Search results for: High Speed Camera (HSC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21707

Search results for: High Speed Camera (HSC)

18947 Data Presentation of Lane-Changing Events Trajectories Using HighD Dataset

Authors: Basma Khelfa, Antoine Tordeux, Ibrahima Ba

Abstract:

We present a descriptive analysis data of lane-changing events in multi-lane roads. The data are provided from The Highway Drone Dataset (HighD), which are microscopic trajectories in highway. This paper describes and analyses the role of the different parameters and their significance. Thanks to HighD data, we aim to find the most frequent reasons that motivate drivers to change lanes. We used the programming language R for the processing of these data. We analyze the involvement and relationship of different variables of each parameter of the ego vehicle and the four vehicles surrounding it, i.e., distance, speed difference, time gap, and acceleration. This was studied according to the class of the vehicle (car or truck), and according to the maneuver it undertook (overtaking or falling back).

Keywords: autonomous driving, physical traffic model, prediction model, statistical learning process

Procedia PDF Downloads 243
18946 Contribution at Dimensioning of the Energy Dissipation Basin

Authors: M. Aouimeur

Abstract:

The environmental risks of a dam and particularly the security in the Valley downstream of it,, is a very complex problem. Integrated management and risk-sharing become more and more indispensable. The definition of "vulnerability “concept can provide assistance to controlling the efficiency of protective measures and the characterization of each valley relatively to the floods's risk. Security can be enhanced through the integrated land management. The social sciences may be associated to the operational systems of civil protection, in particular warning networks. The passage of extreme floods in the site of the dam causes the rupture of this structure and important damages downstream the dam. The river bed could be damaged by erosion if it is not well protected. Also, we may encounter some scouring and flooding problems in the downstream area of the dam. Therefore, the protection of the dam is crucial. It must have an energy dissipator in a specific place. The basin of dissipation plays a very important role for the security of the dam and the protection of the environment against floods downstream the dam. It allows to dissipate the potential energy created by the dam with the passage of the extreme flood on the weir and regularize in a natural manner and with more security the discharge or elevation of the water plan on the crest of the weir, also it permits to reduce the speed of the flow downstream the dam, in order to obtain an identical speed to the river bed. The problem of the dimensioning of a classic dissipation basin is in the determination of the necessary parameters for the dimensioning of this structure. This communication presents a simple graphical method, that is fast and complete, and a methodology which determines the main features of the hydraulic jump, necessary parameters for sizing the classic dissipation basin. This graphical method takes into account the constraints imposed by the reality of the terrain or the practice such as the one related to the topography of the site, the preservation of the environment equilibrium and the technical and economic side.This methodology is to impose the loss of head DH dissipated by the hydraulic jump as a hypothesis (free design) to determine all the others parameters of classical dissipation basin. We can impose the loss of head DH dissipated by the hydraulic jump that is equal to a selected value or to a certain percentage of the upstream total head created by the dam. With the parameter DH+ =(DH/k),(k: critical depth),the elaborate graphical representation allows to find the other parameters, the multiplication of these parameters by k gives the main characteristics of the hydraulic jump, necessary parameters for the dimensioning of classic dissipation basin.This solution is often preferred for sizing the dissipation basins of small concrete dams. The results verification and their comparison to practical data, confirm the validity and reliability of the elaborate graphical method.

Keywords: dimensioning, energy dissipation basin, hydraulic jump, protection of the environment

Procedia PDF Downloads 570
18945 A Combined High Gain-Higher Order Sliding Mode Controller for a Class of Uncertain Nonlinear Systems

Authors: Abderraouf Gaaloul, Faouzi Msahli

Abstract:

The use of standard sliding mode controller, usually, leads to the appearing of an undesirable chattering phenomenon affecting the control signal. Such problem can be overcome using a higher-order sliding mode controller (HOSMC) which preserves the main properties of the standard sliding mode and deliberately increases the control smoothness. In this paper, we propose a new HOSMC for a class of uncertain multi-input multi-output nonlinear systems. Based on high gain and integral sliding mode paradigms, the established control scheme removes theoretically the chattering phenomenon and provides the stability of the control system. Numerical simulations are developed to show the effectiveness of the proposed controller when applied to solve a control problem of two water levels into a quadruple-tank process.

Keywords: nonlinear systems, sliding mode control, high gain, higher order

Procedia PDF Downloads 309
18944 Simulations of High-Intensity, Thermionic Electron Guns for Electron Beam Thermal Processing Including Effects of Space Charge Compensation

Authors: O. Hinrichs, H. Franz, G. Reiter

Abstract:

Electron guns have a key function in a series of thermal processes, like EB (electron beam) melting, evaporation or welding. These techniques need a high-intensity continuous electron beam that defocuses itself due to high space charge forces. A proper beam transport throughout the magnetic focusing system can be ensured by a space charge compensation via residual gas ions. The different pressure stages in the EB gun cause various degrees of compensation. A numerical model was installed to simulate realistic charge distributions within the beam by using CST-Particle Studio code. We will present current status of beam dynamic simulations. This contribution will focus on the creation of space charge ions and their influence on beam and gun components. Furthermore, the beam transport in the gun will be shown for different beam parameters. The electron source allows to produce beams with currents of 3 A to 15 A and energies of 40 keV to 45 keV.

Keywords: beam dynamic simulation, space charge compensation, thermionic electron source, EB melting, EB thermal processing

Procedia PDF Downloads 323
18943 Utilizing Hybrid File Mapping for High-Performance I/O

Authors: Jaechun No

Abstract:

As the technology of NAND flash memory rapidly grows, SSD is becoming an excellent alternative for storage solutions, because of its high random I/O throughput and low power consumption. These SSD potentials have drawn great attention from IT enterprises that seek for better I/O performance. However, high SSD cost per capacity makes it less desirable to construct a large-scale storage subsystem solely composed of SSD devices. An alternative is to build a hybrid storage subsystem where both HDD and SSD devices are incorporated in an economic manner, while employing the strengths of both devices. This paper presents a hybrid file system, called hybridFS, that attempts to utilize the advantages of HDD and SSD devices, to provide a single, virtual address space by integrating both devices. HybridFS not only proposes an efficient implementation for the file management in the hybrid storage subsystem but also suggests an experimental framework for making use of the excellent features of existing file systems. Several performance evaluations were conducted to verify the effectiveness and suitability of hybridFS.

Keywords: hybrid file mapping, data layout, hybrid device integration, extent allocation

Procedia PDF Downloads 488
18942 Evaluation of Fire Resistance of High Strength Reinforced Concrete Columns with Spiral Wire Rope

Authors: Ki-Seok Kwon, Heung-Youl Kim

Abstract:

This research evaluated fire resistances of high-strengthened reinforced concrete (RC) column, spiral wire rope which applied with 60, and 100MPa. The fire resistance test of RC column with loading condition was conducted following the ISO 834 (3 hours). This experiment set mixing of fiber (PP fiber, Steel fiber) and types of horizontal reinforcement as a variable of reinforcement method. The fire resistance test measured the main steel bar’s max and mean temperatures also the shrinkage and shrinking ratio of columns(500 X 500 X 3,000mm) with loadings. As a result, the specimen of 60MPa attained three hours fire resistance with only spiral wire rope. Also, the specimen of 100MPa must be reinforced with fibers and spiral wire rope to attain three hours fire resistance.

Keywords: reinforced concrete column, high strength concrete, wire rope, fire resistance test

Procedia PDF Downloads 307
18941 Aerodynamic Analysis of Vehicles in the Wind Tunnel and Water Tunnel

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

The simulation in wind tunnel is used thoroughly to model real situations of drainages of air. Besides the automotive industry, a great number of applications can be numbered: dispersion of pollutant, studies of pedestrians comfort and dispersion of particles. This work had the objective of visualizing the characteristics aerodynamics of two automobiles in different ways. To accomplish that drainage of air a fan that generated a speed exists (measured with anemometer of hot thread) of 4,1m/s and 4,95m/s. To visualize the path of the air through the cars, in the wind tunnel, smoke was used, obtained with it burns of vegetable oil. For “to do smoke” vegetable oil was used, that was burned for a tension of 20 V generated by a thread of 2,5 mm. The cars were placed inside of the wind tunnel with the drainage of “air-smoke” and photographed, registering like this the path lines around them, in the 3 different speeds.

Keywords: aerodynamics, vehicle drag, vegetable oil, wind tunnel

Procedia PDF Downloads 583
18940 Design and Modelling of Ge/GaAs Hetero-structure Bipolar Transistor

Authors: Samson Mil'shtein, Dhawal N. Asthana

Abstract:

The presented heterostructure n-p-n bipolar transistor is comprised of Ge/GaAs heterojunctions consisting of 0.15µm thick emitter and 0.65µm collector junctions. High diffusivity of carriers in GaAs base was major motivation of current design. We avoided grading of the base which is common in heterojunction bipolar transistors, in order to keep the electron diffusivity as high as possible. The electrons injected into the 0.25µm thick p-type GaAs base with not very high doping (1017cm-3). The designed HBT enables cut off frequency on the order of 150GHz. The Ge/GaAs heterojunctions presented in our paper have proved to work better than comparable HBTs having GaAs bases and emitter/collector junctions made, for example, of AlGaAs/GaAs or other III-V compound semiconductors. The difference in lattice constants between Ge and GaAs is less than 2%. Therefore, there is no need of transition layers between Ge emitter and GaAs base. Significant difference in energy gap of these two materials presents new scope for improving performance of the emitter. With the complete structure being modelled and simulated using TCAD SILVACO, the collector/ emitter offset voltage of the device has been limited to a reasonable value of 63 millivolts by the dint of low energy band gap value associated with Ge emitter. The efficiency of the emitter in our HBT is 86%. Use of Germanium in the emitter and collector regions presents new opportunities for integration of this vertical device structure into silicon substrate.

Keywords: Germanium, Gallium Arsenide, heterojunction bipolar transistor, high cut-off frequency

Procedia PDF Downloads 406
18939 Evaluation System of Spatial Potential Under Bridges in High Density Urban Areas of Chongqing Municipality and Applied Research on Suitability

Authors: Xvelian Qin

Abstract:

Urban "organic renewal" based on the development of existing resources in high-density urban areas has become the mainstream of urban development in the new era. As an important stock resource of public space in high-density urban areas, promoting its value remodeling is an effective way to alleviate the shortage of public space resources. However, due to the lack of evaluation links in the process of underpass space renewal, a large number of underpass space resources have been left idle, facing the problems of low space conversion efficiency, lack of accuracy in development decision-making, and low adaptability of functional positioning to citizens' needs. Therefore, it is of great practical significance to construct the evaluation system of under-bridge space renewal potential and explore the renewal mode. In this paper, some of the under-bridge spaces in the main urban area of Chongqing are selected as the research object. Through the questionnaire interviews with the users of the built excellent space under the bridge, three types of six levels and twenty-two potential evaluation indexes of "objective demand factor, construction feasibility factor and construction suitability factor" are selected, including six levels of land resources, infrastructure, accessibility, safety, space quality and ecological environment. The analytical hierarchy process and expert scoring method are used to determine the index weight, construct the potential evaluation system of the space under the bridge in high-density urban areas of Chongqing, and explore the direction of renewal and utilization of its suitability.

Keywords: space under bridge, potential evaluation, high density urban area, updated using

Procedia PDF Downloads 61
18938 Synthesis and Two-Photon Polymerization of a Cytocompatibility Tyramine Functionalized Hyaluronic Acid Hydrogel That Mimics the Chemical, Mechanical, and Structural Characteristics of Spinal Cord Tissue

Authors: James Britton, Vijaya Krishna, Manus Biggs, Abhay Pandit

Abstract:

Regeneration of the spinal cord after injury remains a great challenge due to the complexity of this organ. Inflammation and gliosis at the injury site hinder the outgrowth of axons and hence prevent synaptic reconnection and reinnervation. Hyaluronic acid (HA) is the main component of the spinal cord extracellular matrix and plays a vital role in cell proliferation and axonal guidance. In this study, we have synthesized and characterized a photo-cross-linkable HA-tyramine (tyr) hydrogel from a chemical, mechanical, electrical, biological and structural perspective. From our experimentation, we have found that HA-tyr can be synthesized with controllable degrees of tyramine substitution using click chemistry. The complex modulus (G*) of HA-tyr can be tuned to mimic the mechanical properties of the native spinal cord via optimization of the photo-initiator concentration and UV exposure. We have examined the degree of tyramine-tyramine covalent bonding (polymerization) as a function of UV exposure and photo-initiator use via Photo and Nuclear magnetic resonance spectroscopy. Both swelling and enzymatic degradation assays were conducted to examine the resilience of our 3D printed hydrogel constructs in-vitro. Using a femtosecond 780nm laser, the two-photon polymerization of HA-tyr hydrogel in the presence of riboflavin photoinitiator was optimized. A laser power of 50mW and scan speed of 30,000 μm/s produced high-resolution spatial patterning within the hydrogel with sustained mechanical integrity. Using dorsal root ganglion explants, the cytocompatibility of photo-crosslinked HA-tyr was assessed. Using potentiometry, the electrical conductivity of photo-crosslinked HA-tyr was assessed and compared to that of native spinal cord tissue as a function of frequency. In conclusion, we have developed a biocompatible hydrogel that can be used for photolithographic 3D printing to fabricate tissue engineered constructs for neural tissue regeneration applications.

Keywords: 3D printing, hyaluronic acid, photolithography, spinal cord injury

Procedia PDF Downloads 142
18937 Approximation of Selenium Content in Watermelons for Use as a Food Supplement

Authors: Roggers Mutwiri Aron

Abstract:

Watermelons are fruits that belong to the family cucurbitaceous. There are many types of watermelons have been positively identified to exist in the world. A watermelon consists of four distinct parts namely; seeds, pink flesh, white flesh and peel. It also contains high content of water of approximately 90% that is rich in essential minerals such as, phosphorous, calcium, magnesium, and potassium, sodium trace amounts of copper, iron, zinc and selenium. Watermelons have substantial amounts of boron, iodine, chromium, silicon and molybdenum. The levels of nutrients in different parts of the watermelons may be different. Selenium has been found to be a very useful food supplement especially for people living with HIV/AIDS. An experimental study was carried out to estimate the amount Se in different parts of the watermelon. Analysis of sampled watermelons was conducted using atomic absorption spectrophotometer. The results of the study indicated that high content of Se was present in the seeds compared to the other parts. High content of Se was also found in the water contained in the watermelon seeds.

Keywords: food supplement, watermelons, HIV/AIDS, nutrition, fruits

Procedia PDF Downloads 138
18936 Business Model Innovation and Firm Performance: Exploring Moderation Effects

Authors: Mohammad-Ali Latifi, Harry Bouwman

Abstract:

Changes in the business environment accelerated dramatically over the last decades as a result of changes in technology, regulation, market, and competitors’ behavior. Firms need to change the way they do business in order to survive or maintain their growth. Innovating business model (BM) can create competitive advantages and enhance firm performance. However, many companies fail to achieve expected outcomes in practice, mostly due to irreversible fundamental changes in key components of the company’s BM. This leads to more ambiguity, uncertainty, and risks associated with business performance. However, the relationship among BM Innovation, moderating factors, and the firm’s overall performance is by and large ignored in the current literature. In this study, we identified twenty moderating factors from our comprehensive literature review. We categorized these factors based on two criteria regarding the extent to which: the moderating factors can be controlled and managed by firms, and they are generic or specific changes to the firms. This leads to four moderation groups. The first group is BM implementation, which includes management support, employees’ commitment, employees’ skills, communication, detailed plan. The second group is called BM practices, which consists of BM tooling, BM experimentation, the scope of change, speed of change, degree of novelty. The third group is Firm characteristics, including firm size, age, and ownership. The last group is called Industry characteristics, which considers the industry sector, competitive intensity, industry life cycle, environmental dynamism, high-tech vs. low-tech industry. Through collecting data from 508 European small and medium-sized enterprises (SMEs) and using the structural equation modeling technique, the developed moderation model was examined. Results revealed that all factors highlighted through these four groups moderate the relation between BMI and firm performance significantly. Particularly, factors related to BM-Implementation and BM-Practices are more manageable and would potentially improve firm overall performance. We believe that this result is more important for researchers and practitioners since the possibility of working on factors in Firm characteristics and Industry characteristics groups are limited, and the firm can hardly control and manage them to improve the performance of BMI efforts.

Keywords: business model innovation, firm performance, implementation, moderation

Procedia PDF Downloads 107
18935 Modelling Vehicle Fuel Consumption Utilising Artificial Neural Networks

Authors: Aydin Azizi, Aburrahman Tanira

Abstract:

The main source of energy used in this modern age is fossil fuels. There is a myriad of problems that come with the use of fossil fuels, out of which the issues with the greatest impact are its scarcity and the cost it imposes on the planet. Fossil fuels are the only plausible option for many vital functions and processes; the most important of these is transportation. Thus, using this source of energy wisely and as efficiently as possible is a must. The aim of this work was to explore utilising mathematical modelling and artificial intelligence techniques to enhance fuel consumption in passenger cars by focusing on the speed at which cars are driven. An artificial neural network with an error less than 0.05 was developed to be applied practically as to predict the rate of fuel consumption in vehicles.

Keywords: mathematical modeling, neural networks, fuel consumption, fossil fuel

Procedia PDF Downloads 388
18934 Credit Risk Evaluation of Dairy Farming Using Fuzzy Logic

Authors: R. H. Fattepur, Sameer R. Fattepur, D. K. Sreekantha

Abstract:

Dairy Farming is one of the key industries in India. India is the leading producer and also the consumer of milk, milk-based products in the world. In this paper, we have attempted to the replace the human expert system and to develop an artificial expert system prototype to increase the speed and accuracy of decision making dairy farming credit risk evaluation. Fuzzy logic is used for dealing with uncertainty, vague and acquired knowledge, fuzzy rule base method is used for representing this knowledge for building an effective expert system.

Keywords: expert system, fuzzy logic, knowledge base, dairy farming, credit risk

Procedia PDF Downloads 344
18933 Finite Element Method Analysis of Occluded-Ear Simulator and Natural Human Ear Canal

Authors: M. Sasajima, T. Yamaguchi, Y. Hu, Y. Koike

Abstract:

In this paper, we discuss the propagation of sound in the narrow pathways of an occluded-ear simulator typically used for the measurement of insert-type earphones. The simulator has a standardized frequency response conforming to the international standard (IEC60318-4). In narrow pathways, the speed and phase of sound waves are modified by viscous air damping. In our previous paper, we proposed a new finite element method (FEM) to consider the effects of air viscosity in this type of audio equipment. In this study, we will compare the results from the ear simulator FEM model, and those from a three dimensional human ear canal FEM model made from computed tomography images, with the measured frequency response data from the ear canals of 18 people.

Keywords: ear simulator, FEM, viscosity, human ear canal

Procedia PDF Downloads 393
18932 Modeling of Austenitic Stainless Steel during Face Milling Using Response Surface Methodology

Authors: A. A. Selaimia, H. Bensouilah, M. A. Yallese, I. Meddour, S. Belhadi, T. Mabrouki

Abstract:

The objective of this work is to model the output responses namely; surface roughness (Ra), cutting force (Fc), during the face milling of the austenitic stainless steel X2CrNi18-9 with coated carbide tools (GC4040). For raison, response surface methodology (RMS) is used to determine the influence of each technological parameter. A full factorial design (L27) is chosen for the experiments, and the ANOVA is used in order to evaluate the influence of the technological cutting parameters namely; cutting speed (Vc), feed per tooth, and depth of cut (ap) on the out-put responses. The results reveal that (Ra) is mostly influenced by (fz) and (Fc) is found considerably affected by (ap).

Keywords: austenitic stainless steel, ANOVA, coated carbide, response surface methodology (RSM)

Procedia PDF Downloads 354
18931 Thixomixing as Novel Method for Fabrication Aluminum Composite with Carbon and Alumina Fibers

Authors: Ebrahim Akbarzadeh, Josep A. Picas Barrachina, Maite Baile Puig

Abstract:

This study focuses on a novel method for dispersion and distribution of reinforcement under high intensive shear stress to produce metal composites. The polyacrylonitrile (PAN)-based short carbon fiber (Csf) and Nextel 610 alumina fiber were dispersed under high intensive shearing at mushy zone in semi-solid of A356 by a novel method. The bundles and clusters were embedded by infiltration of slurry into the clusters, thus leading to a uniform microstructure. The fibers were embedded homogenously into the aluminum around 576-580°C with around 46% of solid fraction. Other experiments at 615°C and 568°C which are contained 0% and 90% solid respectively were not successful for dispersion and infiltration of aluminum into bundles of Csf. The alumina fiber has been cracked by high shearing load. The morphologies and crystalline phase were evaluated by SEM and XRD. The adopted thixo-process effectively improved the adherence and distribution of Csf into Al that can be developed to produce various composites by thixomixing.

Keywords: aluminum, carbon fiber, alumina fiber, thixomixing, adhesion

Procedia PDF Downloads 539
18930 Kinetic Studies on CO₂ Gasification of Low and High Ash Indian Coals in Context of Underground Coal Gasification

Authors: Geeta Kumari, Prabu Vairakannu

Abstract:

Underground coal gasification (UCG) technology is an efficient and an economic in-situ clean coal technology, which converts unmineable coals into calorific valuable gases. This technology avoids ash disposal, coal mining, and storage problems. CO₂ gas can be a potential gasifying medium for UCG. CO₂ is a greenhouse gas and, the liberation of this gas to the atmosphere from thermal power plant industries leads to global warming. Hence, the capture and reutilization of CO₂ gas are crucial for clean energy production. However, the reactivity of high ash Indian coals with CO₂ needs to be assessed. In the present study, two varieties of Indian coals (low ash and high ash) are used for thermogravimetric analyses (TGA). Two low ash north east Indian coals (LAC) and a typical high ash Indian coal (HAC) are procured from the coal mines of India. Low ash coal with 9% ash (LAC-1) and 4% ash (LAC-2) and high ash coal (HAC) with 42% ash are used for the study. TGA studies are carried out to evaluate the activation energy for pyrolysis and gasification of coal under N₂ and CO₂ atmosphere. Coats and Redfern method is used to estimate the activation energy of coal under different temperature regimes. Volumetric model is assumed for the estimation of the activation energy. The activation energy estimated under different temperature range. The inherent properties of coals play a major role in their reactivity. The results show that the activation energy decreases with the decrease in the inherent percentage of coal ash due to the ash layer hindrance. A reverse trend was observed with volatile matter. High volatile matter of coal leads to the estimation of low activation energy. It was observed that the activation energy under CO₂ atmosphere at 400-600°C is less as compared to N₂ inert atmosphere. At this temperature range, it is estimated that 15-23% reduction in the activation energy under CO₂ atmosphere. This shows the reactivity of CO₂ gas with higher hydrocarbons of the coal volatile matters. The reactivity of CO₂ with the volatile matter of coal might occur through dry reforming reaction in which CO₂ reacts with higher hydrocarbon, aromatics of the tar content. The observed trend of Ea in the temperature range of 150-200˚C and 400-600˚C is HAC > LAC-1 >LAC-2 in both N₂ and CO₂ atmosphere. At the temperature range of 850-1000˚C, higher activation energy is estimated when compared to those values in the temperature range of 400-600°C. Above 800°C, char gasification through Boudouard reaction progressed under CO₂ atmosphere. It was observed that 8-20 kJ/mol of activation energy is increased during char gasification above 800°C compared to volatile matter pyrolysis between the temperature ranges of 400-600°C. The overall activation energy of the coals in the temperature range of 30-1000˚C is higher in N₂ atmosphere than CO₂ atmosphere. It can be concluded that higher hydrocarbons such as tar effectively undergoes cracking and reforming reactions in presence of CO₂. Thus, CO₂ gas is beneficial for the production of high calorific value syngas using high ash Indian coals.

Keywords: clean coal technology, CO₂ gasification, activation energy, underground coal gasification

Procedia PDF Downloads 155
18929 Automated Prepaid Billing Subscription System

Authors: Adekunle K. O, Adeniyi A. E, Kolawole E

Abstract:

One of the most dramatic trends in the communications market in recent years has been the growth of prepaid services. Today, prepaid no longer constitutes the low-revenue, basic-service segment. It is driven by a high margin, value-add service customers who view it as a convenient way of retaining control over their usage and communication spending while expecting high service levels. To service providers, prepaid services offer the advantage of reducing bad accounts while allowing them to predict usage and plan network resources. Yet, the real-time demands of prepaid services require a scalable, real-time platform to manage customers through their entire life cycle. It delivers integrated real-time rating, voucher management, recharge management, customer care and service provisioning for the generation of new prepaid services. It carries high scalability that can handle millions of prepaid customers in real-time through their entire life cycle.

Keywords: prepaid billing, voucher management, customers, automated, security

Procedia PDF Downloads 93
18928 Impacts of Oil Palm Plantation on Mammal and Herpetofauna Diversity: A Case Study in Riau Province, Indonesia

Authors: Yanto Santosa, Yohanna Dalimunthe, Intan Purnamasari

Abstract:

Expansion of Indonesia oil palm plantations has contributed significantly to the national revenue annually and has been able to absorb millions of workers. Behind all these positive contributions, such expansion was accused as the cause of the decline in wildlife populations such as mammal and herpetofauna. Research was carried out in 8 oil palm plantations in Riau Province of Indonesia from March to April 2016, to determine the impacts of oil palm plantations on mammal and herpetofauna biodiversity. Direct observation was conducted simultaneously equipped with camera traps placed (for mammal) on various land cover types. For mammals' survey, line transect method was used, and for herpetofauna, Visual Encounter Survey (VES) method was used. Landsat imagery was used to interpret land cover types 3 years prior to the establishment of the oil palm plantations. The study revealed that one year before the oil palm plantations was established, most the land covers were comprised of 49.96% rubber plantations, 35.99% secondary forest, 10.17% bare land, 3.03% shrubs and 0.84% mixed dryland farming-shrubs. Based on the number of species found, it was identified that on the average, mammal diversity in 4 of 8 oil palm plantations, showed a decrease by 14.29%-100%, whereas 2 plantations did not experienced any changes in the number of species and one plantation showed an increased in the number of mammal species. The plantations that experienced a reduction in the number of mammal’s diversity were previously dominated covered by secondary forest (40%) and rubber plantation (40%), while those experiencing no changes in the number of species were also dominated by secondary forest. The area with an increased number of mammal species was historically dominated by rubber plantation. On the contrary, significant results were shown for herpetofauna, where all study sites showed a sharp increase in the number of herpetofauna species, by 100%-225.00%.

Keywords: herpetofauna, impact, mammal, oil palm plantations

Procedia PDF Downloads 220
18927 Students’ Notions About Bioethical Issues - A Comparative Study in Indian Subcontinent

Authors: Astha Saxena

Abstract:

The present study is based in Indian subcontinent and aims at exploring students’ conceptions about ethical issues related to Biotechnology at both high school and undergraduate level. The data collection methods involved taking classroom notes, recording students’ observations and arguments, and focussed group discussions with students. The data was analysed using classroom discourse analysis and interpretive approaches. The findings depicted different aspects of students’ thinking, meaning making and ethical understanding with respect to complex bioethical issues such as genetically modified crops, in-vitro fertilization (IVF), human genomic project, cloning, etc., at high school as well as undergraduate level. The paper offers a comparative account of students’ arguments with respect to ethical issues in biotechnology at the high school & undergraduate level, where it shows a clear gradation in their ethical understanding from high school to undergraduate level, which can be attributed to their enhanced subject-matter knowledge. The nature of students’ arguments reveal that there is more reliance on the utilitarian aspect of these biotechnologies as against a holistic understanding about a particular bioethical issue. This study has implications for science teachers to delve into students’ thinking and notions about ethical issues in biotechnology and accordingly design appropriate pedagogical approaches.

Keywords: ethical issues, biotechnology, ethical understanding, argument, ethical reasoning, pedagogy

Procedia PDF Downloads 61
18926 Electrophoretic Deposition of p-Type Bi2Te3 for Thermoelectric Applications

Authors: Tahereh Talebi, Reza Ghomashchi, Pejman Talemi, Sima Aminorroaya

Abstract:

Electrophoretic deposition (EPD) of p-type Bi2Te3 material has been accomplished, and a high quality crack-free thick film has been achieved for thermoelectric (TE) applications. TE generators (TEG) can convert waste heat into electricity, which can potentially solve global warming problems. However, TEG is expensive due to the high cost of materials, as well as the complex and expensive manufacturing process. EPD is a simple and cost-effective method which has been used recently for advanced applications. In EPD, when a DC electric field is applied to the charged powder particles suspended in a suspension, they are attracted and deposited on the substrate with the opposite charge. In this study, it has been shown that it is possible to prepare a TE film using the EPD method and potentially achieve high TE properties at low cost. The relationship between the deposition weight and the EPD-related process parameters, such as applied voltage and time, has been investigated and a linear dependence has been observed, which is in good agreement with the theoretical principles of EPD. A stable EPD suspension of p-type Bi2Te3 was prepared in a mixture of acetone-ethanol with triethanolamine as a stabilizer. To achieve a high quality homogenous film on a copper substrate, the optimum voltage and time of the EPD process was investigated. The morphology and microstructures of the green deposited films have been investigated using a scanning electron microscope (SEM). The green Bi2Te3 films have shown good adhesion to the substrate. In summary, this study has shown that not only EPD of p-type Bi2Te3 material is possible, but its thick film is of high quality for TE applications.

Keywords: electrical conductivity, electrophoretic deposition, mechanical property, p-type Bi2Te3, Seebeck coefficient, thermoelectric materials, thick films

Procedia PDF Downloads 148
18925 Temperature Effects on CO₂ Intake of MIL-101 and ZIF-301

Authors: M. Ba-Shammakh

Abstract:

Metal-organic frameworks (MOFs) are promising materials for CO₂ capture and they have high adsorption capacity towards CO₂. In this study, two different metal organic frameworks (i.e. MIL-101 and ZIF-301) were tested for different flue gases that have different CO₂ fractions. In addition, the effect of temperature was investigated for MIL-101 and ZIF-301. The results show that MIL-101 performs well for pure CO₂ stream while its intake decreases dramatically for other flue gases that have variable CO₂ fraction ranging from 5 to 15 %. The second material (ZIF-301) showed a better result in all flue gases and higher CO₂ intake compared to MIL-101 even at high temperature.

Keywords: CO₂ capture, Metal Organic Frameworks (MOFs), MIL-101, ZIF-301

Procedia PDF Downloads 176
18924 Design of a 28-nm CMOS 2.9-64.9-GHz Broadband Distributed Amplifier with Floating Ground CPW

Authors: Tian-Wei Huang, Wei-Ting Bai, Yu-Tung Cheng, Jeng-Han Tsai

Abstract:

In this paper, a 1-stage 6-section conventional distributed amplifier (CDA) structure distributed power amplifier (DPA) fabricated in a 28-nm HPC+ 1P9M CMOS process is proposed. The transistor size selection is introduced to achieve broadband power matching and thus remains a high flatness output power and power added efficiency (PAE) within the bandwidth. With the inductive peaking technique, the high-frequency pole appears and the high-frequency gain is increased; the gain flatness becomes better as well. The inductive elements used to form an artificial transmission line are built up with a floating ground coplanar waveguide plane (CPWFG) rather than a microstrip line, coplanar waveguide (CPW), or spiral inductor to get better performance. The DPA achieves 12.6 dB peak gain at 52.5 GHz with 2.9 to 64.9 GHz 3-dB bandwidth. The Psat is 11.4 dBm with PAEMAX of 10.6 % at 25 GHz. The output 1-dB compression point power is 9.8 dBm.

Keywords: distributed power amplifier (DPA), gain bandwidth (GBW), floating ground CPW, inductive peaking, 28-nm, CMOS, 5G.

Procedia PDF Downloads 63
18923 Development of an Autonomous Automated Guided Vehicle with Robot Manipulator under Robot Operation System Architecture

Authors: Jinsiang Shaw, Sheng-Xiang Xu

Abstract:

This paper presents the development of an autonomous automated guided vehicle (AGV) with a robot arm attached on top of it within the framework of robot operation system (ROS). ROS can provide libraries and tools, including hardware abstraction, device drivers, libraries, visualizers, message-passing, package management, etc. For this reason, this AGV can provide automatic navigation and parts transportation and pick-and-place task using robot arm for typical industrial production line use. More specifically, this AGV will be controlled by an on-board host computer running ROS software. Command signals for vehicle and robot arm control and measurement signals from various sensors are transferred to respective microcontrollers. Users can operate the AGV remotely through the TCP / IP protocol and perform SLAM (Simultaneous Localization and Mapping). An RGBD camera and LIDAR sensors are installed on the AGV, using these data to perceive the environment. For SLAM, Gmapping is used to construct the environment map by Rao-Blackwellized particle filter; and AMCL method (Adaptive Monte Carlo localization) is employed for mobile robot localization. In addition, current AGV position and orientation can be visualized by ROS toolkit. As for robot navigation and obstacle avoidance, A* for global path planning and dynamic window approach for local planning are implemented. The developed ROS AGV with a robot arm on it has been experimented in the university factory. A 2-D and 3-D map of the factory were successfully constructed by the SLAM method. Base on this map, robot navigation through the factory with and without dynamic obstacles are shown to perform well. Finally, pick-and-place of parts using robot arm and ensuing delivery in the factory by the mobile robot are also accomplished.

Keywords: automated guided vehicle, navigation, robot operation system, Simultaneous Localization and Mapping

Procedia PDF Downloads 132
18922 Alumina Nanoparticles in One-Pot Synthesis of Pyrazolopyranopyrimidinones

Authors: Saeed Khodabakhshi, Alimorad Rashidi, Ziba Tavakoli, Sajad Kiani, Sadegh Dastkhoon

Abstract:

Alumina nanoparticles (γ-Al2O3 NPs) were prepared via a new and simple synthetic route and characterized by field emission scanning electron microscope, X-ray diffraction, and Fourier transform infrared spectroscopy. The catalytic activity of prepared γ-Al2O3 NPs was investigated for the one-pot, four-component synthesis of fused tri-heterocyclic compounds containing pyrazole, pyran, and pyrimidine. This procedure has some advantages such as high efficiency, simplicity, high rate and environmental safety.

Keywords: alumina nanoparticles, one-pot, fused tri-heterocyclic compounds, pyran

Procedia PDF Downloads 310
18921 Design of Cylindrical Crawler Robot Inspired by Amoeba Locomotion

Authors: Jun-ya Nagase

Abstract:

Recently, the need of colonoscopy is increasing because of the rise of colonic disorder including cancer of the colon. However, current colonoscopy depends on doctor's skill strongly. Therefore, a large intestine endoscope that does not depend on the techniques of a doctor with high safety is required. In this research, we aim at development a novel large intestine endoscope that can realize safe insertion without specific techniques. A wheel movement type robot, a snake-like robot and an earthworm-like robot are all described in the relevant literature as endoscope robots that are currently studied. Among them, the tracked crawler robot can travel by traversing uneven ground flexibly with a crawler belt attached firmly to the ground surface. Although conventional crawler robots have high efficiency and/or high ground-covering ability, they require a comparatively large space to move. In this study, a small cylindrical crawler robot inspired by amoeba locomotion, which does not need large space to move and which has high ground-covering ability, is proposed. In addition, we developed a prototype of the large intestine endoscope using the proposed crawler mechanism. Experiments have demonstrated smooth operation and a forward movement of the robot by application of voltage to the motor. This paper reports the structure, drive mechanism, prototype, and experimental evaluation.

Keywords: tracked-crawler, endoscopic robot, narrow path, amoeba locomotion.

Procedia PDF Downloads 372
18920 Gethuk Marillo: The New Product Development of Anti-Cancer Snacks Utilizing Xanthones and Anthocyanin in Mangosteen Pericarp and Tamarillo Fruit

Authors: Desi Meriyanti, Delina Puspa Rosana Firdaus, Ristia Rinati

Abstract:

Nowadays, the presence of free radicals become a big concern due to its negative impact to the body, which can triggers the formation of degenerative diseases such as cancer, heart disease cardiovascular, diabetic mellitus and others. Free radical oxidation can be prevented by the presence of antioxidants. Naturally, the human body produces its own antioxidants. Because of the free radicals exposure are so intense, especially from the environment, it is necessary to supply antioxidants needed from outside, through the consumption of functional foods with high antioxidant content. Gethuk is one of the traditional snacks in Indonesia. Gethuk is made from cassava with minimal processing such as boiling, destructing, and forming. Gethuk is classified as a familiar snack in the community, so it has a potential for developing, especially into a functional food. The low content of antioxidants in gethuk can be overcome with the development of a product called Gethuk Marillo. Gethuk Marillo is gethuk with the addition of natural antioxidants from mangosteen pericarp extract which has a high content of xanthones, these compounds are classified into flavonoids and act as antioxidants in the body. Gethuk Marillo served along with tamarillo fruit sauce which is also high in antioxidants such as anthocyanin. The combination between 300 grams gethuk Marillo and sauce contain flavonoid about 31% of human antioxidant needs per day. Gethuk Marillo called as a functional food because of high flavonoids content which can prevent degenerative diseases namely cancer, as many studies that the xanthone and anthocyanins compounds can effectively prevent the formation of cancer cells in human body.

Keywords: Gethuk marillo, xanthones, anthocyanin, high antioxidants, anti-cancer

Procedia PDF Downloads 643
18919 Hydrothermal Liquefaction for Astaxanthin Extraction from Wet Algae

Authors: Spandana Ramisetty, Mandan Chidambaram, Ramesh Bhujade

Abstract:

Algal biomass is not only a potential source for biocrude but also for high value chemicals like carotenoids, fatty acids, proteins, polysaccharides, vitamins etc. Astaxanthin is one such high value vital carotenoid which has extensive applications in pharmaceutical, aquaculture, poultry and cosmetic industries and expanding as dietary supplement to humans. Green microalgae Haematococcus pluvialis is identified as the richest natural source of astaxanthin and is the key source of commercial astaxanthin. Several extraction processes from wet and dry Haematococcus pluvialis biomass have been explored by researchers. Extraction with supercritical CO₂ and various physical disruption techniques like mortar and pestle, homogenization, ultrasonication and ball mill from dried algae are widely used extraction methods. However, these processes require energy intensive drying of biomass that escalates overall costs notably. From the process economics perspective, it is vital to utilize wet processing technology in order to eliminate drying costs. Hydrothermal liquefaction (HTL) is a thermo-chemical conversion process that converts wet biomass containing over 80% water to bio-products under high temperature and high pressure conditions. Astaxanthin is a lipid soluble pigment and is usually extracted along with lipid component. Mild HTL at 200°C and 60 bar has been demonstrated by researchers in a microfluidic platform achieving near complete extraction of astaxanthin from wet biomass. There is very limited work done in this field. An integrated approach of sequential HTL offers cost-effective option to extract astaxanthin/lipid from wet algal biomass without drying algae and also recovering water, minerals and nutrients. This paper reviews past work and evaluates the astaxanthin extraction processes with focus on hydrothermal extraction.

Keywords: astaxanthin, extraction, high value chemicals, hydrothermal liquefaction

Procedia PDF Downloads 294
18918 Interactions within the School Setting and Their Potential Impact on the Wellbeing or Educational Success of High Ability Students: A Literature Review

Authors: Susan Burkett-McKee, Bruce Knight, Michelle Vanderburg

Abstract:

The wellbeing and educational success of high ability students are interrelated concepts with each potentially hindering or enhancing the other. A student’s well-being and educational success are also influenced by intrapersonal and interpersonal factors. This presentation begins with an exploration of the literature pertinent to the wellbeing and educational success of this cohort before an ecological perspective is taken to discuss research into the impact of interactions within the school context. While the literature consistently states that interactions exchanged between high ability students and school community members impact the students’ wellbeing or educational success, no consensus has been reached about whether the impact is positive or negative. Findings from the review shared in this presentation inform an interpretative phenomenological study involving senior secondary students enrolled in inclusive Australian schools to highlight, from the students’ perspective, the ways school-based interactions impact their wellbeing or educational success.

Keywords: educational success, interactions, literature review, wellbeing

Procedia PDF Downloads 288