Search results for: compact urban design
12753 The Design of Safe Spaces in Healthcare Facilities Vulnerable to Tornado Impact in Central US
Authors: Lucy Ampaw-Asiedu, Terri R. Norton
Abstract:
In the wake of recent disasters happening around the world such as earthquake in Italy (January, 2017); hurricanes in the United States (US) (September 2016 and September 2017); and compounding disasters in Haiti (September 2010 and September 2016); to our best knowledge, never has the world seen the need to work on preemptive rather than reactionary measures to salvage this situation than now. Tornadoes are natural hazards that mostly affect mid-western and central states in the US. Tornadoes, like all natural hazards such as hurricanes, earthquakes, floods and others, are very destructive and result in massive destruction to homes, cause billions of dollars in damage and claims many lives. Healthcare facilities in general are vulnerable to disasters, and therefore, the safety of patients, health workers and those who come in to seek shelter should be a priority. The focus of this study is to assess disaster management measures instituted by healthcare facilities. Thus, the sole aim of the study is to examine the vulnerabilities and the design of safe spaces in healthcare facilities in Central US. Objectives that guide the study are to primarily identify the impacts of tornadoes in hospitals and to assess the structural design or specifications of safe spaces. St. John’s Regional Medical Center, now Mercy Hospital in Joplin, is used as a case study. Preliminary results show that the lateral base shear of the proposed design to be 684.24 ton (1508.49kip) for the safe space. Findings from this work will be used to make recommendations about the design of safe spaces for health care facilities in Central US.Keywords: disaster management, safe spaces, structural design, tornado, vulnerability
Procedia PDF Downloads 21512752 An Experimental Study on Greywater Reuse for Irrigating a Green Wall System
Authors: Mishadi Herath, Amin Talei, Andreas Hermawan, Clarina Chua
Abstract:
Green walls are vegetated structures on building’s wall that are considered as part of sustainable urban design. They are proved to have many micro-climate benefits such as reduction in indoor temperature, noise attenuation, and improvement in air quality. On the other hand, several studies have also been conducted on potential reuse of greywater in urban water management. Greywater is relatively clean when compared to blackwater; therefore, this study was aimed to assess the potential reuse of it for irrigating a green wall system. In this study, the campus of Monash University Malaysia located in Selangor state was considered as the study site where total 48 samples of greywater were collected from 7 toilets hand-wash and 5 pantries during 3 months period. The samples were tested to characterize the quality of greywater in the study site and compare it with local standard for irrigation water. PH and concentration of heavy metals, nutrients, Total Suspended Solids (TSS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), total Coliform and E.coli were measured. Results showed that greywater could be directly used for irrigation with minimal treatment. Since the effluent of the system was supposed to be drained to stormwater drainage system, the effluent needed to meet certain quality requirement. Therefore, a biofiltration system was proposed to host the green wall plants and also treat the greywater (which is used as irrigation water) to the required level. To assess the performance of the proposed system, an experimental setup consisting of Polyvinyl Chloride (PVC) soil columns with sand-based filter media were prepared. Two different local creeper plants were chosen considering several factors including fast growth, low maintenance requirement, and aesthetic aspects. Three replicates of each plants were used to ensure the validity of the findings. The growth of creeping plants and their survivability was monitored for 6 months while monthly sampling and testing of effluent was conducted to evaluate effluent quality. An analysis was also conducted to estimate the potential cost and benefit of such system considering water and energy saving in the system. Results showed that the proposed system can work efficiently throughout a long period of time with minimal maintenance requirement. Moreover, the biofiltration-green wall system was found to be successful in reusing greywater as irrigating water while the effluent was meeting all the requirements for being drained to stormwater drainage system.Keywords: biofiltration, green wall, greywater, sustainability
Procedia PDF Downloads 21412751 Impression Evaluation by Design Change of Anthropomorphic Agent
Authors: Kazuko Sakamoto
Abstract:
Anthropomorphic agents have been successful in areas where there are many human interactions, such as education and medical care. The persuasive effect is also expected in e-shopping sites on the web. This indicates that customer service is not necessarily human but can play that role. However, the 'humanity' in anthropomorphism sometimes has a risk of working negatively. In general, as the appearance of anthropomorphic agents approaches humans, it is thought that their affinity with humans increases. However, when the degree of similarity reaches a certain level, it gives the user a weird feeling. This is the 'eerie valley' phenomenon. This is a concept used in the world of robotics, but it seems to be applicable to anthropomorphic agents such as characters. Then what kind of design can you accept as an anthropomorphic agent that gives you a feeling of friendliness or good feeling without causing discomfort or fear to people? This study focused on this point and examined what design and characteristics would be effective for marketing communication. As a result of the investigation, it was found that there is no need for gaze and blinking, the size of the eyes is normal or large, and the impression evaluation is higher when the structure is as simple as possible. Conversely, agents with high eye-gaze and white-eye ratios had low evaluations, and the negative impact on eye-gaze was particularly large.Keywords: anthropomorphicgents, design evaluation, marketing communication, customer service
Procedia PDF Downloads 11312750 Change in Food Choice Behavior: Trend and Challenges
Authors: Gargi S. Kumar, Mrinmoyi Kulkarni
Abstract:
Food choice behavior is complex and determined by biological, psychological, socio-cultural, and economic factors. The past two decades, have seen dramatic changes in food consumption patterns among urban Indian consumers. The objective of the current study was to evaluate perceptions about changes with respect to food choice behavior. Ten participants [urban men and women] ranging in age from 40 to 65 were selected and in-depth interviews were conducted with a set of open ended questions. The recorded interviews were transcribed and thematically analyzed using inductive, open and axial coding. The results identified themes that act as drivers and consequences of change in food choice behavior. Drivers such as globalization [sub themes of urbanization, education, income, and work environment], media and advertising, changing gender roles, women in the workforce, and change in family structure have influenced food choice, both at an individual and national level. The consequences of changes in food choice were health implications, processed food consumption, food decisions driven by children and eating out among others. The study reveals that, over time, food choices change and evolve. However it is interesting to note how market forces and culture interact to influence individual behavior and the overall food environment which subsequently affects food choice and the health of the people.Keywords: change, consequences, drivers, food choice, globalization
Procedia PDF Downloads 22912749 Flexible Design Solutions for Complex Free form Geometries Aimed to Optimize Performances and Resources Consumption
Authors: Vlad Andrei Raducanu, Mariana Lucia Angelescu, Ion Cinca, Vasile Danut Cojocaru, Doina Raducanu
Abstract:
By using smart digital tools, such as generative design (GD) and digital fabrication (DF), problems of high actuality concerning resources optimization (materials, energy, time) can be solved and applications or products of free-form type can be created. In the new digital technology materials are active, designed in response to a set of performance requirements, which impose a total rethinking of old material practices. The article presents the design procedure key steps of a free-form architectural object - a column type one with connections to get an adaptive 3D surface, by using the parametric design methodology and by exploiting the properties of conventional metallic materials. In parametric design the form of the created object or space is shaped by varying the parameters values and relationships between the forms are described by mathematical equations. Digital parametric design is based on specific procedures, as shape grammars, Lindenmayer - systems, cellular automata, genetic algorithms or swarm intelligence, each of these procedures having limitations which make them applicable only in certain cases. In the paper the design process stages and the shape grammar type algorithm are presented. The generative design process relies on two basic principles: the modeling principle and the generative principle. The generative method is based on a form finding process, by creating many 3D spatial forms, using an algorithm conceived in order to apply its generating logic onto different input geometry. Once the algorithm is realized, it can be applied repeatedly to generate the geometry for a number of different input surfaces. The generated configurations are then analyzed through a technical or aesthetic selection criterion and finally the optimal solution is selected. Endless range of generative capacity of codes and algorithms used in digital design offers various conceptual possibilities and optimal solutions for both technical and environmental increasing demands of building industry and architecture. Constructions or spaces generated by parametric design can be specifically tuned, in order to meet certain technical or aesthetical requirements. The proposed approach has direct applicability in sustainable architecture, offering important potential economic advantages, a flexible design (which can be changed until the end of the design process) and unique geometric models of high performance.Keywords: parametric design, algorithmic procedures, free-form architectural object, sustainable architecture
Procedia PDF Downloads 37712748 Construction and Analysis of Partially Balanced Sudoku Design of Prime Order
Authors: Abubakar Danbaba
Abstract:
Sudoku squares have been widely used to design an experiment where each treatment occurs exactly once in each row, column or sub-block. For some experiments, the size of row (or column or sub-block) may be larger than the number of treatments. Since each treatment appears only once in each row (column or sub-block) with an additional empty cell such designs are partially balanced Sudoku designs (PBSD) with NP-complete structures. This paper proposed methods for constructing PBSD of prime order of treatments by a modified Kronecker product and swap of matrix row (or column) in cyclic order. In addition, linear model and procedure for the analysis of data for PBSD are proposed.Keywords: sudoku design, partial sudoku, NP-complete, Kronecker product, row and column swap
Procedia PDF Downloads 27212747 Design of Electric Ship Charging Station Considering Renewable Energy and Storage Systems
Authors: Jun Yuan
Abstract:
Shipping is a major transportation mode all over the world, and it has a significant contribution to global carbon emissions. Electrification of ships is one of the main strategies to reduce shipping carbon emissions. The number of electric ships has continued to grow in recent years. However, charging infrastructure is still scarce, which severely restricts the development of electric ships. Therefore, it is very important to design ship charging stations reasonably by comprehensively considering charging demand and investment costs. This study aims to minimize the full life cycle cost of charging stations, considering the uncertainty of charging demand. A mixed integer programming model is developed for this optimization problem. Based on the characteristics of the mathematical model, a simulation based optimization method is proposed to find the optimal number and rated power of chargers. In addition, the impact of renewable energy and storage systems is analyzed. The results can provide decision support and a reference basis for the design of ship charging stations.Keywords: shipping emission, electricity ship, charging station, optimal design
Procedia PDF Downloads 6212746 A New Evolutionary Algorithm for Multi-Objective Cylindrical Spur Gear Design Optimization
Authors: Hammoudi Abderazek
Abstract:
The present paper introduces a modified adaptive mixed differential evolution (MAMDE) to select the main geometry parameters of specific cylindrical spur gear. The developed algorithm used the self-adaptive mechanism in order to update the values of mutation and crossover factors. The feasibility rules are used in the selection phase to improve the search exploration of MAMDE. Moreover, the elitism is performed to keep the best individual found in each generation. For the constraints handling the normalization method is used to treat each constraint design equally. The finite element analysis is used to confirm the optimization results for the maximum bending resistance. The simulation results reached in this paper indicate clearly that the proposed algorithm is very competitive in precision gear design optimization.Keywords: evolutionary algorithm, spur gear, tooth profile, meta-heuristics
Procedia PDF Downloads 13112745 Detectability Analysis of Typical Aerial Targets from Space-Based Platforms
Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu
Abstract:
In order to achieve effective detection of aerial targets over long distances from space-based platforms, the mechanism of interaction between the radiation characteristics of the aerial targets and the complex scene environment including the sunlight conditions, underlying surfaces and the atmosphere are analyzed. A large simulated database of space-based radiance images is constructed considering several typical aerial targets, target working modes (flight velocity and altitude), illumination and observation angles, background types (cloud, ocean, and urban areas) and sensor spectrums ranging from visible to thermal infrared. The target detectability is characterized by the signal-to-clutter ratio (SCR) extracted from the images. The influence laws of the target detectability are discussed under different detection bands and instantaneous fields of view (IFOV). Furthermore, the optimal center wavelengths and widths of the detection bands are suggested, and the minimum IFOV requirements are proposed. The research can provide theoretical support and scientific guidance for the design of space-based detection systems and on-board information processing algorithms.Keywords: space-based detection, aerial targets, detectability analysis, scene environment
Procedia PDF Downloads 14412744 Causes and Implications of Obesity in Urban School Going Children
Authors: Mohammad Amjad, Muhammad Iqbal Zafar, Ashfaq Ahmed Maan, Muhammad Tayyab Kashif
Abstract:
Obesity is an abnormal physical condition where an increased and undesirable fat accumulates in the human body. Obesity is an international phenomenon. In the present study, 12 schools were randomly selected from each district considering the areas i.e. Elite Private Schools in the private sector, Government schools in urban areas and Government schools in rural areas. Interviews were conducted with male students studying in grade 5 to grade 9 in each school. The sample size was 600 students; 300 from Faisalabad district and 300 from Rawalpindi district in Pakistan. A well-structured and pre-tested questionnaire was used for data collection. The calibrated scales were used to attain the heights and weights of the respondents. Obesity of school-going children depends on family types, family size, family history, junk food consumption, mother’s education, weekly time spent in walking, and sports facility at school levels. Academic performance, physical health and psychological health of school going children are affected with obesity. Concrete steps and policies could minimize the incidence of obesity in children in Pakistan.Keywords: body mass index, cardiovascular disease, fast food, morbidity, overweight
Procedia PDF Downloads 18412743 Self-Organization-Based Approach for Embedded Real-Time System Design
Authors: S. S. Bendib, L. W. Mouss, S. Kalla
Abstract:
This paper proposes a self-organization-based approach for real-time systems design. The addressed issue is the mapping of an application onto an architecture of heterogeneous processors while optimizing both makespan and reliability. Since this problem is NP-hard, a heuristic algorithm is used to obtain efficiently approximate solutions. The proposed approach takes into consideration the quality as well as the diversity of solutions. Indeed, an alternate treatment of the two objectives allows to produce solutions of good quality while a self-organization approach based on the neighborhood structure is used to reorganize solutions and consequently to enhance their diversity. Produced solutions make different compromises between the makespan and the reliability giving the user the possibility to select the solution suited to his (her) needs.Keywords: embedded real-time systems design, makespan, reliability, self-organization, compromises
Procedia PDF Downloads 13412742 Development of Swing Valve for Gasoline Turbocharger Using Hybrid Metal Injection Molding
Authors: B. S. So, Y. H. Yoon, J. O. Jung, K. S. Bae
Abstract:
Metal Injection Molding (MIM) is a technology that combines powder metallurgy and injection molding. Particularly, it is widely applied to the manufacture of precision mobile parts and automobile turbocharger parts because compact precision parts with complicated three-dimensional shapes that are difficult to machining are formed into a large number of finished products. The swing valve is a valve that adjusts the boost pressure of the turbocharger. Since the head portion is exposed to the harsh temperature condition of about 900 degrees in the gasoline GDI engine, it is necessary to use Inconel material with excellent heat resistance and abrasion resistance, resulting in high manufacturing cost. In this study, we developed a swing valve using a metal powder injection molding based hybrid material (Inconel 713C material with heat resistance is applied to the head part, and HK30 material with low price is applied to the rest of the body part). For this purpose, the process conditions of the metal injection molding were optimized to minimize the internal defects, and the effectiveness was confirmed by the fracture strength and fatigue test.Keywords: hybrid metal injection molding, swing valve, turbocharger, double injection
Procedia PDF Downloads 21312741 Optimising Apparel Digital Production in Industrial Clusters
Authors: Minji Seo
Abstract:
Fashion stakeholders are becoming increasingly aware of technological innovation in manufacturing. In 2020, the COVID-19 pandemic caused transformations in working patterns, such as working remotely rather thancommuting. To enable smooth remote working, 3D fashion design software is being adoptedas the latest trend in design and production. The majority of fashion designers, however, are still resistantto this change. Previous studies on 3D fashion design software solely highlighted the beneficial and detrimental factors of adopting design innovations. They lacked research on the relationship between resistance factors and the adoption of innovation. These studies also fell short of exploringthe perspectives of users of these innovations. This paper aims to investigate the key drivers and barriers of employing 3D fashion design software as wellas to explore the challenges faced by designers.It also toucheson the governmental support for digital manufacturing in Seoul, South Korea, and London, the United Kingdom. By conceptualising local support, this study aims to provide a new path for industrial clusters to optimise digital apparel manufacturing. The study uses a mixture of quantitative and qualitative approaches. Initially, it reflects a survey of 350 samples, fashion designers, on innovation resistance factors of 3D fashion design software and the effectiveness of local support. In-depth interviews with 30 participants provide a better understanding of designers’ aspects of the benefits and obstacles of employing 3D fashion design software. The key findings of this research are the main barriers to employing 3D fashion design software in fashion production. The cultural characteristics and interviews resultsare used to interpret the survey results. The findings of quantitative data examine the main resistance factors to adopting design innovations. The dominant obstacles are: the cost of software and its complexity; lack of customers’ interest in innovation; lack of qualified personnel, and lack of knowledge. The main difference between Seoul and London is the attitudes towards government support. Compared to the UK’s fashion designers, South Korean designers emphasise that government support is highly relevant to employing 3D fashion design software. The top-down and bottom-up policy implementation approach distinguishes the perception of government support. Compared to top-down policy approaches in South Korea, British fashion designers based on employing bottom-up approaches are reluctant to receive government support. The findings of this research will contribute to generating solutions for local government and the optimisation of use of 3D fashion design software in fashion industrial clusters.Keywords: digital apparel production, industrial clusters, innovation resistance, 3D fashion design software, manufacturing, innovation, technology, digital manufacturing, innovative fashion design process
Procedia PDF Downloads 10212740 Contribution to the Development of a New Design of Dentist's Gowns: A Case Study of Using Infra-Red Technology and Pressure Sensors
Authors: Tran Thi Anh Dao, M. Arnold, L. Schacher, D. C. Adolphe, G. Reys
Abstract:
During tooth extraction or implant surgery, dentists are in contact with numerous infectious germs from patients' saliva and blood. For that reason, dentist's clothes have to play their role of protection from contamination. In addition, dentist's apparels should be not only protective but also comfortable and breathable because dentists have to perform many operations and treatments on patients throughout the day with high concentration and intensity. However, this type of protective garments has not been studied scientifically, whereas dentists are facing new risks and eager for looking for a comfortable personal protective equipment. For that reason, we have proposed some new designs of dentist's gown. They were expected to diminish heat accumulation that are considered as an important factor in reducing the level of comfort experienced by users. Experiments using infra-red technology were carried out in order to compare the breathable properties between a traditional gown and a new design with open zones. Another experiment using pressure sensors was also carried out to study ergonomic aspects trough the flexibility of movements of sleeves. The sleeves-design which is considered comfortable and flexible will be chosen for the further step. The results from the two experiments provide valuable information for the development of a new design of dentists' gowns in order to achieve maximum levels of cooling and comfort for the human body.Keywords: garment, dentists, comfort, design, protection, thermal
Procedia PDF Downloads 22012739 Design and Development of Constant Stress Composite Cantilever Beam
Authors: Vinod B. Suryawanshi, Ajit D. Kelkar
Abstract:
Glass fiber reinforced composites materials, due their unique properties such as high mechanical strength to weight ratio, corrosion resistance, and impact resistance have huge potential as structural materials in automotive, construction and transportation applications. However, these properties often come at higher cost owing to complex design methods, difficult manufacturing processes and raw material cost. In this paper, a cost effective design and manufacturing approach for a composite cantilever beam structure is presented. A constant stress (variable cross section) beam concept has been used to design and optimize the shape of composite cantilever beam and thus obtain the reduction in material used. The variable cross section beam was fabricated from the glass epoxy prepregs using cost effective out of autoclave process. The drop ply technique has been successfully used to obtain the variation in the cross section along the span of the beam. In order to test the beam and validate the design, the beam was subjected to different end loads. Strain gauges were mounted along the length of the beam to obtain strains in the beam at different sections and loads. The strain values were used to calculate the flexural strength and bending stresses in the beam. The stresses obtained through strain measurements from the experiment were found to be uniform along the span of the beam, and thus validates the design. Finally, the finite element model for the constant stress beam was developed using commercial finite element simulation software. It was observed that the simulation results agreed very well with the experimental results.Keywords: beams, composites, constant cross-section, structures
Procedia PDF Downloads 34912738 Reinforced Concrete Design Construction Issues and Earthquake Failure-Damage Responses
Authors: Hasan Husnu Korkmaz, Serra Zerrin Korkmaz
Abstract:
Earthquakes are the natural disasters that threat several countries. Turkey is situated on a very active earthquake zone. During the recent earthquakes, thousands of people died due to failure of reinforced concrete structures. Although Turkey has a very sufficient earthquake code, the design and construction mistakes were repeated for old structures. Lack of the control mechanism during the construction process may be the most important reason of failure. The quality of the concrete and poor detailing of steel or reinforcement is the most important headings. In this paper, the reasons of failure of reinforced concrete structures were summarized with relevant photos. The paper is beneficial for civil engineers as well as architect who are in the process of construction and design of structures in earthquake zones.Keywords: earthquake, reinforced concrete structure, failure, material
Procedia PDF Downloads 36512737 Investigation of Design Process of an Impedance Matching in the Specific Frequency for Radio Frequency Application
Authors: H. Nabaei, M. Joghataie
Abstract:
In this article, we study the design methods of matched filter with commercial software including CST Studio and ADS in specific frequency: 900 MHz. At first, we select two amounts of impedance for studying matching of them. Then, using by matched filter utility tool in ADS software, we simulate and deviate the elements of matched filters. In the following, we implement matched filter in CST STUDIO software. The simulated results show the great conformity in this field. Also, we peruse scattering and Impedance parameters in the Derivative structure. Finally, the layout of matched filter is obtained by the schematic tool of CST STUDIO. In fact, here, we present the design process of matched filters in the specific frequency.Keywords: impedance matching, lumped element, transmission line, maximum power transmission, 3D layout
Procedia PDF Downloads 50212736 Performance of Non-Deterministic Structural Optimization Algorithms Applied to a Steel Truss Structure
Authors: Ersilio Tushaj
Abstract:
The efficient solution that satisfies the optimal condition is an important issue in the structural engineering design problem. The new codes of structural design consist in design methodology that looks after the exploitation of the total resources of the construction material. In recent years some non-deterministic or meta-heuristic structural optimization algorithms have been developed widely in the research community. These methods search the optimum condition starting from the simulation of a natural phenomenon, such as survival of the fittest, the immune system, swarm intelligence or the cooling process of molten metal through annealing. Among these techniques the most known are: the genetic algorithms, simulated annealing, evolution strategies, particle swarm optimization, tabu search, ant colony optimization, harmony search and big bang crunch optimization. In this study, five of these algorithms are applied for the optimum weight design of a steel truss structure with variable geometry but fixed topology. The design process selects optimum distances and size sections from a set of commercial steel profiles. In the formulation of the design problem are considered deflection limitations, buckling and allowable stress constraints. The approach is repeated starting from different initial populations. The design problem topology is taken from an existing steel structure. The optimization process helps the engineer to achieve good final solutions, avoiding the repetitive evaluation of alternative designs in a time consuming process. The algorithms used for the application, the results of the optimal solutions, the number of iterations and the minimal weight designs, will be reported in the paper. Based on these results, it would be estimated, the amount of the steel that could be saved by applying structural analysis combined with non-deterministic optimization methods.Keywords: structural optimization, non-deterministic methods, truss structures, steel truss
Procedia PDF Downloads 23012735 Static Test Pad for Solid Rocket Motors
Authors: Svanik Garg
Abstract:
Static Test Pads are stationary mechanisms that hold a solid rocket motor, measuring the different parameters of its operation including thrust and temperature to better calibrate it for launch. This paper outlines a specific STP designed to test high powered rocket motors with a thrust upwards of 4000N and limited to 6500N. The design includes a specific portable mechanism with cost an integral part of the design process to make it accessible to small scale rocket developers with limited resources. Using curved surfaces and an ergonomic design, the STP has a delicately engineered façade/case with a focus on stability and axial calibration of thrust. This paper describes the design, operation and working of the STP and its widescale uses given the growing market of aviation enthusiasts. Simulations on the CAD model in Fusion 360 provided promising results with a safety factor of 2 established and stress limited along with the load coefficient A PCB was also designed as part of the test pad design process to help obtain results, with visual output and various virtual terminals to collect data of different parameters. The circuitry was simulated using ‘proteus’ and a special virtual interface with auditory commands was also created for accessibility and wide-scale implementation. Along with this description of the design, the paper also emphasizes the design principle behind the STP including a description of its vertical orientation to maximize thrust accuracy along with a stable base to prevent micromovements. Given the rise of students and professionals alike building high powered rockets, the STP described in this paper is an appropriate option, with limited cost, portability, accuracy, and versatility. There are two types of STP’s vertical or horizontal, the one discussed in this paper is vertical to utilize the axial component of thrust.Keywords: static test pad, rocket motor, thrust, load, circuit, avionics, drag
Procedia PDF Downloads 38012734 Studies on Lucrative Design of a Waste Heat Recovery System for Air Conditioners
Authors: Ashwin Bala, K. Panthalaraja Kumaran, S. Prithviraj, R. Pradeep, J. Udhayakumar, S. Ajith
Abstract:
In this paper, studies have been carried out for an in-house design of a waste heat recovery system for effectively utilizing the domestic air conditioner heat energy for producing hot water. Theoretical studies have been carried to optimizing the flow rate for getting maximum output with a minimum size of the heater. Critical diameter, wall thickness, and total length of the water pipeline have been estimated from the conventional heat transfer model. Several combinations of pipeline shapes viz., spiral, coil, zigzag wound through the radiator has been attempted and accordingly shape has been optimized using heat transfer analyses. The initial condition is declared based on the water flow rate and temperature. Through the parametric analytical studies we have conjectured that water flow rate, temperature difference between incoming water and radiator skin temperature, pipe material, radiator material, geometry of the water pipe viz., length, diameter, and wall thickness are having bearing on the lucrative design of a waste heat recovery system for air conditioners. Results generated through the numerical studies have been validated using an in-house waste heat recovery system for air conditioners.Keywords: air conditioner design, energy conversion system, radiator design for energy recovery systems, waste heat recovery system
Procedia PDF Downloads 35712733 Application of Multilayer Perceptron and Markov Chain Analysis Based Hybrid-Approach for Predicting and Monitoring the Pattern of LULC Using Random Forest Classification in Jhelum District, Punjab, Pakistan
Authors: Basit Aftab, Zhichao Wang, Feng Zhongke
Abstract:
Land Use and Land Cover Change (LULCC) is a critical environmental issue that has significant effects on biodiversity, ecosystem services, and climate change. This study examines the spatiotemporal dynamics of land use and land cover (LULC) across a three-decade period (1992–2022) in a district area. The goal is to support sustainable land management and urban planning by utilizing the combination of remote sensing, GIS data, and observations from Landsat satellites 5 and 8 to provide precise predictions of the trajectory of urban sprawl. In order to forecast the LULCC patterns, this study suggests a hybrid strategy that combines the Random Forest method with Multilayer Perceptron (MLP) and Markov Chain analysis. To predict the dynamics of LULC change for the year 2035, a hybrid technique based on multilayer Perceptron and Markov Chain Model Analysis (MLP-MCA) was employed. The area of developed land has increased significantly, while the amount of bare land, vegetation, and forest cover have all decreased. This is because the principal land types have changed due to population growth and economic expansion. The study also discovered that between 1998 and 2023, the built-up area increased by 468 km² as a result of the replacement of natural resources. It is estimated that 25.04% of the study area's urbanization will be increased by 2035. The performance of the model was confirmed with an overall accuracy of 90% and a kappa coefficient of around 0.89. It is important to use advanced predictive models to guide sustainable urban development strategies. It provides valuable insights for policymakers, land managers, and researchers to support sustainable land use planning, conservation efforts, and climate change mitigation strategies.Keywords: land use land cover, Markov chain model, multi-layer perceptron, random forest, sustainable land, remote sensing.
Procedia PDF Downloads 3412732 Applications Using Geographic Information System for Planning and Development of Energy Efficient and Sustainable Living for Smart-Cities
Authors: Javed Mohammed
Abstract:
As urbanization process has been and will be happening in an unprecedented scale worldwide, strong requirements from academic research and practical fields for smart management and intelligent planning of cities are pressing to handle increasing demands of infrastructure and potential risks of inhabitants agglomeration in disaster management. Geo-spatial data and Geographic Information System (GIS) are essential components for building smart cities in a basic way that maps the physical world into virtual environment as a referencing framework. On higher level, GIS has been becoming very important in smart cities on different sectors. In the digital city era, digital maps and geospatial databases have long been integrated in workflows in land management, urban planning and transportation in government. People have anticipated GIS to be more powerful not only as an archival and data management tool but also as spatial models for supporting decision-making in intelligent cities. The purpose of this project is to offer observations and analysis based on a detailed discussion of Geographic Information Systems( GIS) driven Framework towards the development of Smart and Sustainable Cities through high penetration of Renewable Energy Technologies.Keywords: digital maps, geo-spatial, geographic information system, smart cities, renewable energy, urban planning
Procedia PDF Downloads 52612731 System-Driven Design Process for Integrated Multifunctional Movable Concepts
Authors: Oliver Bertram, Leonel Akoto Chama
Abstract:
In today's civil transport aircraft, the design of flight control systems is based on the experience gained from previous aircraft configurations with a clear distinction between primary and secondary flight control functions for controlling the aircraft altitude and trajectory. Significant system improvements are now seen particularly in multifunctional moveable concepts where the flight control functions are no longer considered separate but integral. This allows new functions to be implemented in order to improve the overall aircraft performance. However, the classical design process of flight controls is sequential and insufficiently interdisciplinary. In particular, the systems discipline is involved only rudimentarily in the early phase. In many cases, the task of systems design is limited to meeting the requirements of the upstream disciplines, which may lead to integration problems later. For this reason, approaching design with an incremental development is required to reduce the risk of a complete redesign. Although the potential and the path to multifunctional moveable concepts are shown, the complete re-engineering of aircraft concepts with less classic moveable concepts is associated with a considerable risk for the design due to the lack of design methods. This represents an obstacle to major leaps in technology. This gap in state of the art is even further increased if, in the future, unconventional aircraft configurations shall be considered, where no reference data or architectures are available. This means that the use of the above-mentioned experience-based approach used for conventional configurations is limited and not applicable to the next generation of aircraft. In particular, there is a need for methods and tools for a rapid trade-off between new multifunctional flight control systems architectures. To close this gap in the state of the art, an integrated system-driven design process for multifunctional flight control systems of non-classical aircraft configurations will be presented. The overall goal of the design process is to find optimal solutions for single or combined target criteria in a fast process from the very large solution space for the flight control system. In contrast to the state of the art, all disciplines are involved for a holistic design in an integrated rather than a sequential process. To emphasize the systems discipline, this paper focuses on the methodology for designing moveable actuation systems in the context of this integrated design process of multifunctional moveables. The methodology includes different approaches for creating system architectures, component design methods as well as the necessary process outputs to evaluate the systems. An application example of a reference configuration is used to demonstrate the process and validate the results. For this, new unconventional hydraulic and electrical flight control system architectures are calculated which result from the higher requirements for multifunctional moveable concept. In addition to typical key performance indicators such as mass and required power requirements, the results regarding the feasibility and wing integration aspects of the system components are examined and discussed here. This is intended to show how the systems design can influence and drive the wing and overall aircraft design.Keywords: actuation systems, flight control surfaces, multi-functional movables, wing design process
Procedia PDF Downloads 14412730 Inhabitants’ Adaptation to the Climate's Evolutions in Cities: a Survey of City Dwellers’ Climatic Experiences’ Construction
Authors: Geraldine Molina, Malou Allagnat
Abstract:
Entry through meteorological and climatic phenomena, technical knowledge and engineering sciences has long been favored by the research and local public action to analyze the urban climate, develop strategies to reduce its changes and adapt their spaces. However, in their daily practices and sensitive experiences, city dwellers are confronted with the climate and constantly deal with its fluctuations. In this way, these actors develop knowledge, skills and tactics to regulate their comfort and adapt to climatic variations. Therefore, the empirical observation and analysis of these living experiences represent major scientific and social challenges. This contribution proposes to question these relationships of the inhabitants to urban climate. It tackles the construction of inhabitants’ climatic experiences to answer a central question: how do city dwellers’ deal with the urban climate and adapt to its different variations? Indeed, the city raises the question of how populations adapt to different spatial and temporal climatic variations. Local impacts of global climate change are combined with the urban heat island phenomenon and other microclimatic effects, as well as seasonal, daytime and night-time fluctuations. To provide answers, the presentation will be focused on the results of a CNRS research project (Géraldine Molina), part of which is linked to the European project Nature For Cities (H2020, Marjorie Musy, Scientific Director). From a theoretical point of view, the contribution is based on a renewed definition of adaptation centered on the capacity of individuals and social groups, a recently opened entry from a theoretical point of view by social scientists. The research adopts a "radical interdisciplinary" approach to shed light on the links between social dynamics of climate (inhabitants’ perceptions, representations and practices) and physical processes that characterize urban climate. To do so, it relied on a methodological combination of different survey techniques borrowed from the social sciences (geography, anthropology, sociology) and linked to the work, methodologies and results of the engineering sciences. From 2016 to 2019, a survey was carried out in two districts of Lyon whose morphological, micro-climatic and social characteristics differ greatly, namely the 6th arrondissement and the Guillotière district. To explore the construction of climate experiences over the long term by putting it into perspective with the life trajectories of individuals, 70 semi-directive interviews were conducted with inhabitants. In order to also punctually survey the climate experiments as they unfold in a given time and moment, observation and measurement campaigns of physical phenomena and questionnaires have been conducted in public spaces by an interdisciplinary research team1. The contribution at the ICUC 2020 will mainly focus on the presentation of the presentation of the qualitative survey conducted thanks to the inhabitants’ interviews.Keywords: sensitive experiences, ways of life, thermal comfort, radical interdisciplinarity
Procedia PDF Downloads 11812729 Electrical Design Review Based on BIM-MEP Model
Authors: Michael Liu, Sen-Chou Tsai, Yu-Tang Huang, Tai-Chun Lin, Guan-Chyun Hsieh
Abstract:
This study proposes an electrical review method for mechanical, electrical, and plumbing (MEP) using building information modeling (BIM). The purpose is to reliably simplify the review work, directly evaluate the layout of electrical equipment and wiring, and calculate short-circuit current and line voltage drop based on BIM-MEP models. The study was done by MIEtech Company in collaboration with Taiwan Power Company (TPC), which is basically the unit responsible for reviewing the design of electrical appliances. This study aims to simplify the review process, reduce manual review errors, and improve the timeliness and reliability of reviews. In addition, the review system provides insight into the process and correctness of the precise integration of wiring, plumbing, and electrical equipment into the building structure, improving the safety and reliability of building electricity. In addition, it can also assist electrical engineers to use BIM to enhance the accuracy and self-detection capabilities of circuit design and improve the timeliness of the design process.Keywords: mechanical, electrical and plumbing, building information modeling, electrical review method
Procedia PDF Downloads 812728 Bio-Inspired Design Approach Analysis: A Case Study of Antoni Gaudi and Santiago Calatrava
Authors: Marzieh Imani
Abstract:
Antoni Gaudi and Santiago Calatrava have reputation for designing bio-inspired creative and technical buildings. Even though they have followed different independent approaches towards design, the source of bio-inspiration seems to be common. Taking a closer look at their projects reveals that Calatrava has been influenced by Gaudi in terms of interpreting nature and applying natural principles into the design process. This research firstly discusses the dialogue between Biomimicry and architecture. This review also explores human/nature discourse during the history by focusing on how nature revealed itself to the fine arts. This is explained by introducing naturalism and romantic style in architecture as the outcome of designers’ inclination towards nature. Reviewing the literature, theoretical background and practical illustration of nature have been included. The most dominant practical aspects of imitating nature are form and function. Nature has been reflected in architectural science resulted in shaping different architectural styles such as organic, green, sustainable, bionic, and biomorphic. By defining a set of common aspects of Gaudi and Calatrava‘s design approach and by considering biomimetic design categories (organism, ecosystem, and behaviour as the main division and form, function, process, material, and construction as subdivisions), Gaudi’s and Calatrava’s project have been analysed. This analysis explores if their design approaches are equivalent or different. Based on this analysis, Gaudi’s architecture can be recognised as biomorphic while Calatrava’s projects are literally biomimetic. Referring to these architects, this review suggests a new set of principles by which a bio-inspired project can be determined either biomorphic or biomimetic.Keywords: biomimicry, Calatrava, Gaudi, nature
Procedia PDF Downloads 28812727 Conceptual Design of Unmanned Aerial Targets
Authors: M. Adamski, J. Cwiklak
Abstract:
The contemporary battlefield creates a demand for more costly and highly advanced munitions. Training personnel responsible for operations, as well as an immediate execution of combat tasks, which engage real assets, is unrealistic and economically not feasible. Owing to a wide array of exploited simulators and various types of imitators, it is possible to reduce the costs. One of the effective elements of training, which can be applied in the training of all service branches, are imitators of aerial targets. This research serves as an introduction to the commencement of design analysis over a real aerial target imitator. Within the project, the basic aerodynamic calculations were made, which enabled to determine its geometry, design layout, performance, as well as the mass balance of individual components. The conducted calculations of the parameters of flight characteristics come closer to the real performance of such unmanned aerial vehicles.Keywords: aerial target, aerodynamics, imitator, performance
Procedia PDF Downloads 39812726 Measuring and Evaluating the Effectiveness of Mobile High Efficiency Particulate Air Filtering on Particulate Matter within the Road Traffic Network of a Sample of Non-Sparse and Sparse Urban Environments in the UK
Authors: Richard Maguire
Abstract:
This research evaluates the efficiency of using mobile HEPA filters to reduce localized Particulate Matter (PM), Total Volatile Organic Chemical (TVOC) and Formaldehyde (HCHO) Air Pollution. The research is being performed using a standard HEPA filter that is tube fitted and attached to a motor vehicle. The velocity of the vehicle is used to generate the pressure difference that allows the filter to remove PM, VOC and HCOC pollution from the localized atmosphere of a road transport traffic route. The testing has been performed on a sample of traffic routes in Non-Sparse and Sparse urban environments within the UK. Pre and Post filter measuring of the PM2.5 Air Quality has been carried out along with demographics of the climate environment, including live filming of the traffic conditions. This provides a base line for future national and international research. The effectiveness measurement is generated through evaluating the difference in PM2.5 Air Quality measured pre- and post- the mobile filter test equipment. A series of further research opportunities and future exploitation options are made based on the results of the research.Keywords: high efficiency particulate air, HEPA filter, particulate matter, traffic pollution
Procedia PDF Downloads 12412725 Topology Optimization of Composite Structures with Material Nonlinearity
Authors: Mengxiao Li, Johnson Zhang
Abstract:
Currently, topology optimization technique is widely used to define the layout design of structures that are presented as truss-like topologies. However, due to the difficulty in combining optimization technique with more realistic material models where their nonlinear properties should be considered, the achieved optimized topologies are commonly unable to apply straight towards the practical design problems. This study presented an optimization procedure of composite structures where different elastic stiffness, yield criteria, and hardening models are assumed for the candidate materials. From the results, it can be concluded that a more explicit modeling has the significant influence on the resulting topologies. Also, the isotropic or kinematic hardening is important for elastoplastic structural optimization design. The capability of the proposed optimization procedure is shown through several cases.Keywords: topology optimization, material composition, nonlinear modeling, hardening rules
Procedia PDF Downloads 48212724 Flexibility Cost and Its Application for Construction Projects
Authors: Rashmi Shahu
Abstract:
Flexibility is becoming a more widely accepted aspect of project management. Although contingency theory in project management states that the unknowns are controllable, complexity theory believes that the best way to handle the unknowns would be to have a flexible approach rather than rigidity. Designing a flexible system is a method of managing uncertainty. The present research work aims to evaluate flexibility in the initial design phase of projects taking examples of construction projects. Flexibility in the initial design phase is modeled in order to know the advantage in future. The comparison between the extra cost of flexibility in the initial design phase and the discount that can be achieved in future due to this premium will help the developers in making strategic decisions. This research uses a methodology for valuing flexibility by developing a mathematical formula for predicting future saving of cost. Two case studies were considered in this research to validate the mathematical formula. This research explains three case studies of an educational institution 28 years old for explaining the concept and giving benefits of flexible design for modification/renovation work of building.Keywords: flexibility, future saving, flexibility cost, construction projects
Procedia PDF Downloads 357