Search results for: simple sequence repeat (SSR)
1448 Simulation of the Flow in Bilayer Coextrusion Dies with Gradually Changing Calibrator Profiles
Authors: Mahesh Gupta
Abstract:
The main goal in the design of a die for extrusion of a complex profile is to obtain a uniform velocity at the die exit. If the velocity at the exit of an extrusion die is not uniform, the shape of the extrudate profile can change significantly after the polymer exits the die. To rectify the extrudate distortion caused by non-uniform exit velocity, calibrators and sizers are often installed along the extrudate cooling system. Furthermore, the profile shape in calibrators and sizers is sometimes gradually changed to intentionally deform the extrudate to the required final product shape. This is exploited to simplify extrusion die design, because a relatively simple profile at the die exit can be modified to obtain a more complex profile by deforming it in calibrators or sizers. The gradual change in the shape of calibrator or sizer profiles can also be used to extrude slightly different profiles from the same die. In the present work, a combined flow, thermal and structural analysis is used to accurately predict distortion of extrudate profile after the polymer leaves a die. Simulations of the flow and extrudate deformation in two different bilayer coextrusion dies with gradually changing profile shape in successive calibrators and sizers will be presented. The effect of non-uniform exit velocity, cooling shrinkage and shape of sizer profiles on extrudate deformation is included in the simulation. The predicted extrudate shape and layer structure is found to match accurately with those in a coextruded product.Keywords: coextrusion, extrusion die design, finite element method, polymers
Procedia PDF Downloads 521447 The Efficacy of Clobazam for Landau-Kleffner Syndrome
Authors: Nino Gogatishvili, Davit Kvernadze, Giorgi Japharidze
Abstract:
Background and aims: Landau Kleffner syndrome (LKS) is a rare disorder with epileptic seizures and acquired aphasia. It usually starts in initially healthy children. The first symptoms are language regression and behavioral disturbances, and the sleep EEG reveals abnormal epileptiform activity. The aim was to discuss the efficacy of Clobazam for Landau Kleffner syndrome. Case report: We report a case of an 11-year-old boy with an uneventful pregnancy and delivery. He began to walk at 11 months and speak with simple phrases at the age of 2,5 years. At the age of 18 months, he had febrile convulsions; at the age of 5 years, the parents noticed language regression, stuttering, and serious behavioral dysfunction, including hyperactivity, temper outbursts. The epileptic seizure was not noticed. MRI was without any abnormality. Neuropsychological testing revealed verbal auditory agnosia. Sleep EEG showed abundant left fronto-temporal spikes, reaching over 85% during non-rapid eye movement sleep (non-REM sleep). Treatment was started with Clobazam. After ten weeks, EEG was improved. Stuttering and behavior also improved. Results: Since the start of Clobazam treatment, stuttering and behavior improved. Now, he is 11 years old, without antiseizure medication. Sleep EEG shows fronto-temporal spikes on the left side, over 10-49 % of non-REM sleep, bioccipital spikes, and slow-wave discharges and spike-waves. Conclusions: This case provides further support for the efficacy of Clobazam in patients with LKS.Keywords: Landau-Kleffner syndrome, antiseizure medication, stuttering, aphasia
Procedia PDF Downloads 711446 Autonomous Ground Vehicle Navigation Based on a Single Camera and Image Processing Methods
Authors: Auday Al-Mayyahi, Phil Birch, William Wang
Abstract:
A vision system-based navigation for autonomous ground vehicle (AGV) equipped with a single camera in an indoor environment is presented. A proposed navigation algorithm has been utilized to detect obstacles represented by coloured mini- cones placed in different positions inside a corridor. For the recognition of the relative position and orientation of the AGV to the coloured mini cones, the features of the corridor structure are extracted using a single camera vision system. The relative position, the offset distance and steering angle of the AGV from the coloured mini-cones are derived from the simple corridor geometry to obtain a mapped environment in real world coordinates. The corridor is first captured as an image using the single camera. Hence, image processing functions are then performed to identify the existence of the cones within the environment. Using a bounding box surrounding each cone allows to identify the locations of cones in a pixel coordinate system. Thus, by matching the mapped and pixel coordinates using a projection transformation matrix, the real offset distances between the camera and obstacles are obtained. Real time experiments in an indoor environment are carried out with a wheeled AGV in order to demonstrate the validity and the effectiveness of the proposed algorithm.Keywords: autonomous ground vehicle, navigation, obstacle avoidance, vision system, single camera, image processing, ultrasonic sensor
Procedia PDF Downloads 3041445 Key Parameters Analysis of the Stirring Systems in the Optmization Procedures
Abstract:
The inclusion of stirring systems in the calculation and optimization procedures has been undergone a significant lack of attention, what it can reflect in the results because such systems provide an additional energy to the process, besides promote a better distribution of mass and energy. This is meaningful for the reactive systems, particularly for the Continuous Stirred Tank Reactor (CSTR), for which the key variables and parameters, as well as the operating conditions of stirring systems, can play a pivotal role and it has been showed in the literature that neglect these factors can lead to sub-optimal results. It is also well known that the sole use of the First Law of Thermodynamics as an optimization tool cannot yield satisfactory results, since the joint use of the First and Second Laws condensed into a procedure so-called entropy generation minimization (EGM) has shown itself able to drive the system towards better results. Therefore, the main objective of this paper is to determine the effects of key parameters of the stirring system in the optimization procedures by means of EGM applied to the reactive systems. Such considerations have been possible by dimensional analysis according to Rayleigh and Buckingham's method, which takes into account the physical and geometric parameters and the variables of the reactive system. For the simulation purpose based on the production of propylene glycol, the results have shown a significant increase in the conversion rate from 36% (not-optimized system) to 95% (optimized system) with a consequent reduction of by-products. In addition, it has been possible to establish the influence of the work of the stirrer in the optimization procedure, in which can be described as a function of the fluid viscosity and consequently of the temperature. The conclusions to be drawn also indicate that the use of the entropic analysis as optimization tool has been proved to be simple, easy to apply and requiring low computational effort.Keywords: stirring systems, entropy, reactive system, optimization
Procedia PDF Downloads 2461444 Kinetic and Removable of Amoxicillin Using Aliquat336 as a Carrier via a HFSLM
Authors: Teerapon Pirom, Ura Pancharoen
Abstract:
Amoxicillin is an antibiotic which is widely used to treat various infections in both human beings and animals. However, when amoxicillin is released into the environment, it is a major problem. Amoxicillin causes bacterial resistance to these drugs and failure of treatment with antibiotics. Liquid membrane is of great interest as a promising method for the separation and recovery of the target ions from aqueous solutions due to the use of carriers for the transport mechanism, resulting in highly selectivity and rapid transportation of the desired metal ions. The simultaneous processes of extraction and stripping in a single unit operation of liquid membrane system are very interesting. Therefore, it is practical to apply liquid membrane, particularly the HFSLM for industrial applications as HFSLM is proved to be a separation process with lower capital and operating costs, low energy and extractant with long life time, high selectivity and high fluxes compared with solid membranes. It is a simple design amenable to scaling up for industrial applications. The extraction and recovery for (Amoxicillin) through the hollow fiber supported liquid membrane (HFSLM) using aliquat336 as a carrier were explored with the experimental data. The important variables affecting on transport of amoxicillin viz. extractant concentration and operating time were investigated. The highest AMOX- extraction percentages of 85.35 and Amoxicillin stripping of 80.04 were achieved with the best condition at 6 mmol/L [aliquat336] and operating time 100 min. The extraction reaction order (n) and the extraction reaction rate constant (kf) were found to be 1.00 and 0.0344 min-1, respectively.Keywords: aliquat336, amoxicillin, HFSLM, kinetic
Procedia PDF Downloads 2781443 Energy Absorption Capacity of Aluminium Foam Manufactured by Kelvin Model Loaded Under Different Biaxial Combined Compression-Torsion Conditions
Authors: H. Solomon, A. Abdul-Latif, R. Baleh, I. Deiab, K. Khanafer
Abstract:
Aluminum foams were developed and tested due to their high energy absorption abilities for multifunctional applications. The aim of this research work was to investigate experimentally the effect of quasi-static biaxial loading complexity (combined compression-torsion) on the energy absorption capacity of highly uniform architecture open-cell aluminum foam manufactured by kelvin cell model. The two generated aluminum foams have 80% and 85% porosities, spherical-shaped pores having 11mm in diameter. These foams were tested by means of several square-section specimens. A patented rig called ACTP (Absorption par Compression-Torsion Plastique), was used to investigate the foam response under quasi-static complex loading paths having different torsional components (i.e., 0°, 37° and 53°). The main mechanical responses of the aluminum foams were studied under simple, intermediate and severe loading conditions. In fact, the key responses to be examined were stress plateau and energy absorption capacity of the two foams with respect to loading complexity. It was concluded that the higher the loading complexity and the higher the relative density, the greater the energy absorption capacity of the foam. The highest energy absorption was thus recorded under the most complicated loading path (i.e., biaxial-53°) for the denser foam (i.e., 80% porosity).Keywords: open-cell aluminum foams, biaxial loading complexity, foams porosity, energy absorption capacity, characterization
Procedia PDF Downloads 1351442 The Effect of Heart Rate and Valence of Emotions on Perceived Intensity of Emotion
Authors: Madeleine Nicole G. Bernardo, Katrina T. Feliciano, Marcelo Nonato A. Nacionales III, Diane Frances M. Peralta, Denise Nicole V. Profeta
Abstract:
This study aims to find out if heart rate variability and valence of emotion have an effect on perceived intensity of emotion. Psychology undergraduates (N = 60) from the University of the Philippines Diliman were shown 10 photographs from the Japanese Female Facial Expression (JAFFE) Database, along with a corresponding questionnaire with a Likert scale on perceived intensity of emotion. In this 3 x 2 mixed subjects factorial design, each group was either made to do a simple exercise prior to answering the questionnaire in order to increase the heart rate, listen to a heart rate of 120 bpm, or colour a drawing to keep the heart rate stable. After doing the activity, the participants then answered the questionnaire, providing a rating of the faces according to the participants’ perceived emotional intensity on the photographs. The photographs presented were either of positive or negative emotional valence. The results of the experiment showed that neither an induced fast heart rate or perceived fast heart rate had any significant effect on the participants’ perceived intensity of emotion. There was also no interaction effect of heart rate variability and valence of emotion. The insignificance of results was explained by the Philippines’ high context culture, accompanied by the prevalence of both intensely valenced positive and negative emotions in Philippine society. Insignificance in the effects were also attributed to the Cannon-Bard theory, Schachter-Singer theory and various methodological limitations.Keywords: heart rate variability, perceived intensity of emotion, Philippines , valence of emotion
Procedia PDF Downloads 2581441 Single Chip Controller Design for Piezoelectric Actuators with Mixed Signal FPGA
Authors: Han-Bin Park, Taesam Kang, SunKi Hong, Jeong Hoi Gu
Abstract:
The piezoelectric material is being used widely for actuators due to its large power density with simple structure. It can generate a larger force than the conventional actuators with the same size. Furthermore, the response time of piezoelectric actuators is very short, and thus, it can be used for very fast system applications with compact size. To control the piezoelectric actuator, we need analog signal conditioning circuits as well as digital microcontrollers. Conventional microcontrollers are not equipped with analog parts and thus the control system becomes bulky compared with the small size of the piezoelectric devices. To overcome these weaknesses, we are developing one-chip micro controller that can handle analog and digital signals simultaneously using mixed signal FPGA technology. We used the SmartFusion™ FPGA device that integrates ARM®Cortex-M3, analog interface and FPGA fabric in a single chip and offering full customization. It gives more flexibility than traditional fixed-function microcontrollers with the excessive cost of soft processor cores on traditional FPGAs. In this paper we introduce the design of single chip controller using mixed signal FPGA, SmartFusion™[1] device. To demonstrate its performance, we implemented a PI controller for power driving circuit and a 5th order H-infinity controller for the system with piezoelectric actuator in the FPGA fabric. We also demonstrated the regulation of a power output and the operation speed of a 5th order H-infinity controller.Keywords: mixed signal FPGA, PI control, piezoelectric actuator, SmartFusion™
Procedia PDF Downloads 5221440 Groundwater Potential Mapping using Frequency Ratio and Shannon’s Entropy Models in Lesser Himalaya Zone, Nepal
Authors: Yagya Murti Aryal, Bipin Adhikari, Pradeep Gyawali
Abstract:
The Lesser Himalaya zone of Nepal consists of thrusting and folding belts, which play an important role in the sustainable management of groundwater in the Himalayan regions. The study area is located in the Dolakha and Ramechhap Districts of Bagmati Province, Nepal. Geologically, these districts are situated in the Lesser Himalayas and partly encompass the Higher Himalayan rock sequence, which includes low-grade to high-grade metamorphic rocks. Following the Gorkha Earthquake in 2015, numerous springs dried up, and many others are currently experiencing depletion due to the distortion of the natural groundwater flow. The primary objective of this study is to identify potential groundwater areas and determine suitable sites for artificial groundwater recharge. Two distinct statistical approaches were used to develop models: The Frequency Ratio (FR) and Shannon Entropy (SE) methods. The study utilized both primary and secondary datasets and incorporated significant role and controlling factors derived from field works and literature reviews. Field data collection involved spring inventory, soil analysis, lithology assessment, and hydro-geomorphology study. Additionally, slope, aspect, drainage density, and lineament density were extracted from a Digital Elevation Model (DEM) using GIS and transformed into thematic layers. For training and validation, 114 springs were divided into a 70/30 ratio, with an equal number of non-spring pixels. After assigning weights to each class based on the two proposed models, a groundwater potential map was generated using GIS, classifying the area into five levels: very low, low, moderate, high, and very high. The model's outcome reveals that over 41% of the area falls into the low and very low potential categories, while only 30% of the area demonstrates a high probability of groundwater potential. To evaluate model performance, accuracy was assessed using the Area under the Curve (AUC). The success rate AUC values for the FR and SE methods were determined to be 78.73% and 77.09%, respectively. Additionally, the prediction rate AUC values for the FR and SE methods were calculated as 76.31% and 74.08%. The results indicate that the FR model exhibits greater prediction capability compared to the SE model in this case study.Keywords: groundwater potential mapping, frequency ratio, Shannon’s Entropy, Lesser Himalaya Zone, sustainable groundwater management
Procedia PDF Downloads 841439 Periodontal Disease or Cement Disease: New Frontier in the Treatment of Periodontal Disease in Dogs
Authors: C. Gallottini, W. Di Mari, A. Amaddeo, K. Barbaro, A. Dolci, G. Dolci, L. Gallottini, G. Barraco, S. Eramo
Abstract:
A group of 10 dogs (group A) with Periodontal Disease in the third stage, were subjected to regenerative therapy of periodontal tissues, by use of nano hydroxy apatite (NHA). These animals induced by general anesthesia, where treated by ultrasonic scaling, root planning, and at the end by a mucogingival flap in which it was applied NHA. The flap was closed and sutured with simple steps. Another group of 10 dogs (group B), control group, was treated only by scaling and root planning. No patient was subjected to antibiotic therapy. After three months, a check was made by inspection of the oral cavity, radiography and bone biopsy at the alveolar level. Group A showed a total restitutio ad integrum of the periodontal structures, and in group B still mild gingivitis in 70% of cases and 30% of the state remains unchanged. Numerous experimental studies both in animals and humans have documented that the grafts of porous hydroxyapatite are rapidly invaded by fibrovascular tissue which is subsequently converted into mature lamellar bone tissue by activating osteoblast. Since we acted on the removal of necrotic cementum and rehabilitating the root tissue by polishing without intervention in the ligament but only on anatomical functional interface of cement-blasts, we can connect the positive evolution of the clinical-only component of the cement that could represent this perspective, the only reason that Periodontal Disease become a Cement Disease, while all other clinical elements as nothing more than a clinical pathological accompanying.Keywords: nanoidroxiaphatite, parodontal disease, cement disease, regenerative therapy
Procedia PDF Downloads 4531438 A Cohesive Zone Model with Parameters Determined by Uniaxial Stress-Strain Curve
Abstract:
A key issue of cohesive zone models is how to determine the cohesive zone model parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model (CZM): The maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is modeled by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral
Procedia PDF Downloads 4761437 Great Food, No Atmosphere: A Review of Performance Nutrition for Application to Extravehicular Activities in Spaceflight
Authors: Lauren E. Church
Abstract:
Background: Extravehicular activities (EVAs) are a critical aspect of missions aboard the International Space Station (ISS). It has long been noted that the spaceflight environment and the physical demands of EVA cause physiological and metabolic changes in humans; this review aims to combine these findings with nutritional studies in analogues of the spaceflight and EVA environments to make nutritional recommendations for astronauts scheduled for and immediately returning from EVAs. Results: Energy demands increase during orbital spaceflight and see further increases during EVA. Another critical element of EVA nutrition is adequate hydration. Orbital EVA appears to provide adequate hydration under current protocol, but during lunar surface EVA (LEVA) and in a 10km lunar walk-back test astronauts have stated that up to 20% more water was needed. Previous attempts for in-suit edible sustenance have not been adequately taken up by astronauts to be economically viable. In elite endurance athletes, a mixture of glucose and fructose is used in gels, improving performance. Discussion: A combination of non-caffeinated energy drink and simple water should be available for astronauts during EVA, allowing more autonomy. There should also be provision of gels or a similar product containing appropriate sodium levels to maintain hydration, but not so much as to hyperhydrate through renal water reabsorption. It is also suggested that short breaks be built into the schedule of EVAs for these gels to be consumed, as it is speculated that reason for low uptake of in-suit sustenance is the lack of time available in which to consume it.Keywords: astronaut, nutrition, space, sport
Procedia PDF Downloads 1311436 Software Transactional Memory in a Dynamic Programming Language at Virtual Machine Level
Authors: Szu-Kai Hsu, Po-Ching Lin
Abstract:
As more and more multi-core processors emerge, traditional sequential programming paradigm no longer suffice. Yet only few modern dynamic programming languages can leverage such advantage. Ruby, for example, despite its wide adoption, only includes threads as a simple parallel primitive. The global virtual machine lock of official Ruby runtime makes it impossible to exploit full parallelism. Though various alternative Ruby implementations do eliminate the global virtual machine lock, they only provide developers dated locking mechanism for data synchronization. However, traditional locking mechanism error-prone by nature. Software Transactional Memory is one of the promising alternatives among others. This paper introduces a new virtual machine: GobiesVM to provide a native software transactional memory based solution for dynamic programming languages to exploit parallelism. We also proposed a simplified variation of Transactional Locking II algorithm. The empirical results of our experiments show that support of STM at virtual machine level enables developers to write straightforward code without compromising parallelism or sacrificing thread safety. Existing source code only requires minimal or even none modi cation, which allows developers to easily switch their legacy codebase to a parallel environment. The performance evaluations of GobiesVM also indicate the difference between sequential and parallel execution is significant.Keywords: global interpreter lock, ruby, software transactional memory, virtual machine
Procedia PDF Downloads 2891435 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area
Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya
Abstract:
In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.Keywords: brain-computer interface, speech recognition, artificial neural network, electroencephalography, EEG, wernicke area
Procedia PDF Downloads 2761434 Gene Expression and Staining Agents: Exploring the Factors That Influence the Electrophoretic Properties of Fluorescent Proteins
Authors: Elif Tugce Aksun Tumerkan, Chris Lowe, Hannah Krupa
Abstract:
Fluorescent proteins are self-sufficient in forming chromophores with a visible wavelength from 3 amino acids sequence within their own polypeptide structure. This chromophore – a molecule that absorbs a photon of light and exhibits an energy transition equal to the energy of the absorbed photon. Fluorescent proteins (FPs) consisted of a chain of 238 amino acid residues and composed of 11 beta strands shaped in a cylinder surrounding an alpha helix structure. A better understanding of the system of the chromospheres and the increasing advance in protein engineering in recent years, the properties of FPs offers the potential for new applications. They have used sensors and probes in molecular biology and cell-based research that giving a chance to observe these FPs tagged cell localization, structural variation and movement. For clarifying functional uses of fluorescent proteins, electrophoretic properties of these proteins are one of the most important parameters. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis is used for determining electrophoretic properties commonly. While there are many techniques are used for determining the functionality of protein-based research, SDS-PAGE analysis can only provide a molecular level assessment of the proteolytic fragments. Before SDS-PAGE analysis, fluorescent proteins need to successfully purified. Due to directly purification of the target, FPs is difficult from the animal, gene expression is commonly used which must be done by transformation with the plasmid. Furthermore, used gel within electrophoresis and staining agents properties have a key role. In this review, the different factors that have the impact on the electrophoretic properties of fluorescent proteins explored. Fluorescent protein separation and purification are the essential steps before electrophoresis that should be done very carefully. For protein purification, gene expression process and following steps have a significant function. For successful gene expression, the properties of selected bacteria for expression, used plasmid are essential. Each bacteria has own characteristics which are very sensitive to gene expression, also used procedure is the important factor for fluorescent protein expression. Another important factors are gel formula and used staining agents. Gel formula has an effect on the specific proteins mobilization and staining with correct agents is a key step for visualization of electrophoretic bands of protein. Visuality of proteins can be changed depending on staining reagents. Apparently, this review has emphasized that gene expression and purification have a stronger effect than electrophoresis protocol and staining agents.Keywords: cell biology, gene expression, staining agents, SDS-page
Procedia PDF Downloads 1981433 Computational Identification of Signalling Pathways in Protein Interaction Networks
Authors: Angela U. Makolo, Temitayo A. Olagunju
Abstract:
The knowledge of signaling pathways is central to understanding the biological mechanisms of organisms since it has been identified that in eukaryotic organisms, the number of signaling pathways determines the number of ways the organism will react to external stimuli. Signaling pathways are studied using protein interaction networks constructed from protein-protein interaction data obtained using high throughput experimental procedures. However, these high throughput methods are known to produce very high rates of false positive and negative interactions. In order to construct a useful protein interaction network from this noisy data, computational methods are applied to validate the protein-protein interactions. In this study, a computational technique to identify signaling pathways from a protein interaction network constructed using validated protein-protein interaction data was designed. A weighted interaction graph of the Saccharomyces cerevisiae (Baker’s Yeast) organism using the proteins as the nodes and interactions between them as edges was constructed. The weights were obtained using Bayesian probabilistic network to estimate the posterior probability of interaction between two proteins given the gene expression measurement as biological evidence. Only interactions above a threshold were accepted for the network model. A pathway was formalized as a simple path in the interaction network from a starting protein and an ending protein of interest. We were able to identify some pathway segments, one of which is a segment of the pathway that signals the start of the process of meiosis in S. cerevisiae.Keywords: Bayesian networks, protein interaction networks, Saccharomyces cerevisiae, signalling pathways
Procedia PDF Downloads 5491432 Web Proxy Detection via Bipartite Graphs and One-Mode Projections
Authors: Zhipeng Chen, Peng Zhang, Qingyun Liu, Li Guo
Abstract:
With the Internet becoming the dominant channel for business and life, many IPs are increasingly masked using web proxies for illegal purposes such as propagating malware, impersonate phishing pages to steal sensitive data or redirect victims to other malicious targets. Moreover, as Internet traffic continues to grow in size and complexity, it has become an increasingly challenging task to detect the proxy service due to their dynamic update and high anonymity. In this paper, we present an approach based on behavioral graph analysis to study the behavior similarity of web proxy users. Specifically, we use bipartite graphs to model host communications from network traffic and build one-mode projections of bipartite graphs for discovering social-behavior similarity of web proxy users. Based on the similarity matrices of end-users from the derived one-mode projection graphs, we apply a simple yet effective spectral clustering algorithm to discover the inherent web proxy users behavior clusters. The web proxy URL may vary from time to time. Still, the inherent interest would not. So, based on the intuition, by dint of our private tools implemented by WebDriver, we examine whether the top URLs visited by the web proxy users are web proxies. Our experiment results based on real datasets show that the behavior clusters not only reduce the number of URLs analysis but also provide an effective way to detect the web proxies, especially for the unknown web proxies.Keywords: bipartite graph, one-mode projection, clustering, web proxy detection
Procedia PDF Downloads 2491431 Comparative Evaluation of Pharmacologically Guided Approaches (PGA) to Determine Maximum Recommended Starting Dose (MRSD) of Monoclonal Antibodies for First Clinical Trial
Authors: Ibraheem Husain, Abul Kalam Najmi, Karishma Chester
Abstract:
First-in-human (FIH) studies are a critical step in clinical development of any molecule that has shown therapeutic promise in preclinical evaluations, since preclinical research and safety studies into clinical development is a crucial step for successful development of monoclonal antibodies for guidance in pharmaceutical industry for the treatment of human diseases. Therefore, comparison between USFDA and nine pharmacologically guided approaches (PGA) (simple allometry, maximum life span potential, brain weight, rule of exponent (ROE), two species methods and one species methods) were made to determine maximum recommended starting dose (MRSD) for first in human clinical trials using four drugs namely Denosumab, Bevacizumab, Anakinra and Omalizumab. In our study, the predicted pharmacokinetic (pk) parameters and the estimated first-in-human dose of antibodies were compared with the observed human values. The study indicated that the clearance and volume of distribution of antibodies can be predicted with reasonable accuracy in human and a good estimate of first human dose can be obtained from the predicted human clearance and volume of distribution. A pictorial method evaluation chart was also developed based on fold errors for simultaneous evaluation of various methods.Keywords: clinical pharmacology (CPH), clinical research (CRE), clinical trials (CTR), maximum recommended starting dose (MRSD), clearance and volume of distribution
Procedia PDF Downloads 3781430 Hydrogels Beads of Alginate/Seaweed Powder for Plants Nutrition
Authors: Brenda O. Mazzola, Adriel Larsen, Romina P. Ollier, Leandro N. Ludueña, Vera A. Alvarez, Jimena S. Gonzalez
Abstract:
Seaweed is a natural renewable resource with great potential that is not being used by the domestic industry. Here, it was used a kind of invasive algae U. Pinnatifida that causes serious ecological damage on the Argentinian coasts. Alginate is one of the most widely used materials for encapsulation, and has the advantage that is a natural polysaccharide derived from a marine plant. It can form thermally stable hydrogel in the presence of calcium cation. In addition, the hydrogel can be easily produced into particulate form by using simple and gentle method. The aim of this work was to obtain and to characterize novel compounds (alginate/seaweed powder) for the soil nutrition. Alginate water solutions were prepared by concentrations of 20, 30, 40 and 50 g/L, in those solutions 10g/L of seaweed powder was added. Then the dispersions were transferred from a beaker to the atomizer by a peristaltic pump (with 0.05 to 0.1 L/h flow). A tank was filled with 1 L of calcium chloride solution (4 g/L), and the solution was agitated with a magnetic stirrer. The beads were analyzed by means TGA, FTIR and swelling determinations. In addition, the improvements in the soil were qualitative measured. It was obtained beads with different diameters depend on the initial concentration and the flow used. A better dispersions of seaweed and optimal diameter for the plant nutrition applications were obtained for 40g/L concentration and 0.1 L/h flow. The beads show thermal stability and high swelling degree. It can be successfully obtained alginate beads with seaweed powder with a novelty application as plant nutrient.Keywords: biodegradable, characterization, hydrogel, plant nutrition, seaweed
Procedia PDF Downloads 2861429 Monocular Depth Estimation Benchmarking with Thermal Dataset
Authors: Ali Akyar, Osman Serdar Gedik
Abstract:
Depth estimation is a challenging computer vision task that involves estimating the distance between objects in a scene and the camera. It predicts how far each pixel in the 2D image is from the capturing point. There are some important Monocular Depth Estimation (MDE) studies that are based on Vision Transformers (ViT). We benchmark three major studies. The first work aims to build a simple and powerful foundation model that deals with any images under any condition. The second work proposes a method by mixing multiple datasets during training and a robust training objective. The third work combines generalization performance and state-of-the-art results on specific datasets. Although there are studies with thermal images too, we wanted to benchmark these three non-thermal, state-of-the-art studies with a hybrid image dataset which is taken by Multi-Spectral Dynamic Imaging (MSX) technology. MSX technology produces detailed thermal images by bringing together the thermal and visual spectrums. Using this technology, our dataset images are not blur and poorly detailed as the normal thermal images. On the other hand, they are not taken at the perfect light conditions as RGB images. We compared three methods under test with our thermal dataset which was not done before. Additionally, we propose an image enhancement deep learning model for thermal data. This model helps extract the features required for monocular depth estimation. The experimental results demonstrate that, after using our proposed model, the performance of these three methods under test increased significantly for thermal image depth prediction.Keywords: monocular depth estimation, thermal dataset, benchmarking, vision transformers
Procedia PDF Downloads 371428 Modelling and Control of Binary Distillation Column
Authors: Narava Manose
Abstract:
Distillation is a very old separation technology for separating liquid mixtures that can be traced back to the chemists in Alexandria in the first century A. D. Today distillation is the most important industrial separation technology. By the eleventh century, distillation was being used in Italy to produce alcoholic beverages. At that time, distillation was probably a batch process based on the use of just a single stage, the boiler. The word distillation is derived from the Latin word destillare, which means dripping or trickling down. By at least the sixteenth century, it was known that the extent of separation could be improved by providing multiple vapor-liquid contacts (stages) in a so called Rectifactorium. The term rectification is derived from the Latin words rectefacere, meaning to improve. Modern distillation derives its ability to produce almost pure products from the use of multi-stage contacting. Throughout the twentieth century, multistage distillation was by far the most widely used industrial method for separating liquid mixtures of chemical components.The basic principle behind this technique relies on the different boiling temperatures for the various components of the mixture, allowing the separation between the vapor from the most volatile component and the liquid of other(s) component(s). •Developed a simple non-linear model of a binary distillation column using Skogestad equations in Simulink. •We have computed the steady-state operating point around which to base our analysis and controller design. However, the model contains two integrators because the condenser and reboiler levels are not controlled. One particular way of stabilizing the column is the LV-configuration where we use D to control M_D, and B to control M_B; such a model is given in cola_lv.m where we have used two P-controllers with gains equal to 10.Keywords: modelling, distillation column, control, binary distillation
Procedia PDF Downloads 2821427 Analyses for Primary Coolant Pump Coastdown Phenomena for Jordan Research and Training Reactor
Authors: Yazan M. Alatrash, Han-ok Kang, Hyun-gi Yoon, Shen Zhang, Juhyeon Yoon
Abstract:
Flow coastdown phenomena are very important to secure nuclear fuel integrity during loss of off-site power accidents. In this study, primary coolant flow coastdown phenomena are investigated for the Jordan Research and Training Reactor (JRTR) using a simulation software package, Modular Modelling System (MMS). Two MMS models are built. The first one is a simple model to investigate the characteristics of the primary coolant pump only. The second one is a model for a simulation of the Primary Coolant System (PCS) loop, in which all the detailed design data of the JRTR PCS system are modelled, including the geometrical arrangement data. The same design data for a PCS pump are used for both models. Coastdown curves obtained from the two models are compared to study the PCS loop coolant inertia effect on a flow coastdown. Results showed that the loop coolant inertia effect is found to be small in the JRTR PCS loop, i.e., about one second increases in a coastdown half time required to halve the coolant flow rate. The effects of different flywheel inertia on the flow coastdown are also investigated. It is demonstrated that the coastdown half time increases with the flywheel inertia linearly. The designed coastdown half time is proved to be well above the design requirement for the fuel integrity.Keywords: flow coastdown, loop inertia, modelling, research reactor
Procedia PDF Downloads 5091426 A Simple Technique for Centralisation of Distal Femoral Nail to Avoid Anterior Femoral Impingement and Perforation
Authors: P. Panwalkar, K. Veravalli, M. Tofighi, A. Mofidi
Abstract:
Introduction: Anterior femoral perforation or distal anterior nail position is a known complication of femoral nailing specifically in pertrochantric fractures fixed with cephalomedullary nail. This has been attributed to wrong entry point for the femoral nail, nail with large radius of curvature or malreduced fracture. Left alone anterior perforation of femur or abutment of nail on anterior femur will result in pain and risk stress riser at distal femur and periprosthetic fracture. There have been multiple techniques described to avert or correct this problem ranging from using different nail, entry point change, poller screw to deflect the nail position, use of shorter nail or use of curved guidewire or change of nail to ensure a nail with large radius of curvature Methods: We present this technique which we have used in order to centralise the femoral nail either when the nail has been put anteriorly or when the guide wire has been inserted too anteriorly prior to the insertion of the nail. This technique requires the use of femoral reduction spool from the nailing set. This technique was used by eight trainees of different level of experience under supervision. Results: This technique was easily reproducible without any learning curve without a need for opening of fracture site or change in the entry point with three different femoral nailing sets in twenty-five cases. The process took less than 10 minutes even when revising a malpositioned femoral nail. Conclusion: Our technique of using femoral reduction spool is easily reproducible and repeatable technique for avoidance of non-centralised femoral nail insertion and distal anterior perforation of femoral nail.Keywords: femoral fracture, nailing, malposition, surgery
Procedia PDF Downloads 1451425 Approach for Updating a Digital Factory Model by Photogrammetry
Authors: R. Hellmuth, F. Wehner
Abstract:
Factory planning has the task of designing products, plants, processes, organization, areas, and the construction of a factory. The requirements for factory planning and the building of a factory have changed in recent years. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity & Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Short-term rescheduling can no longer be handled by on-site inspections and manual measurements. The tight time schedules require up-to-date planning models. Due to the high adaptation rate of factories described above, a methodology for rescheduling factories on the basis of a modern digital factory twin is conceived and designed for practical application in factory restructuring projects. The focus is on rebuild processes. The aim is to keep the planning basis (digital factory model) for conversions within a factory up to date. This requires the application of a methodology that reduces the deficits of existing approaches. The aim is to show how a digital factory model can be kept up to date during ongoing factory operation. A method based on photogrammetry technology is presented. The focus is on developing a simple and cost-effective solution to track the many changes that occur in a factory building during operation. The method is preceded by a hardware and software comparison to identify the most economical and fastest variant.Keywords: digital factory model, photogrammetry, factory planning, restructuring
Procedia PDF Downloads 1201424 Determination of Cohesive Zone Model’s Parameters Based On the Uniaxial Stress-Strain Curve
Authors: Y. J. Wang, C. Q. Ru
Abstract:
A key issue of cohesive zone models is how to determine the cohesive zone model (CZM) parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model: the maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is simulated by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral
Procedia PDF Downloads 5161423 A Gradient Orientation Based Efficient Linear Interpolation Method
Authors: S. Khan, A. Khan, Abdul R. Soomrani, Raja F. Zafar, A. Waqas, G. Akbar
Abstract:
This paper proposes a low-complexity image interpolation method. Image interpolation is used to convert a low dimension video/image to high dimension video/image. The objective of a good interpolation method is to upscale an image in such a way that it provides better edge preservation at the cost of very low complexity so that real-time processing of video frames can be made possible. However, low complexity methods tend to provide real-time interpolation at the cost of blurring, jagging and other artifacts due to errors in slope calculation. Non-linear methods, on the other hand, provide better edge preservation, but at the cost of high complexity and hence they can be considered very far from having real-time interpolation. The proposed method is a linear method that uses gradient orientation for slope calculation, unlike conventional linear methods that uses the contrast of nearby pixels. Prewitt edge detection is applied to separate uniform regions and edges. Simple line averaging is applied to unknown uniform regions, whereas unknown edge pixels are interpolated after calculation of slopes using gradient orientations of neighboring known edge pixels. As a post-processing step, bilateral filter is applied to interpolated edge regions in order to enhance the interpolated edges.Keywords: edge detection, gradient orientation, image upscaling, linear interpolation, slope tracing
Procedia PDF Downloads 2631422 Evaluation of Transfusion-Related Acute Lung Injury
Authors: Hossein Barri Ghazani
Abstract:
Transfusion-related acute lung injury is the main reason of transfusion-related death, and it’s assigned to white blood cell reactive antibodies present in the blood product (anti-HLA class I and class II or anti granulocyte antibodies). TRALI may occur in the COVID-19 patients who are treated by convalescent plasma. The rate of TRALI’s reactions is the same in both males and females and can happen in all age groups. TRALI’s occurrence is higher for people who receive plasma from female donors because the parous female donors have multiple HLA antibodies in their plasma. Patients with chronic liver disease have an augmented risk of transfusion-related acute lung injuries from plasma containing blood products like FFP and PRP. The condition of TRALI suddenly starts with a non‐cardiogenic pulmonary Edema, often accompanied by marked systemic hypovolemic and hypotension. The conditions occur during or within a few hours of transfusion. Chest X-ray shows a nodular penetration or bats’ wing pattern of Edema which can be seen in acute respiratory distress syndrome as well. TRALI can occur with any type of blood products and can occur with as little as one unit. The blood donor center should be informed of the suspected TRALI reactions when the symptoms of TRALI are observed. After a review of the clinical data, the donors must be screened for granulocyte and HLA antibodies. The diagnosis and management of TRALI is not simple and is best done with a professional team and a specialty skilled nurse experienced with the upkeep of these patients.Keywords: TRALI, transfusion-related death, anti-granulocyte antibodies, anti-HLA antibodies, COVID-19
Procedia PDF Downloads 1671421 A Dual Channel Optical Sensor for Norepinephrine via Situ Generated Silver Nanoparticles
Authors: Shalini Menon, K. Girish Kumar
Abstract:
Norepinephrine (NE) is one of the naturally occurring catecholamines which act both as a neurotransmitter and a hormone. Catecholamine levels are used for the diagnosis and regulation of phaeochromocytoma, a neuroendocrine tumor of the adrenal medulla. The development of simple, rapid and cost-effective sensors for NE still remains a great challenge. Herein, a dual-channel sensor has been developed for the determination of NE. A mixture of AgNO₃, NaOH, NH₃.H₂O and cetrimonium bromide in appropriate concentrations was taken as the working solution. To the thoroughly vortexed mixture, an appropriate volume of NE solution was added. After a particular time, the fluorescence and absorbance were measured. Fluorescence measurements were made by exciting at a wavelength of 400 nm. A dual-channel optical sensor has been developed for the colorimetric as well as the fluorimetric determination of NE. Metal enhanced fluorescence property of nanoparticles forms the basis of the fluorimetric detection of this assay, whereas the appearance of brown color in the presence of NE leads to colorimetric detection. Wide linear ranges and sub-micromolar detection limits were obtained using both the techniques. Moreover, the colorimetric approach was applied for the determination of NE in synthetic blood serum and the results obtained were compared with the classic high-performance liquid chromatography (HPLC) method. Recoveries between 97% and 104% were obtained using the proposed method. Based on five replicate measurements, relative standard deviation (RSD) for NE determination in the examined synthetic blood serum was found to be 2.3%. This indicates the reliability of the proposed sensor for real sample analysis.Keywords: norepinephrine, colorimetry, fluorescence, silver nanoparticles
Procedia PDF Downloads 1161420 Decontamination of Chromium Containing Ground Water by Adsorption Using Chemically Modified Activated Carbon Fabric
Authors: J. R. Mudakavi, K. Puttanna
Abstract:
Chromium in the environment is considered as one of the most toxic elements probably next only to mercury and arsenic. It is acutely toxic, mutagenic and carcinogenic in the environment. Chromium contamination of soil and underground water due to industrial activities is a very serious problem in several parts of India covering Karnataka, Tamil Nadu, Andhra Pradesh etc. Functionally modified Activated Carbon Fabrics (ACF) offer targeted chromium removal from drinking water and industrial effluents. Activated carbon fabric is a light weight adsorbing material with high surface area and low resistance to fluid flow. We have investigated surface modification of ACF using various acids in the laboratory through batch as well as through continuous flow column experiments with a view to develop the optimum conditions for chromium removal. Among the various acids investigated, phosphoric acid modified ACF gave best results with a removal efficiency of 95% under optimum conditions. Optimum pH was around 2 – 4 with 2 hours contact time. Continuous column experiments with an effective bed contact time (EBCT) of 5 minutes indicated that breakthrough occurred after 300 bed volumes. Adsorption data followed a Freundlich isotherm pattern. Nickel adsorbs preferentially and sulphate reduces chromium adsorption by 50%. The ACF could be regenerated up to 52.3% using 3 M NaOH under optimal conditions. The process is simple, economical, energy efficient and applicable to industrial effluents and drinking water.Keywords: activated carbon fabric, hexavalent chromium, adsorption, drinking water
Procedia PDF Downloads 3391419 Grammatical Forms and Functions in Selected Political Interviews of Nigerian Presidential Aspirants in 2015 General Election
Authors: Temitope Abiodun Balogun
Abstract:
Political interviews are one of the ways by which political office-seekers in Nigeria sell themselves to the electorates. Extant studies have examined the discourse of political interviews from conversational, philosophical, rhetorical, stylistic and pragmatic perspectives with insufficient attention paid to grammatical forms and communicative intentions of the interviews granted by the two presidential aspirants in the 2015 Nigerian general election. This study fills this scholarly gap to unmask their grammatical forms and communicative styles, intention and credibility. The paper adopts Halliday’s Systemic Functional Grammar, specifically interpersonal function coupled with Searle’s Model of Speech Acts Theory as a theoretical framework. A total of six interviews granted by the two presidential aspirants in media serve as the source of data. It is discovered that, in most cases, politicians’ communicative intention is to “pull-down” their political opponents. While declarative and interrogatives are simple, direct and straightforward, the intention is to condemn, lambast and castigate their opponents. This communicative style does not allow the general populace to decipher the political manifestoes of the political aspirants and the party they represent. The paper recommends that before Nigeria can boast of any sustainable growth and development, there is the need for her political office-seekers to adopt effective communication strategies and styles to unveil their intention and manifestoes so that electorates can evaluate their performance after their tenure of office.Keywords: general election, grammatical forms and function, political interviews, presidential aspirants
Procedia PDF Downloads 167