PDF Downloads 366
14 First Documented Anesthesia with Use of Low Doses of Tiletamine-Zolazepam Combination in Ovoviparous Amazon Tree Boa Undergoing Emergency Coeliotomy-Case Report

Authors: Krzysztof Buczak, Sonia Lachowska, Pawel Kucharski, Agnieszka Antonczyk

Abstract:

Tiletamine - zolazepam combination is increasingly used in veterinary anaesthesiology in wild animals, including snakes. The available literature shows a lack of information about anesthesia in this mixture in ovoviviparous snakes. The studies show the possibility of using the combination at a dose of 20 mg/kg or more for snake immobilization. This paper presents an anesthetic protocol with the use of a combination of tiletamine - zolazepam at the dose of 10 mg/kg intramuscularly and maintenance with inhalant anesthesia with isoflurane in pure oxygen. The objective of this study was to evaluate the usefulness of the anesthetic protocol to proceed with coeliotomy in Amazon Tree Boa. The patient was a five years old bicolor female Amazon Tree Boa (Corallus hortulanus) with dystocia. The clinical examination reveals significant emaciation (bodyweight 520g), high degree of dehydration, heart rate (HR = 60 / min), pale mucous membranes and poor reactivity. Meloxicam (1 mg/kg) and tramadol (10 mg/kg) were administered subcutaneously and the patient was placed in an incubator with access to fresh oxygen. Four hours later, the combination of tiletamine - zolazepam (10 mg/kg) was administered intramuscularly for induction of anesthesia. The snake was intubated and connected to inhalant anesthesia equipment. For maintenance, the anesthesia isoflurane in pure oxygen was used due to apnea, which occurs 30 minutes after the induction semi-closed system was attached and the ventilator was turned on (PCV system, four breaths per minute, 8 cm of H2O). Cardiopulmonary parameters (HR, RR, SPO2, ETCO2, ETISO) were assessed throughout the procedure. During the entire procedure, the operating room was heated to a temperature of 26 degrees Celsius. Additionally, the hose was placed on a heating mat, which maintained a temperature of 30 degrees Celsius. For 15 minutes after induction, the loss of muscle tone was observed from the head to the tail. Induction of general anesthesia was scored as good because of the possibility of intubation. During the whole procedure, the heart rate was at the rate of 58 beats per minute (bpm). Ventilation parameters were stable throughout the procedure. The recovery period lasts for about 4 hours after the end of general anesthesia. The muscle tension returned from tail to head. The snake started to breathe spontaneously within 1,5 hours after the end of general anesthesia. The protocol of general anesthesia with the combination of tiletamine- zolazepam with a dose of 10 mg/kg is useful for proceeding with the emergency coeliotomy in maintenance with isoflurane in oxygen. Further study about the impact of the combination of tiletamine- zolazepam for the recovery period is needed.

Keywords: anesthesia, corallus hortulanus, ovoviparous, snake, tiletamine, zolazepam

Procedia PDF Downloads 209
13 Computational Fluid Dynamics (CFD) Calculations of the Wind Turbine with an Adjustable Working Surface

Authors: Zdzislaw Kaminski, Zbigniew Czyz, Krzysztof Skiba

Abstract:

This paper discusses the CFD simulation of a flow around a rotor of a Vertical Axis Wind Turbine. Numerical simulation, unlike experiments, enables us to validate project assumptions when it is designed and avoid a costly preparation of a model or a prototype for a bench test. CFD simulation enables us to compare characteristics of aerodynamic forces acting on rotor working surfaces and define operational parameters like torque or power generated by a turbine assembly. This research focused on the rotor with the blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on adjusting angular aperture α of the top and bottom parts of the blades mounted on an axis. If this angular aperture α increases, the working surface which absorbs wind kinetic energy also increases. The operation of turbines is characterized by parameters like the angular aperture of blades, power, torque, speed for a given wind speed. These parameters have an impact on the efficiency of assemblies. The distribution of forces acting on the working surfaces in our turbine changes according to the angular velocity of the rotor. Moreover, the resultant force from the force acting on an advancing blade and retreating blade should be as high as possible. This paper is part of the research to improve an efficiency of a rotor assembly. Therefore, using simulation, the courses of the above parameters were studied in three full rotations individually for each of the blades for three angular apertures of blade working surfaces, i.e. 30 °, 60 °, 90 °, at three wind speeds, i.e. 4 m / s, 6 m / s, 8 m / s and rotor speeds ranging from 100 to 500 rpm. Finally, there were created the characteristics of torque coefficients and power as a function of time for each blade separately and for the entire rotor. Accordingly, the correlation between the turbine rotor power as a function of wind speed for varied values of rotor rotational speed. By processing this data, the correlation between the power of the turbine rotor and its rotational speed for each of the angular aperture of the working surfaces was specified. Finally, the optimal values, i.e. of the highest output power for given wind speeds were read. The research results in receiving the basic characteristics of turbine rotor power as a function of wind speed for the three angular apertures of the blades. Given the nature of rotor operation, the growth in the output turbine can be estimated if angular aperture of the blades increases. The controlled adjustment of angle α enables a smooth adjustment of power generated by a turbine rotor. If wind speed is significant, this type of adjustment enables this output power to remain at the same level (by reducing angle α) with no risk of damaging a construction. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: computational fluid dynamics, numerical analysis, renewable energy, wind turbine

Procedia PDF Downloads 182
12 Expression of Selected miRNAs in Placenta of the Intrauterine Restricted Growth Fetuses in Cattle

Authors: Karolina Rutkowska, Hubert Pausch, Jolanta Oprzadek, Krzysztof Flisikowski

Abstract:

The placenta is one of the most important organs that plays a crucial role in the fetal growth and development. Placenta dysfunction is one of the primary cause of the intrauterine growth restriction (IUGR). Cattle have the cotyledonary placenta which consists of two anatomical parts: fetal and maternal. In the case of cattle during the first months of pregnancy, it is very easy to separate maternal caruncle from fetal cotyledon tissue, easier in fact than removing an ordinary glove from one's hand. Which in fact make easier to conduct tissue-specific molecular studies. Typically, animal models for the study of IUGR are created using surgical methods and malnutrition of the pregnant mother or in the case of mice by genetic modifications. However, proposed cattle model with MIMT1Del/WT deletion is unique because it was created without any surgical methods what significantly distinguish it from the other animal models. The primary objective of the study was to identify differential expression of selected miRNAs in the placenta from normal and intrauterine growth restricted fetuses. There was examined the expression of miRNA in the fetal and maternal part of the placenta from 24 fetuses (12 samples from the fetal part of the placenta and 12 samples from maternal part of the placenta). In the study, there was done miRNAs sequencing in the placenta of MIMT1Del/WT fetuses and MIMT1WT/WT fetuses. Then, there were selected miRNAs that are involved in fetal growth and development. Analysis of miRNAs expression was conducted on ABI7500 machine. miRNAs expression was analyzed by reverse-transcription polymerase chain reaction (RT-PCR). As the reference gene was used SNORD47. The results were expressed as 2ΔΔCt: ΔΔCt = (Ctij − CtSNORD47j) − (Cti1 − CtSNORD471). Where Ctij and CtSNORD47j are the Ct values for gene i and for SNORD47 in a sample (named j); Cti1 and CtSNORD471 are the Ct values in sample 1. Differences between groups were evaluated with analysis of variance by using One-Way ANOVA. Bonferroni’s tests were used for interpretation of the data. All normalised miRNA expression values are expressed on a value of natural logarithm. The data were expressed as least squares mean with standard errors. Significance was declared when P < 0.05. The study shows that miRNAs expression depends on the part of the placenta where they origin (fetal or maternal) and on the genotype of the animal. miRNAs offer a particularly new approach to study IUGR. Corresponding tissue samples were collected according to the standard veterinary protocols according to the European Union Normative for Care and Use of Experimental Animals. All animal experiments were approved by the Animal Ethics Committee of the State Provincial Office of Southern Finland (ESAVI-2010-08583/YM-23).

Keywords: placenta, intrauterine growth restriction, miRNA, cattle

Procedia PDF Downloads 288