Search results for: thermal decomposition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4051

Search results for: thermal decomposition

1201 Finite Element Analysis of Thermally-Induced Bistable Plate Using Four Plate Elements

Authors: Jixiao Tao, Xiaoqiao He

Abstract:

The present study deals with the finite element (FE) analysis of thermally-induced bistable plate using various plate elements. The quadrilateral plate elements include the 4-node conforming plate element based on the classical laminate plate theory (CLPT), the 4-node and 9-node Mindlin plate element based on the first-order shear deformation laminated plate theory (FSDT), and a displacement-based 4-node quadrilateral element (RDKQ-NL20). Using the von-Karman’s large deflection theory and the total Lagrangian (TL) approach, the nonlinear FE governing equations for plate under thermal load are derived. Convergence analysis for four elements is first conducted. These elements are then used to predict the stable shapes of thermally-induced bistable plate. Numerical test shows that the plate element based on FSDT, namely the 4-node and 9-node Mindlin, and the RDKQ-NL20 plate element can predict two stable cylindrical shapes while the 4-node conforming plate predicts a saddles shape. Comparing the simulation results with ABAQUS, the RDKQ-NL20 element shows the best accuracy among all the elements.

Keywords: Bistable, finite element method, geometrical nonlinearity, quadrilateral plate elements

Procedia PDF Downloads 220
1200 Optimization of Syngas Quality for Fischer-Tropsch Synthesis

Authors: Ali Rabah

Abstract:

This research received no grant or financial support from any public, commercial, or none governmental agency. The author conducted this work as part of his normal research activities as a professor of Chemical Engineering at the University of Khartoum, Sudan. Abstract While fossil oil reserves have been receding, the demand for diesel and gasoline has been growing. In recent years, syngas of biomass origin has been emerging as a viable feedstock for Fischer-Tropsch (FT) synthesis, a process for manufacturing synthetic gasoline and diesel. This paper reports the optimization of syngas quality to match FT synthesis requirements. The optimization model maximizes the thermal efficiency under the constraint of H2/CO≥2.0 and operating conditions of equivalent ratio (0 ≤ ER ≤ 1.0), steam to biomass ratio (0 ≤ SB ≤ 5), and gasification temperature (500 °C ≤ Tg ≤ 1300 °C). The optimization model is executed using the optimization section of the Model Analysis Tools of the Aspen Plus simulator. The model is tested using eleven (11) types of MSW. The optimum operating conditions under which the objective function and the constraint are satisfied are ER=0, SB=0.66-1.22, and Tg=679 - 763°C. Under the optimum operating conditions, the syngas quality is H2=52.38 - 58.67-mole percent, LHV=12.55 - 17.15 MJ/kg, N2=0.38 - 2.33-mole percent, and H2/CO≥2.15. The generalized optimization model reported could be extended to any other type of biomass and coal. Keywords: MSW, Syngas, Optimization, Fischer-Tropsch.

Keywords: syngas, MSW, optimization, Fisher-Tropsh

Procedia PDF Downloads 80
1199 Social Problems and Gender Wage Gap Faced by Working Women in Readymade Garment Sector of Pakistan

Authors: Narjis Kahtoon

Abstract:

The issue of the wage discrimination on the basis of gender and social problem has been a significant research problem for several decades. Whereas lots of have explored reasons for the persistence of an inequality in the wages of male and female, none has successfully explained away the entire differentiation. The wage discrimination on the basis of gender and social problem of working women is a global issue. Although inequality in political and economic and social make-up of countries all over the world, the gender wage discrimination, and social constraint is present. The aim of the research is to examine the gender wage discrimination and social constraint from an international perspective and to determine whether any pattern exists among cultural dimensions of a country and the man and women remuneration gap in Readymade Garment Sector of Pakistan. Population growth rate is significant indicator used to explain the change in population and play a crucial point in the economic development of a country. In Pakistan, readymade garment sector consists of small, medium and large sized firms. With an estimated 30 percent of the workforce in textile- Garment is females’. Readymade garment industry is a labor intensive industry and relies on the skills of individual workers and provides highest value addition in the textile sector. In the Garment sector, female workers are concentrated in poorly paid, labor-intensive down-stream production (readymade garments, linen, towels, etc.), while male workers dominate capital- intensive (ginning, spinning and weaving) processes. Gender wage discrimination and social constraint are reality in Pakistan Labor Market. This research allows us not only to properly detect the size of gender wage discrimination and social constraint but to also fully understand its consequences in readymade garment sector of Pakistan. Furthermore, research will evaluated this measure for the three main clusters like Lahore, Karachi, and Faisalabad. These data contain complete details of male and female workers and supervisors in the readymade garment sector of Pakistan. These sources of information provide a unique opportunity to reanalyze the previous finding in the literature. The regression analysis focused on the standard 'Mincerian' earning equation and estimates it separately by gender, the research will also imply the cultural dimensions developed by Hofstede (2001) to profile a country’s cultural status and compare those cultural dimensions to the wage inequalities. Readymade garment of Pakistan is one of the important sectors since its products have huge demand at home and abroad. These researches will a major influence on the measures undertaken to design a public policy regarding wage discrimination and social constraint in readymade garment sector of Pakistan.

Keywords: gender wage differentials, decomposition, garment, cultural

Procedia PDF Downloads 209
1198 MHD Stagnation-Point Flow over a Plate

Authors: H. Niranjan, S. Sivasankaran

Abstract:

Heat and mass transfer near a steady stagnation point boundary layer flow of viscous incompressible fluid through porous media investigates along a vertical plate is thoroughly studied under the presence of magneto hydrodynamic (MHD) effects. The fluid flow is steady, laminar, incompressible and in two-dimensional. The nonlinear differential coupled parabolic partial differential equations of continuity, momentum, energy and specie diffusion are converted into the non-similar boundary layer equations using similarity transformation, which are then solved numerically using the Runge-Kutta method along with shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.

Keywords: MHD, porous medium, slip, convective boundary condition, stagnation point

Procedia PDF Downloads 302
1197 Applying ASHRAE Standards on the Hospital Buildings of UAE

Authors: Hanan M. Taleb

Abstract:

Energy consumption associated with buildings has a significant impact on the environment. To that end, and as a transaction between the inside and outside and between the building and urban space, the building skin plays an especially important role. It provides protection from the elements; demarcates private property and creates privacy. More importantly, it controls the admission of solar radiation. Therefore, designing the building skin sustainably will help to achieve optimal performance in terms of both energy consumption and thermal comfort. Unfortunately, with accelerating construction expansion, many recent buildings do not pay attention to the importance of the envelope design. This piece of research will highlight the importance of this part of the creation of buildings by providing evidence of a significant reduction in energy consumption if the envelopes are redesigned. Consequently, the aim of this paper is to enhance the performance of the hospital envelope in order to achieve sustainable performance. A hospital building sited in Abu Dhabi, in the UAE, has been chosen to act as a case study. A detailed analysis of the annual energy performance of the case study will be performed with the use of a computerised simulation; this is in order to explore their energy performance shortcomings. The energy consumption of the base case will then be compared with that resulting from the new proposed building skin. The results will inform architects and designers of the savings potential from various strategies.

Keywords: ASHREA, building skin, building envelopes, hospitals, Abu Dhabi, UAE, IES software

Procedia PDF Downloads 364
1196 Methodology for Diagnosing Architecture Improvements in a Cancer Hospital in Brasilia

Authors: Mariana Sabino, Janes Cleiton de Oliveira, Carlos Luna de Melo

Abstract:

This paper presents a discussion about the importance and influence of the environment in the patient’s recovery process. Some users (employees and patients) were submitted to a questionnaire that helps to diagnoses the major problems of the hospital, specially related to comfort (aesthetic, thermal, acoustic, light, ergonomic), well-being, how does the flow of patients and employees works in the hospital and wayfinding as well. After a short literature review presenting the topic, the hospital will be characterized, showing photos, the projects available and describing the hospital as well (how many rooms, functions of each one, receptions, waiting rooms, between other things.), than the questionnaire will be applied to patients and to the employees. Lastly the results of the answers given will be analyzed in graphics, and it will help to identify which are the major improvements needed immediately. This paper has the intention to propose a methodology to diagnose architecture problems in a cancer hospital in Brasilia, Brazil, besides to open a space to hear the people that use the building to tell about their discomforts and perceptions of the environment, it also will give an opportunity to apply the possible improvements. It is important to tell that it will be considered if the hospital has a healing environment, and it will also be considered the ergonomic issues about comfort and the way the system of this particular hospital works in general.

Keywords: cancer hospital, comfort, diagnose, healing environment

Procedia PDF Downloads 241
1195 Fish Oil and Its Methyl Ester as an Alternate Fuel in the Direct Injection Diesel Engine

Authors: Pavan Pujar

Abstract:

Mackerel Fish oil was used as the raw material to produce the biodiesel in this study. The raw oil (RO) was collected from discarded fish products. This oil was filtered and heated to 110oC and made it moisture free. The filtered and moisture free RO was transesterified to produce biodiesel. The experimental results showed that oleic acid and lauric acid were the two major components of the fish oil biodiesel (FOB). Palmitic acid and linoleic acid were found approximately same in the quantity. The fuel properties kinematic viscosity, flash point, fire point, specific gravity, calorific value, cetane number, density, acid value, saponification value, iodine value, cloud point, pour point, ash content, Cu strip corrosion, carbon residue, API gravity were determined for FOB. A comparative study of the properties was carried out with RO and Neat diesel (ND). It was found that Cetane number was 59 for FOB which was more than RO, which showed 57. Blends (B20, B40, B60, B80: example: B20: 20% FOB + 80% ND) of FOB and ND were prepared on volume basis and comparative study was carried out with ND and FOB. Performance parameters BSFE, BSEC, A:F Ratio, Break thermal efficiency were analyzed and it was found that complete replacement of neat diesel (ND) is possible without any engine modifications.

Keywords: fish oil biodiesel, raw oil, blends, performance parameters

Procedia PDF Downloads 413
1194 Factors Affecting Air Surface Temperature Variations in the Philippines

Authors: John Christian Lequiron, Gerry Bagtasa, Olivia Cabrera, Leoncio Amadore, Tolentino Moya

Abstract:

Changes in air surface temperature play an important role in the Philippine’s economy, industry, health, and food production. While increasing global mean temperature in the recent several decades has prompted a number of climate change and variability studies in the Philippines, most studies still focus on rainfall and tropical cyclones. This study aims to investigate the trend and variability of observed air surface temperature and determine its major influencing factor/s in the Philippines. A non-parametric Mann-Kendall trend test was applied to monthly mean temperature of 17 synoptic stations covering 56 years from 1960 to 2015 and a mean change of 0.58 °C or a positive trend of 0.0105 °C/year (p < 0.05) was found. In addition, wavelet decomposition was used to determine the frequency of temperature variability show a 12-month, 30-80-month and more than 120-month cycles. This indicates strong annual variations, interannual variations that coincide with ENSO events, and interdecadal variations that are attributed to PDO and CO2 concentrations. Air surface temperature was also correlated with smoothed sunspot number and galactic cosmic rays, the results show a low to no effect. The influence of ENSO teleconnection on temperature, wind pattern, cloud cover, and outgoing longwave radiation on different ENSO phases had significant effects on regional temperature variability. Particularly, an anomalous anticyclonic (cyclonic) flow east of the Philippines during the peak and decay phase of El Niño (La Niña) events leads to the advection of warm southeasterly (cold northeasterly) air mass over the country. Furthermore, an apparent increasing cloud cover trend is observed over the West Philippine Sea including portions of the Philippines, and this is believed to lessen the effect of the increasing air surface temperature. However, relative humidity was also found to be increasing especially on the central part of the country, which results in a high positive trend of heat index, exacerbating the effects on human discomfort. Finally, an assessment of gridded temperature datasets was done to look at the viability of using three high-resolution datasets in future climate analysis and model calibration and verification. Several error statistics (i.e. Pearson correlation, Bias, MAE, and RMSE) were used for this validation. Results show that gridded temperature datasets generally follows the observed surface temperature change and anomalies. In addition, it is more representative of regional temperature rather than a substitute to station-observed air temperature.

Keywords: air surface temperature, carbon dioxide, ENSO, galactic cosmic rays, smoothed sunspot number

Procedia PDF Downloads 323
1193 Optimization of Turbocharged Diesel Engines

Authors: Ebrahim Safarian, Kadir Bilen, Akif Ceviz

Abstract:

The turbocharger and turbocharging have been the inherent component of diesel engines, so that critical parameters of such engines, as BSFC(Brake Specific Fuel Consumption) or thermal efficiency, fuel consumption, BMEP(Brake Mean Effective Pressure), the power density output and emission level have been improved extensively. In general, the turbocharger can be considered as the most complex component of diesel engines, because it has closely interrelated turbomachinery concepts of the turbines and the compressors to thermodynamic fundamentals of internal combustion engines and stress analysis of all components. In this paper, a waste gate for a conventional single stage radial turbine is investigated by consideration of turbochargers operation constrains and engine operation conditions, without any detail designs in the turbine and the compressor. Amount of opening waste gate which extended between the ranges of full opened and closed valve, is demonstrated by limiting compressor boost pressure ratio. Obtaining of an optimum point by regard above mentioned items is surveyed by three linked meanline modeling programs together which consist of Turbomatch®, Compal®, Rital®madules in concepts NREC® respectively.

Keywords: turbocharger, wastegate, diesel engine, concept NREC programs

Procedia PDF Downloads 243
1192 Poly(S/DVB)HIPE Filled with Cellulose from Water Hyacinth

Authors: Metinee Kawsomboon, Thanchanok Tulaphol, Manit Nithitanakul, Jitima Preechawong

Abstract:

PolyHIPE is a porous polymeric material from polymerization of high internal phase emulsion (HIPE) which contains 74% of internal phase (disperse phase) and 26 % of external phase (continues phase). Typically, polyHIPE was prepared from styrene (S) and divinylbenzene (DVB) and they were used in various kind of applications such as catalyst support, gas adsorption, separation membranes, and tissue engineering scaffolds due to high specific surface areas, high porousity, ability to adsorb large quantities of liquid. In this research, cellulose from water hyacinth (Eichornia Crassipes), an aquatic plant that grows and spread rapidly in rivers and waterways in Thailand was added into polyHIPE to increase mechanical property of polyHIPE. Addition of unmodified and modified cellulose to poly(S/DVB)HIPE resulting in a decrease in the surface area and thermal stability of the resulting materials. Mechanical properties of the resulting polyHIPEs filled with both unmodified and modified cellulose exhibited higher compressive strength and Young’s modulus by 146.3% and 162.5% respectively, compared to unfilled polyHIPEs. The water adsorption capacity of filled polyHIPE was also improved.

Keywords: porous polymer, PolyHIPE, cellulose, surface modification, water hyacinth

Procedia PDF Downloads 142
1191 A Study on Thermodynamic Prototype for Vernacular Dwellings in Perspective of Bioclimatic Architecture

Authors: Zhenzhen Zhang

Abstract:

As major human activity places, buildings consume a large amount of energy, and residential buildings are very important part of it. An extensive research work had been conducted to research how to achieve low energy goals, vernacular dwellings and contemporary technologies are two prime parameters among them. On one hand, some researchers concentrated on vernacular dwellings which were climate-response design and could offer a better living condition without mechanic application. On the other hand, a series concepts appeared based on modern technologies, surplus energy house, bioclimatic architecture, etc. especially thermodynamic architecture which integrates the micro-climate, human activity, thermal comfort, and energy efficiency into design. How to blend the two parameters is the key research topic now, which would act as the key to how to integrate the ancient design wise and contemporary new technologies. By several cases study, this paper will represent the evolution of thermodynamic architecture and then try to develop one methodology about how to produce a typical thermodynamic prototype for one area by blending the ancient building wise and contemporary concepts to achieve both low energy consumption and surplus energy.

Keywords: vernacular dwelling, thermodynamic architecture, bioclimatic architecture, thermodynamic prototype, surplus energy

Procedia PDF Downloads 290
1190 Evaluation of Vine Stem Waste as a Filler Material for High Density Polyethylene

Authors: Y. Seki, A. Ç. Kılıç, M. Atagür, O. Özdemir, İ. Şen, K. Sever, Ö. Seydibeyoğlu, M. Sarikanat, N. Küçükdoğan

Abstract:

Cheap and abundant waste materials have been investigated as filler materials in thermoplastic polymers instead of wood- based materials because of deforestation. Vine stem, as an agricultural waste, was used as a filler material for a thermoplastic polymer, high-density polyethylene (HDPE) in this study. Agricultural waste of vine stem was collected from Manisa region, Turkey. Vine stem at different rations was used to reinforce HDPE. The effect of vine stem loading on tensile strength and Young’s modulus of composites were obtained. It was clearly observed that tensile strength and Young’s modulus of HDPE was increased by vine stem loading. Thermal stabilities of composites were obtained by using thermogravimetric analysis. Water absorption behavior of HDPE was improved by loading vine stem into HDPE. The crystallinity index values of neat HDPE and vine stem loaded HDPE composites were investigated byX-ray diffraction analysis. From this study, it was inferred that vine stem, as an agricultural waste, can be used as a filler material for HDPE.

Keywords: waste filler, high density polyethylene, composite, composite materials

Procedia PDF Downloads 517
1189 Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building

Authors: Ludovic Favre, Thibaut M. Schafer, Jean-Luc Robyr, Elena-Lavinia Niederhäuser

Abstract:

This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented.

Keywords: building's energy, control system, energy management, energy storage, genetic optimization algorithm, greenhouse gases, modelling, renewable energy

Procedia PDF Downloads 257
1188 Hydroxyapatite from Biowaste for the Reinforcement of Polymer

Authors: John O. Akindoyo, M. D. H. Beg, Suriati Binti Ghazali, Nitthiyah Jeyaratnam

Abstract:

Regeneration of bone due to the many health challenges arising from traumatic effects of bone loss, bone tumours and other bone infections is fast becoming indispensable. Over the period of time, some approaches have been undertaken to mitigate this challenge. This includes but not limited to xenografts, allografts, autografts as well as artificial substitutions like bioceramics, synthetic cements and metals. However, most of these techniques often come along with peculiar limitation and problems such as morbidity, availability, disease transmission, collateral site damage or absolute rejection by the body as the case may be. Hydroxyapatite (HA) is very compatible and suitable for this application. However, most of the common methods for HA synthesis are expensive and environmentally unfriendly. Extraction of HA from bio-wastes have been perceived not only to be cost effective, but also environment-friendly. In this research, HA was produced from bio-waste: namely bovine bones through a combination of hydrothermal chemical processes and ordinary calcination techniques. Structure and property of the HA was carried out through different characterization techniques (such as TGA, FTIR, DSC, XRD and BET). The synthesized HA was found to possess similar properties to stoichiometric HA with highly desirable thermal, degradation, structural and porous properties. This material is unique for its potential minimal cost, environmental friendliness and property controllability. It is also perceived to be suitable for tissue and bone engineering applications.

Keywords: biomaterial, biopolymer, bone, hydroxyapatite

Procedia PDF Downloads 321
1187 A Hybrid LES-RANS Approach to Analyse Coupled Heat Transfer and Vortex Structures in Separated and Reattached Turbulent Flows

Authors: C. D. Ellis, H. Xia, X. Chen

Abstract:

Experimental and computational studies investigating heat transfer in separated flows have been of increasing importance over the last 60 years, as efforts are being made to understand and improve the efficiency of components such as combustors, turbines, heat exchangers, nuclear reactors and cooling channels. Understanding of not only the time-mean heat transfer properties but also the unsteady properties is vital for design of these components. As computational power increases, more sophisticated methods of modelling these flows become available for use. The hybrid LES-RANS approach has been applied to a blunt leading edge flat plate, utilising a structured grid at a moderate Reynolds number of 20300 based on the plate thickness. In the region close to the wall, the RANS method is implemented for two turbulence models; the one equation Spalart-Allmaras model and Menter’s two equation SST k-ω model. The LES region occupies the flow away from the wall and is formulated without any explicit subgrid scale LES modelling. Hybridisation is achieved between the two methods by the blending of the nearest wall distance. Validation of the flow was obtained by assessing the mean velocity profiles in comparison to similar studies. Identifying the vortex structures of the flow was obtained by utilising the λ2 criterion to identify vortex cores. The qualitative structure of the flow compared with experiments of similar Reynolds number. This identified the 2D roll up of the shear layer, breaking down via the Kelvin-Helmholtz instability. Through this instability the flow progressed into hairpin like structures, elongating as they advanced downstream. Proper Orthogonal Decomposition (POD) analysis has been performed on the full flow field and upon the surface temperature of the plate. As expected, the breakdown of POD modes for the full field revealed a relatively slow decay compared to the surface temperature field. Both POD fields identified the most energetic fluctuations occurred in the separated and recirculation region of the flow. Latter modes of the surface temperature identified these levels of fluctuations to dominate the time-mean region of maximum heat transfer and flow reattachment. In addition to the current research, work will be conducted in tracking the movement of the vortex cores and the location and magnitude of temperature hot spots upon the plate. This information will support the POD and statistical analysis performed to further identify qualitative relationships between the vortex dynamics and the response of the surface heat transfer.

Keywords: heat transfer, hybrid LES-RANS, separated and reattached flow, vortex dynamics

Procedia PDF Downloads 231
1186 A Compact Standing-Wave Thermoacoustic Refrigerator Driven by a Rotary Drive Mechanism

Authors: Kareem Abdelwahed, Ahmed Salama, Ahmed Rabie, Ahmed Hamdy, Waleed Abdelfattah, Ahmed Abd El-Rahman

Abstract:

Conventional vapor-compression refrigeration systems rely on typical refrigerants, such as CFC, HCFC and ammonia. Despite of their suitable thermodynamic properties and their stability in the atmosphere, their corresponding global warming potential and ozone depletion potential raise concerns about their usage. Thus, the need for new refrigeration systems, which are environment-friendly, inexpensive and simple in construction, has strongly motivated the development of thermoacoustic energy conversion systems. A thermoacoustic refrigerator (TAR) is a device that is mainly consisting of a resonator, a stack and two heat exchangers. Typically, the resonator is a long circular tube, made of copper or steel and filled with Helium as a the working gas, while the stack has short and relatively low thermal conductivity ceramic parallel plates aligned with the direction of the prevailing resonant wave. Typically, the resonator of a standing-wave refrigerator has one end closed and is bounded by the acoustic driver at the other end enabling the propagation of half-wavelength acoustic excitation. The hot and cold heat exchangers are made of copper to allow for efficient heat transfer between the working gas and the external heat source and sink respectively. TARs are interesting because they have no moving parts, unlike conventional refrigerators, and almost no environmental impact exists as they rely on the conversion of acoustic and heat energies. Their fabrication process is rather simpler and sizes span wide variety of length scales. The viscous and thermal interactions between the stack plates, heat exchangers' plates and the working gas significantly affect the flow field within the plates' channels, and the energy flux density at the plates' surfaces, respectively. Here, the design, the manufacture and the testing of a compact refrigeration system that is based on the thermoacoustic energy-conversion technology is reported. A 1-D linear acoustic model is carefully and specifically developed, which is followed by building the hardware and testing procedures. The system consists of two harmonically-oscillating pistons driven by a simple 1-HP rotary drive mechanism operating at a frequency of 42Hz -hereby, replacing typical expensive linear motors and loudspeakers-, and a thermoacoustic stack within which the energy conversion of sound into heat is taken place. Air at ambient conditions is used as the working gas while the amplitude of the driver's displacement reaches 19 mm. The 30-cm-long stack is a simple porous ceramic material having 100 square channels per square inch. During operation, both oscillating-gas pressure and solid-stack temperature are recorded for further analysis. Measurements show a maximum temperature difference of about 27 degrees between the stack hot and cold ends with a Carnot coefficient of performance of 11 and estimated cooling capacity of five Watts, when operating at ambient conditions. A dynamic pressure of 7-kPa-amplitude is recorded, yielding a drive ratio of 7% approximately, and found in a good agreement with theoretical prediction. The system behavior is clearly non-linear and significant non-linear loss mechanisms are evident. This work helps understanding the operation principles of thermoacoustic refrigerators and presents a keystone towards developing commercial thermoacoustic refrigerator units.

Keywords: refrigeration system, rotary drive mechanism, standing-wave, thermoacoustic refrigerator

Procedia PDF Downloads 368
1185 Surface Roughness Formed during Hybrid Turning of Inconel Alloy

Authors: Pawel Twardowski, Tadeusz Chwalczuk, Szymon Wojciechowski

Abstract:

Inconel 718 is a material characterized by the unique mechanical properties, high temperature strength, high thermal conductivity and the corrosion resistance. However, these features affect the low machinability of this material, which is usually manifested by the intense tool wear and low surface finish. Therefore, this paper is focused on the evaluation of surface roughness during hybrid machining of Inconel 718. The primary aim of the study was to determine the relations between the vibrations generated during hybrid turning and the formed surface roughness. Moreover, the comparison of tested machining techniques in terms of vibrations, tool wear and surface roughness has been made. The conducted tests included the face turning of Inconel 718 with laser assistance in the range of variable cutting speeds. The surface roughness was inspected with the application of stylus profile meter and accelerations of vibrations were measured with the use of three-component piezoelectric accelerometer. The carried out research shows that application of laser assisted machining can contribute to the reduction of surface roughness and cutting vibrations, in comparison to conventional turning. Moreover, the obtained results enable the selection of effective cutting speed allowing the improvement of surface finish and cutting dynamics.

Keywords: hybrid machining, nickel alloys, surface roughness, turning, vibrations

Procedia PDF Downloads 324
1184 Analysis of Heat Transfer in a Closed Cavity Ventilated Inside

Authors: Benseghir Omar, Bahmed Mohamed

Abstract:

In this work, we presented a numerical study of the phenomenon of heat transfer through the laminar, incompressible and steady mixed convection in a closed square cavity with the left vertical wall of the cavity is subjected to a warm temperature, while the right wall is considered to be cold. The horizontal walls are assumed adiabatic. The governing equations were discretized by finite volume method on a staggered mesh and the SIMPLER algorithm was used for the treatment of velocity-pressure coupling. The numerical simulations were performed for a wide range of Reynolds numbers 1, 10, 100, and 1000 numbers are equal to 0.01,0.1 Richardson, 0.5,1 and 10.The analysis of the results shows a flow bicellular (two cells), one is created by the speed of the fan placed in the inner cavity, one on the left is due to the difference between the temperatures right wall and the left wall. Knowledge of the intensity of each of these cells allowed us to get an original result. And the values obtained from each of Nuselt convection which allow to know the rate of heat transfer in the cavity.Finally we find that there is a significant influence on the position of the fan on the heat transfer (Nusselt evolution) for values of Reynolds studied and for low values of Richardson handed this influence is negligible for high values of the latter.

Keywords: thermal transfer, mixed convection, square cavity, finite volume method

Procedia PDF Downloads 433
1183 Influence of Vegetable Oil-Based Controlled Cutting Fluid Impinging Supply System on Micro Hardness in Machining of Ti-6Al-4V

Authors: Salah Gariani, Islam Shyha, Fawad Inam, Dehong Huo

Abstract:

A controlled cutting fluid impinging supply system (CUT-LIST) was developed to deliver an accurate amount of cutting fluid into the machining zone via well-positioned coherent nozzles based on a calculation of the heat generated. The performance of the CUT-LIST was evaluated against a conventional flood cutting fluid supply system during step shoulder milling of Ti-6Al-4V using vegetable oil-based cutting fluid. In this paper, the micro-hardness of the machined surface was used as the main criterion to compare the two systems. CUT-LIST provided significant reductions in cutting fluid consumption (up to 42%). Both systems caused increased micro-hardness value at 100 µm from the machined surface, whereas a slight reduction in micro-hardness of 4.5% was measured when using CUL-LIST. It was noted that the first 50 µm is the soft sub-surface promoted by thermal softening, whereas down to 100 µm is the hard sub-surface caused by the cyclic internal work hardening and then gradually decreased until it reached the base material nominal hardness. It can be concluded that the CUT-LIST has always given lower micro-hardness values near the machined surfaces in all conditions investigated.

Keywords: impinging supply system, micro-hardness, shoulder milling, Ti-6Al-4V, vegetable oil-based cutting fluid

Procedia PDF Downloads 286
1182 Investigation of Fire Damaged Reinforced Concrete Walls with Axial Force

Authors: Hyun Ah Yoon, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin

Abstract:

Reinforced concrete (RC) shear wall system of residential buildings is popular in South Korea. RC walls are subjected to axial forces in common and the effect of axial forces on the strength loss of the fire damaged walls has not been investigated. This paper aims at investigating temperature distribution on fire damaged concrete walls having different axial loads. In the experiments, a variable of specimens is axial force ratio. RC walls are fabricated with 150mm of wall thicknesses, 750mm of lengths and 1,300mm of heights having concrete strength of 24MPa. After curing, specimens are heated on one surface with ISO-834 standard time-temperature curve for 2 hours and temperature distributions during the test are measured using thermocouples inside the walls. The experimental results show that the temperature of the RC walls exposed to fire increases as axial force ratio increases. To verify the experiments, finite element (FE) models are generated for coupled temperature-structure analyses. The analytical results of thermal behaviors are in good agreement with the experimental results. The predicted displacement of the walls decreases when the axial force increases. 

Keywords: axial force ratio, fire, reinforced concrete wall, residual strength

Procedia PDF Downloads 461
1181 Investigation on the Fire Resistance of Ultra-High Performance Concrete with Natural Fibers

Authors: Dong Zhang, Kang Hai Tan, Aravind Dasari

Abstract:

Increasing concern on environmental sustainability and waste management has driven the construction and building sector towards renewable materials. In this work, we have explored the usage of natural fibers as an alternative to synthetic fibers like polypropylene (PP) in ultra-high performance concrete (UHPC). PP fibers are incorporated into concrete to resist explosive thermal spalling of UHPC during a fire exposure scenario. Experimental studies on the effect of natural fiber on the mechanical properties and spalling resistance of UHCP were conducted. The residual mechanical properties of UHPC with natural fibers were tested after heating to different temperatures. Spalling behavior of UHPC with natural fibers is also assessed by heating the samples according to ISO 834 fire curve. A range of analytical, physical and microscopic characterization techniques was also used on the concrete samples before and after being subjected to elevated temperature to investigate the phase and microstructural change of the sample. The findings show that natural fibers are able to improve fire resistance of UHPC. Adding natural fibers can prevent UHPC from spalling at high temperature. This study provides an alternative, which is at low cost and environmentally friendly, to prevent spalling of UHPC.

Keywords: high temperature, natural fiber, spalling, ultra-high performance concrete

Procedia PDF Downloads 177
1180 Investigation of Thickness Dependent Optical Properties of Bi₂Sb(₃-ₓ):Te ₓ (where x = 0.1, 0.2, 0.3) Thin Films

Authors: Reena Panchal, Maunik Jani, S. M. Vyas, G. R. Pandya

Abstract:

Group V-VI compounds have a narrow bandgap, which makes them useful in many electronic devices. In bulk form, BiSbTe alloys are semi-metals or semi-conductors. They are used in thermoelectric and thermomagnetic devices, fabrication of ionizing, radiation detectors, LEDs, solid-state electrodes, photosensitive heterostructures, solar cells, ionic batteries, etc. Thin films of Bi₂Sb(₃-ₓ):Tex (where x = 0.1, 0.2, 0.3) of various thicknesses were grown by the thermal evaporation technique on a glass substrate at room temperature under a pressure of 10-₄ mbar for different time periods such as 10s, 15s, and 20s. The thickness of these thin films was also obtained by using the swaneopeol envelop method and compared those values with instrumental values. The optical absorption (%) data of thin films was measured in the wave number range of 650 cm-¹ to 4000 cm-¹. The band gap has been evaluated from these optical absorption data, and the results indicate that absorption occurred by a direct interband transition. It was discovered that when thickness decreased, the band gap increased; this dependency was inversely related to the square of thickness, which is explained by the quantum size effect. Using the values of bandgap, found the values of optical electronegativity (∆χ) and optical refractive index (η) using various relations.

Keywords: thin films, band gap, film thickness, optical study, size effect

Procedia PDF Downloads 18
1179 High Density Polyethylene Biocomposites Reinforced with Hydroxyapatite Nanorods and Carbon Nanofibers for Joint Replacements

Authors: Chengzhu Liao, Jianbo Zhang, Haiou Wang, Jing Ming, Huili Li, Yanyan Li, Hua Cheng, Sie Chin Tjong

Abstract:

Since Bonfield’s group’s pioneer work, there has been growing interest amongst the materials scientists, biomedical engineers and surgeons in the use of novel biomaterials for the treatment of bone defects and injuries. This study focuses on the fabrication, mechanical characterization and biocompatibility evaluation of high density polyethylene (HDPE) reinforced with hydroxyapatite nanorods (HANR) and carbon nanofibers (CNF). HANRs of 20 wt% and CNFs of 0.5-2 wt% were incorporated into HDPE to form biocomposites using traditional melt-compounding and injection molding techniques. The mechanical measurements show that CNF additions greatly improve the tensile strength and Young’s modulus of HDPE and HDPE-20% nHA composites. Meanwhile, the nHA and CNF fillers were found to be effective to improve dimensional and thermal stability of HDPE. The results of osteoblast cell cultivation and dimethyl thiazolyl diphenyl thiazolyl tetrazolium (MTT) tests showed that the HDPE/ CNF-nHA nanocomposites are biocompatible. Such HDPE/ CNF-nHA hybrids are found to be potential biomaterials for making orthopedic joint/bone replacements.

Keywords: biocompatibility, biocomposite, carbon nanofiber, high density polyethylene, hydroxyapatite

Procedia PDF Downloads 303
1178 Inverse Heat Conduction Analysis of Cooling on Run-Out Tables

Authors: M. S. Gadala, Khaled Ahmed, Elasadig Mahdi

Abstract:

In this paper, we introduced a gradient-based inverse solver to obtain the missing boundary conditions based on the readings of internal thermocouples. The results show that the method is very sensitive to measurement errors, and becomes unstable when small time steps are used. The artificial neural networks are shown to be capable of capturing the whole thermal history on the run-out table, but are not very effective in restoring the detailed behavior of the boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary condition profile is different. GA and PSO are more effective in finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. A variation of the basic PSO, called CRPSO, showed the best performance among the three versions. Also, PSO proved to be effective in handling noisy data, especially when its performance parameters were tuned. An increase in the self-confidence parameter was also found to be effective, as it increased the global search capabilities of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it combines the efficiency and effectiveness required by these problems.

Keywords: inverse analysis, function specification, neural net works, particle swarm, run-out table

Procedia PDF Downloads 240
1177 Heat Transfer Analysis of Corrugated Plate Heat Exchanger

Authors: Ketankumar Gandabhai Patel, Jalpit Balvantkumar Prajapati

Abstract:

Plate type heat exchangers has many thin plates that are slightly apart and have very large surface areas and fluid flow passages that are good for heat transfer. This can be a more effective heat exchanger than the tube or shell heat exchanger due to advances in brazing and gasket technology that have made this plate exchanger more practical. Plate type heat exchangers are most widely used in food processing industries and dairy industries. Mostly fouling occurs in plate type heat exchanger due to deposits create an insulating layer over the surface of the heat exchanger, that decreases the heat transfer between fluids and increases the pressure drop. The pressure drop increases as a result of the narrowing of the flow area, which increases the gap velocity. Therefore, the thermal performance of the heat exchanger decreases with time, resulting in an undersized heat exchanger and causing the process efficiency to be reduced. Heat exchangers are often over sized by 70 to 80%, of which 30 % to 50% is assigned to fouling. The fouling can be reduced by varying some geometric parameters and flow parameters. Based on the study, a correlation will estimate for Nusselt number as a function of Reynolds number, Prandtl number and chevron angle.

Keywords: heat transfer coefficient, single phase flow, mass flow rate, pressure drop

Procedia PDF Downloads 312
1176 Detectability Analysis of Typical Aerial Targets from Space-Based Platforms

Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu

Abstract:

In order to achieve effective detection of aerial targets over long distances from space-based platforms, the mechanism of interaction between the radiation characteristics of the aerial targets and the complex scene environment including the sunlight conditions, underlying surfaces and the atmosphere are analyzed. A large simulated database of space-based radiance images is constructed considering several typical aerial targets, target working modes (flight velocity and altitude), illumination and observation angles, background types (cloud, ocean, and urban areas) and sensor spectrums ranging from visible to thermal infrared. The target detectability is characterized by the signal-to-clutter ratio (SCR) extracted from the images. The influence laws of the target detectability are discussed under different detection bands and instantaneous fields of view (IFOV). Furthermore, the optimal center wavelengths and widths of the detection bands are suggested, and the minimum IFOV requirements are proposed. The research can provide theoretical support and scientific guidance for the design of space-based detection systems and on-board information processing algorithms.

Keywords: space-based detection, aerial targets, detectability analysis, scene environment

Procedia PDF Downloads 144
1175 Thermal and Caloric Imperfections Effect on the Supersonic Flow Parameters with Application for Air in Nozzles

Authors: Merouane Salhi, Toufik Zebbiche, Omar Abada

Abstract:

When the stagnation pressure of perfect gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with this pressure. The gas does not remain perfect. Its state equation change and it becomes a real gas. In this case, the effects of molecular size and inter molecular attraction forces intervene to correct the state equation. The aim of this work is to show and discuss the effect of stagnation pressure on supersonic thermo dynamical, physical and geometrical flow parameters, to find a general case for real gas. With the assumptions that Berthelot’s state equation accounts for molecular size and inter molecular force effects, expressions are developed for analyzing supersonic flow for thermally and calorically imperfect gas lower than the dissociation molecules threshold. The designs parameters for supersonic nozzle like thrust coefficient depend directly on stagnation parameters of the combustion chamber. The application is for air. A computation of error is made in this case to give a limit of perfect gas model compared to real gas model.

Keywords: supersonic flow, real gas model, Berthelot’s state equation, Simpson’s method, condensation function, stagnation pressure

Procedia PDF Downloads 524
1174 Changes in Textural Properties of Zucchini Slices with Deep-Fat-Frying

Authors: E. Karacabey, Ş. G. Özçelik, M. S. Turan, C. Baltacıoğlu, E. Küçüköner

Abstract:

Changes in textural properties of zucchini slices under effects of frying conditions were investigated. Frying time and temperature were interested process variables like slice thickness. Slice thickness was studied at three levels (2, 3, and 4 mm). Frying process was performed at two temperature levels (160 and 180 °C) and each for five different process time periods (1, 2, 3, 5, 8 and 10 min). As frying oil sunflower oil was used. Before frying zucchini slices were thermally processes in boiling water for 90 seconds to inactivate at least 80% of plant’s enzymes. After thermal process, zucchini slices were fried in an industrial fryer at specified temperature and time pairs. Fried slices were subjected to textural profile analysis (TPA) to determine textural properties. In this extent hardness, elasticity, cohesion, chewiness, firmness values of slices were figured out. Statistical analysis indicated significant variations in the studied textural properties with process conditions (p < 0.05). Hardness and firmness were determined for fresh and thermally processes zucchini slices to compare each others. Differences in hardness and firmness of fresh, thermally processed and fried slices were found to be significant (p < 0.05). This project (113R015) has been supported by TUBITAK.

Keywords: sunflower oil, hardness, firmness, slice thickness, frying temperature, frying time

Procedia PDF Downloads 444
1173 Passive Heat Exchanger for Proton Exchange Membrane Fuel Cell Cooling

Authors: Ivan Tolj

Abstract:

Water produced during electrochemical reaction in Proton Exchange Membrane (PEM) fuel cell can be used for internal humidification of reactant gases; hydrogen and air. On such a way it is possible to eliminate expensive external humidifiers and simplify fuel cell balance-of-plant (BoP). When fuel cell operates at constant temperature (usually between 60 °C and 80 °C) relatively cold and dry ambient air heats up quickly upon entering channels which cause further drop in relative humidity (below 20%). Low relative humidity of reactant gases dries up polymer membrane and decrease its proton conductivity which results in fuel cell performance drop. It is possible to maintain such temperature profile throughout fuel cell cathode channel which will result in close to 100 % RH. In order to achieve this, passive heat exchanger was designed using commercial CFD software (ANSYS Fluent). Such passive heat exchanger (with variable surface area) is suitable for small scale PEM fuel cells. In this study, passive heat exchanger for single PEM fuel cell segment (with 20 x 1 cm active area) was developed. Results show close to 100 % RH of air throughout cathode channel with increased fuel cell performance (mainly improved polarization curve) and improved durability.

Keywords: PEM fuel cell, passive heat exchange, relative humidity, thermal management

Procedia PDF Downloads 277
1172 Interfacial Investigation and Chemical Bonding in Graphene Reinforced Alumina Ceramic Nanocomposites

Authors: Iftikhar Ahmad, Mohammad Islam

Abstract:

Thermally exfoliated graphene nanomaterial was reinforced into Al2O3 ceramic and the nanocomposites were consolidated using rapid high-frequency induction heat sintering route. The resulting nanocomposites demonstrated higher mechanical properties due to efficient GNS incorporation and chemical interaction with the Al2O3 matrix grains. The enhancement in mechanical properties is attributed to (i) uniformly-dispersed GNS in the consolidated structure (ii) ability of GNS to decorate Al2O3 nanoparticles and (iii) strong GNS/Al2O3 chemical interaction during colloidal mixing and pullout/crack bridging toughening mechanisms during mechanical testing. The GNS/Al2O3 interaction during different processing stages was thoroughly examined by thermal and structural investigation of the interfacial area. The formation of an intermediate aluminum oxycarbide phase (Al2OC) via a confined carbothermal reduction reaction at the GNS/Al2O3 interface was observed using advanced electron microscopes. The GNS surface roughness improves GNS/Al2O3 mechanical locking and chemical compatibility. The sturdy interface phase facilitates efficient load transfer and delayed failure through impediment of crack propagation. The resulting nanocomposites, therefore, offer superior toughness.

Keywords: ceramics, nanocomposites, interfaces, nanostructures, electron microscopy, Al2O3

Procedia PDF Downloads 358