Search results for: solid waste generation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7371

Search results for: solid waste generation

4671 Primary Fallopian Tube Carcinoma: A Case Report

Authors: Mary Abigail T. Ty, Mary Jocelyn Yu-Laygo, Jocelyn Z. Mariano

Abstract:

This is a case of L.S.T., a 61 year old, G6P4 (3124) who presented with a one month history of intermittent, brownish, watery, non foul smelling vaginal discharge. There were no other accompanying symptoms. On rectovaginal examination, a palpable adnexal mass on the left was appreciated, with the lower border measuring 3 cm. The mass was non-tender, had irregular borders and solid areas. On transvaginal sonography, it revealed a left pelvic mass measuring 3 x 4 x 2 cm, with a Sassone score of 9. It had vascularization. The primary consideration was Ovarian Newgrowth, probably malignant in nature. CA-125 results were slightly elevated at 43.2 u/ml (NV: 0-35 u/ml). After intraoperative evaluation, the left fallopian tube was converted into a 9 x 4.5 x 3 cm bulbous cystic mass with solid areas. On cut section, the ampullary portion of the fallopian tube contained necrotic and friable looking tissues. Specimen was sent for frozen section and results revealed adenocarcinoma of the left fallopian tube. Patient subsequently underwent complete surgical staging with unremarkable post-operative course. The Surg Ico pathologic diagnosis was G6P4 (3124) Fallopian tube serous cystadenocarcinoma stage 1. The mean incidence of PFTC is 3.6 per million women yearly. This is associated with a generally low survival rate. The primary diagnosis is very difficult to establish because only 0–10% of patients suffering from PFTC are diagnosed pre-operatively. Symptoms play a very important role in the discovery of this disease, because there will be no presentation to the hospital without symptoms. The most common of which may be vaginal bleeding, abdominal pain, a palpable mass and ascites. A conglomerate of manifestations may be encountered, but not at all times. This is termed hydrops tubae profluens where there is presence of colicky pain with relief from intermittent passage of serosanguinous vaginal discharge. The significance of this report is to emphasize the rarity of the case and how the dilemma in the diagnosis is almost always present despite ancillary procedures.

Keywords: fallopian tube carcinoma, prognosis, rare, risk factors

Procedia PDF Downloads 316
4670 Performance of HVOF Sprayed Ni-20CR and Cr3C2-NiCr Coatings on Fe-Based Superalloy in an Actual Industrial Environment of a Coal Fired Boiler

Authors: Tejinder Singh Sidhu

Abstract:

Hot corrosion has been recognized as a severe problem in steam-powered electricity generation plants and industrial waste incinerators as it consumes the material at an unpredictably rapid rate. Consequently, the load-carrying ability of the components reduces quickly, eventually leading to catastrophic failure. The inability to either totally prevent hot corrosion or at least detect it at an early stage has resulted in several accidents, leading to loss of life and/or destruction of infrastructures. A number of countermeasures are currently in use or under investigation to combat hot corrosion, such as using inhibitors, controlling the process parameters, designing a suitable industrial alloy, and depositing protective coatings. However, the protection system to be selected for a particular application must be practical, reliable, and economically viable. Due to the continuously rising cost of the materials as well as increased material requirements, the coating techniques have been given much more importance in recent times. Coatings can add value to products up to 10 times the cost of the coating. Among the different coating techniques, thermal spraying has grown into a well-accepted industrial technology for applying overlay coatings onto the surfaces of engineering components to allow them to function under extreme conditions of wear, erosion-corrosion, high-temperature oxidation, and hot corrosion. In this study, the hot corrosion performances of Ni-20Cr and Cr₃C₂-NiCr coatings developed by High Velocity Oxy-Fuel (HVOF) process have been studied. The coatings were developed on a Fe-based superalloy, and experiments were performed in an actual industrial environment of a coal-fired boiler. The cyclic study was carried out around the platen superheater zone where the temperature was around 1000°C. The study was conducted for 10 cycles, and one cycle was consisting of 100 hours of heating followed by 1 hour of cooling at ambient temperature. Both the coatings deposited on Fe-based superalloy imparted better hot corrosion resistance than the uncoated one. The Ni-20Cr coated superalloy performed better than the Cr₃C₂-NiCr coated in the actual working conditions of the coal fired boiler. It is found that the formation of chromium oxide at the boundaries of Ni-rich splats of the coating blocks the inward permeation of oxygen and other corrosive species to the substrate.

Keywords: hot corrosion, coating, HVOF, oxidation

Procedia PDF Downloads 77
4669 Study on the Addition of Solar Generating and Energy Storage Units to a Power Distribution System

Authors: T. Costa, D. Narvaez, K. Melo, M. Villalva

Abstract:

Installation of micro-generators based on renewable energy in power distribution system has increased in recent years, with the main renewable sources being solar and wind. Due to the intermittent nature of renewable energy sources, such micro-generators produce time-varying energy which does not correspond at certain times of the day to the peak energy consumption of end users. For this reason, the use of energy storage units next to the grid contributes to the proper leveling of the buses’ voltage level according to Brazilian energy quality standards. In this work, the effect of the addition of a photovoltaic solar generator and a store of energy in the busbar voltages of an electric system is analyzed. The consumption profile is defined as the average hourly use of appliances in a common residence, and the generation profile is defined as a function of the solar irradiation available in a locality. The power summation method is validated with analytical calculation and is used to calculate the modules and angles of the voltages in the buses of an electrical system based on the IEEE standard, at each hour of the day and with defined load and generation profiles. The results show that bus 5 presents the worst voltage level at the power consumption peaks and stabilizes at the appropriate range with the inclusion of the energy storage during the night time period. Solar generator maintains improvement of the voltage level during the period when it receives solar irradiation, having peaks of production during the 12 pm (without exceeding the appropriate maximum levels of tension).

Keywords: energy storage, power distribution system, solar generator, voltage level

Procedia PDF Downloads 135
4668 Heat Transfer of an Impinging Jet on a Plane Surface

Authors: Jian-Jun Shu

Abstract:

A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transfer in more complex settings.

Keywords: flux, free impinging jet, solid-surface, uniform wall temperature

Procedia PDF Downloads 476
4667 Parametric Models of Facade Designs of High-Rise Residential Buildings

Authors: Yuchen Sharon Sung, Yingjui Tseng

Abstract:

High-rise residential buildings have become the most mainstream housing pattern in the world’s metropolises under the current trend of urbanization. The facades of high-rise buildings are essential elements of the urban landscape. The skins of these facades are important media between the interior and exterior of high- rise buildings. It not only connects between users and environments, but also plays an important functional and aesthetic role. This research involves a study of skins of high-rise residential buildings using the methodology of shape grammar to find out the rules which determine the combinations of the facade patterns and analyze the patterns’ parameters using software Grasshopper. We chose a number of facades of high-rise residential buildings as source to discover the underlying rules and concepts of the generation of facade skins. This research also provides the rules that influence the composition of facade skins. The items of the facade skins, such as windows, balconies, walls, sun visors and metal grilles are treated as elements in the system of facade skins. The compositions of these elements will be categorized and described by logical rules; and the types of high-rise building facade skins will be modelled by Grasshopper. Then a variety of analyzed patterns can also be applied on other facade skins through this parametric mechanism. Using these patterns established in the models, researchers can analyze each single item to do more detail tests and architects can apply each of these items to construct their facades for other buildings through various combinations and permutations. The goal of these models is to develop a mechanism to generate prototypes in order to facilitate generation of various facade skins.

Keywords: facade skin, grasshopper, high-rise residential building, shape grammar

Procedia PDF Downloads 503
4666 Online Monitoring of Airborne Bioaerosols Released from a Composting, Green Waste Site

Authors: John Sodeau, David O'Connor, Shane Daly, Stig Hellebust

Abstract:

This study is the first to employ the online WIBS (Waveband Integrated Biosensor Sensor) technique for the monitoring of bioaerosol emissions and non-fluorescing “dust” released from a composting/green waste site. The purpose of the research was to provide a “proof of principle” for using WIBS to monitor such a location continually over days and nights in order to construct comparative “bioaerosol site profiles”. Current impaction/culturing methods take many days to achieve results available by the WIBS technique in seconds.The real-time data obtained was then used to assess variations of the bioaerosol counts as a function of size, “shape”, site location, working activity levels, time of day, relative humidity, wind speeds and wind directions. Three short campaigns were undertaken, one classified as a “light” workload period, another as a “heavy” workload period and finally a weekend when the site was closed. One main bioaerosol size regime was found to predominate: 0.5 micron to 3 micron with morphologies ranging from elongated to elipsoidal/spherical. The real-time number-concentration data were consistent with an Andersen sampling protocol that was employed at the site. The number-concentrations of fluorescent particles as a proportion of total particles counted amounted, on average, to ~1% for the “light” workday period, ~7% for the “heavy” workday period and ~18% for the weekend. The bioaerosol release profiles at the weekend were considerably different from those monitored during the working weekdays.

Keywords: bioaerosols, composting, fluorescence, particle counting in real-time

Procedia PDF Downloads 352
4665 An Efficient Tool for Mitigating Voltage Unbalance with Reactive Power Control of Distributed Grid-Connected Photovoltaic Systems

Authors: Malinwo Estone Ayikpa

Abstract:

With the rapid increase of grid-connected PV systems over the last decades, genuine challenges have arisen for engineers and professionals of energy field in the planning and operation of existing distribution networks with the integration of new generation sources. However, the conventional distribution network, in its design was not expected to receive other generation outside the main power supply. The tools generally used to analyze the networks become inefficient and cannot take into account all the constraints related to the operation of grid-connected PV systems. Some of these constraints are voltage control difficulty, reverse power flow, and especially voltage unbalance which could be due to the poor distribution of single-phase PV systems in the network. In order to analyze the impact of the connection of small and large number of PV systems to the distribution networks, this paper presents an efficient optimization tool that minimizes voltage unbalance in three-phase distribution networks with active and reactive power injections from the allocation of single-phase and three-phase PV plants. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. Good reduction of voltage unbalance can be achieved by reactive power control of the PV systems. The presented tool is based on the three-phase current injection method and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems.

Keywords: Photovoltaic system, Primal-dual interior point method, Three-phase optimal power flow, Voltage unbalance

Procedia PDF Downloads 329
4664 A Study of Soft Soil Improvement by Using Lime Grit

Authors: Ashim Kanti Dey, Briti Sundar Bhowmik

Abstract:

This paper presents an idea to improve the soft soil by using lime grits which are normally produced as waste product in the paper manufacturing industries. This waste material cannot be used as a construction material because of its light weight, uniform size and poor compaction control. With scarcity in land, effective disposal of lime grit is a major concern of all paper manufacturing industries. Considering its non-plasticity and high permeability characteristics the lime grit may suitably be used as a drainage material for speedy consolidation of cohesive soil. It can also be used to improve the bearing capacity of soft clay. An attempt has been made in this paper to show the usefulness of lime grit in improving the bearing capacity of shallow foundation resting on soft clayey soil. A series of undrained unconsolidated cyclic triaxial tests performed at different area ratios and at three different water contents shows that dynamic shear modulus and damping ratio can be substantially improved with lime grit. Improvement is observed to be more in case of higher area ratio and higher water content. Static triaxial tests were also conducted on lime grit reinforced clayey soil after application of 50 load cycles to determine the effect of lime grit columns on cyclically loaded clayey soils. It is observed that the degradation is less for lime grit stabilized soil. A study of model test with different area ratio of lime column installation is also included to see the field behaviour of lime grit reinforced soil.

Keywords: lime grit column, area ratio, shear modulus, damping ratio, strength ratio, improvement factor, degradation factor

Procedia PDF Downloads 498
4663 High-Pressure CO₂ Adsorption Capacity of Selected Unusual Porous Materials and Rocks

Authors: Daniela Rimnacova, Maryna Vorokhta, Martina Svabova

Abstract:

CO₂ adsorption capacity of several materials - waste (power fly ash, slag, carbonized sewage sludge), rocks (Czech Silurian shale, black coal), and carbon (synthesized carbon, activated carbon as a reference material) - were measured on dry samples using a unique hand-made manometric sorption apparatus at a temperature of 45 °C and pressures of up to 7 MPa. The main aim was finding utilization of the waste materials and rocks for removal of the air or water pollutants caused by anthropogenic activities, as well as for the carbon dioxide storage. The equilibrium amount of the adsorbate depends on temperature, gas saturation pressure, porosity, surface area and volume of pores, and last but not least, on the composition of the adsorbents. Given experimental conditions can simulate in-situ situations in the rock bed and can be achieved just by a high-pressure apparatus. The CO₂ excess adsorption capacities ranged from 0.018 mmol/g (ash) to 13.55 mmol/g (synthesized carbon). The synthetized carbon had the highest adsorption capacity among all studied materials as well as the highest price. This material is usually used for the adsorption of specific pollutants. The excess adsorption capacity of activated carbon was 9.19 mmol/g. It is used for water and air cleaning. Ash can be used for chemisorption onto ash particle surfaces or capture of special pollutants. Shale is a potential material for enhanced gas recovery or CO₂ sequestration in-situ. Slag is a potential material for capture of gases with a possibility of the underground gas storage after the adsorption process. The carbonized sewage sludge is quite a good adsorbent for the removal and capture of pollutants, as well as shales or black coal which show an interesting relationship between the price and adsorption capacity.

Keywords: adsorption, CO₂, high pressure, porous materials

Procedia PDF Downloads 155
4662 Application of Nanoparticles on Surface of Commercial Carbon-Based Adsorbent for Removal of Contaminants from Water

Authors: Ahmad Kayvani Fard, Gordon Mckay, Muataz Hussien

Abstract:

Adsorption/sorption is believed to be one of the optimal processes for the removal of heavy metals from water due to its low operational and capital cost as well as its high removal efficiency. Different materials have been reported in literature as adsorbent for heavy metal removal in waste water such as natural sorbents, organic polymers (synthetic) and mineral materials (inorganic). The selection of adsorbents and development of new functional materials that can achieve good removal of heavy metals from water is an important practice and depends on many factors, such as the availability of the material, cost of material, and material safety and etc. In this study we reported the synthesis of doped Activated carbon and Carbon nanotube (CNT) with different loading of metal oxide nanoparticles such as Fe2O3, Fe3O4, Al2O3, TiO2, SiO2 and Ag nanoparticles and their application in removal of heavy metals, hydrocarbon, and organics from waste water. Commercial AC and CNT with different loadings of mentioned nanoparticle were prepared and effect of pH, adsorbent dosage, sorption kinetic, and concentration effects are studied and optimum condition for removal of heavy metals from water is reported. The prepared composite sorbent is characterized using field emission scanning electron microscopy (FE-SEM), high transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), X-ray diffractometer (XRD), the Brunauer, Emmett and Teller (BET) nitrogen adsorption technique, and Zeta potential. The composite materials showed higher removal efficiency and superior adsorption capacity compared to commercially available carbon based adsorbent. The specific surface area of AC increased by 50% reaching up to 2000 m2/g while the CNT specific surface area of CNT increased by more than 8 times reaching value of 890 m2/g. The increased surface area is one of the key parameters along with surface charge of the material determining the removal efficiency and removal efficiency. Moreover, the surface charge density of the impregnated CNT and AC have enhanced significantly where can benefit the adsorption process. The nanoparticles also enhance the catalytic activity of material and reduce the agglomeration and aggregation of material which provides more active site for adsorbing the contaminant from water. Some of the results for treating wastewater includes 100% removal of BTEX, arsenic, strontium, barium, phenolic compounds, and oil from water. The results obtained are promising for the use of AC and CNT loaded with metal oxide nanoparticle in treatment and pretreatment of waste water and produced water before desalination process. Adsorption can be very efficient with low energy consumption and economic feasibility.

Keywords: carbon nanotube, activated carbon, adsorption, heavy metal, water treatment

Procedia PDF Downloads 228
4661 Synthesis and Characterization of Cyclic PNC-28 Peptide, Residues 17–26 (ETFSDLWKLL), A Binding Domain of p53

Authors: Deepshikha Verma, V. N. Rajasekharan Pillai

Abstract:

The present study reports the synthesis of cyclic PNC-28 peptides with solid-phase peptide synthesis method. In the first step, we synthesize the linear PNC-28 Peptide and in the second step, we cyclize (N-to-C or head-to-tail cyclization) the linear PNC-28 peptide. The molecular formula of cyclic PNC-28 peptide is C64H88N12O16 and its m/z mass is ≈1233.64. Elemental analysis of cyclic PNC-28 is C, 59.99; H, 6.92; N, 13.12; O, 19.98. The characterization of LC-MS, CD, FT-IR, and 1HNMR has been done to confirm the successful synthesis and cyclization of linear PNC-28 peptides.

Keywords: CD, FTIR, 1HNMR, cyclic peptide

Procedia PDF Downloads 126
4660 Progressive Collapse of Cooling Towers

Authors: Esmaeil Asadzadeh, Mehtab Alam

Abstract:

Well documented records of the past failures of the structures reveals that the progressive collapse of structures is one of the major reasons for dramatic human loss and economical consequences. Progressive collapse is the failure mechanism in which the structure fails gradually due to the sudden removal of the structural elements. The sudden removal of some structural elements results in the excessive redistributed loads on the others. This sudden removal may be caused by any sudden loading resulted from local explosion, impact loading and terrorist attacks. Hyperbolic thin walled concrete shell structures being an important part of nuclear and thermal power plants are always prone to such terrorist attacks. In concrete structures, the gradual failure would take place by generation of initial cracks and its propagation in the supporting columns along with the tower shell leading to the collapse of the entire structure. In this study the mechanism of progressive collapse for such high raised towers would be simulated employing the finite element method. The aim of this study would be providing clear conceptual step-by-step descriptions of various procedures for progressive collapse analysis using commercially available finite element structural analysis software’s, with the aim that the explanations would be clear enough that they will be readily understandable and will be used by practicing engineers. The study would be carried out in the following procedures: 1. Provide explanations of modeling, simulation and analysis procedures including input screen snapshots; 2. Interpretation of the results and discussions; 3. Conclusions and recommendations.

Keywords: progressive collapse, cooling towers, finite element analysis, crack generation, reinforced concrete

Procedia PDF Downloads 477
4659 Contribution of Upper Body Kinematics on Tennis Serve Performance

Authors: Ikram Hussain, Fuzail Ahmad, Tawseef Ahmad Bhat

Abstract:

Tennis serve is characterized as one of the most prominent techniques pertaining to the success of winning a point. The study was aimed to explore the contributions of the upper body kinematics on the tennis performance during Davis Cup (Oceania Group). Four Indian International tennis players who participated in the Davis Cup held at Indore, India were inducted as the subjects for this study, with mean age 27 ± 4.79 Years, mean weight 186 ± 6.03 cm, mean weight 81.25 ± 7.41kg, respectively. The tennis serve was bifurcated into three phases viz, preparatory phase, force generation phase and follow through phase. The kinematic data for the study was recorded through the high speed canon camcorder having a shuttle speed of 1/2000, at a frame rate of 50 Hz. The data was analysed with the motion analysis software. The descriptive statistics and F-test was employed through SPSS version 17.0 for the determination of the undertaken kinematic parameters of the study, and was computed at a 0.05 level of significance with 46 degrees of freedom. Mean, standard deviation and correlation coefficient also employed to find out the relationship among the upper body kinematic parameter and performance. In the preparatory phase, the analysis revealed that no significant difference exists among the kinematic parameters of the players on the performance. However, in force generation phase, wrist velocity (r= 0.47), torso velocity (r= -0.53), racket velocity r= 0.60), and in follow through phase, torso acceleration r= 0.43), elbow angle (r= -0.48) play a significant role on the performance of the tennis serve. Therefore, players should ponder upon the velocities of the above segments at the time of preparation for the competitions.

Keywords: Davis Cup, kinematics, motion analysis, tennis serve

Procedia PDF Downloads 295
4658 Microstructure Characterization of the Ball Milled Fe50Al30Ni20 (%.wt) Powder

Authors: C. Nakib, N. Ammouchi, A. Otmani, A. Djekoun, J. M. Grenèche

Abstract:

B2-structured FeAl was synthesized by an abrupt reaction during mechanical alloying (MA) of the elemental powders of Fe, Al and Ni. The structural, microstructural and morphological changes occurring in the studied material during MA were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Two crystalline phases were found, the major one corresponding to FeAl bcc phase with a crystallite size less than 10 nm, a lattice strain up to 1.6% and a dislocation density of about 2.3 1016m-2. The other phase in low proportion was corresponding to Fe (Al,Ni) solid solution. SEM images showed an irregular morphology of powder particles.

Keywords: mechanical alloying, ternary composition, dislocation density, structural properties

Procedia PDF Downloads 270
4657 Static Charge Control Plan for High-Density Electronics Centers

Authors: Clara Oliver, Oibar Martinez, Jose Miguel Miranda

Abstract:

Ensuring a safe environment for sensitive electronics boards in places with high limitations in size poses two major difficulties: the control of charge accumulation in floating floors and the prevention of excess charge generation due to air cooling flows. In this paper, we discuss these mechanisms and possible solutions to prevent them. An experiment was made in the control room of a Cherenkov Telescope, where six racks of 2x1x1 m size and independent cooling units are located. The room is 10x4x2.5 m, and the electronics include high-speed digitizers, trigger circuits, etc. The floor used in this room was antistatic, but it was a raised floor mounted in floating design to facilitate the handling of the cables and maintenance. The tests were made by measuring the contact voltage acquired by a person who was walking along the room with different footwear qualities. In addition, we took some measurements of the voltage accumulated in a person in other situations like running or sitting up and down on an office chair. The voltages were taken in real time with an electrostatic voltage meter and dedicated control software. It is shown that peak voltages as high as 5 kV were measured with ambient humidity of more than 30%, which are within the range of a class 3A according to the HBM standard. In order to complete the results, we have made the same experiment in different spaces with alternative types of the floor like synthetic floor and earthenware floor obtaining peak voltages much lower than the ones measured with the floating synthetic floor. The grounding quality one achieves with this kind of floors can hardly beat the one typically encountered in standard floors glued directly on a solid substrate. On the other hand, the air ventilation used to prevent the overheating of the boards probably contributed in a significant way to the charge accumulated in the room. During the assessment of the quality of the static charge control, it is necessary to guarantee that the tests are made under repeatable conditions. One of the major difficulties which one encounters during these assessments is the fact the electrostatic voltmeters might provide different values depending on the humidity conditions and ground resistance quality. In addition, the use of certified antistatic footwear might mask deficiencies in the charge control. In this paper, we show how we defined protocols to guarantee that electrostatic readings are reliable. We believe that this can be helpful not only to qualify the static charge control in a laboratory but also to asses any procedure oriented to minimize the risk of electrostatic discharge events.

Keywords: electrostatics, ESD protocols, HBM, static charge control

Procedia PDF Downloads 123
4656 Risk Assessment of Heavy Metals in Soils at Electronic Waste Activity Sites within the Vicinity of Alaba International Market, Nigeria

Authors: A. A. Adebayo, A. O. Ogunkeyede, A. O. Adeigbe

Abstract:

Digital globalisation and yarn of Nigeria society to overcome the digital divide have resulted in contamination of soil by heavy metals (HMs) from e-waste activities at Alaba international market, Lagos, Nigeria. The aim of this research was to determine the concentration of various metals {Cadmium (Cd), Chromium (Cr), Copper (Cu), and Lead (Pb)} and identify their ecological and health risks for the people within the study area. A total of 60 soil samples were collected at Alaba market study area. Two types of samples were collected from each sampling points: topsoil (0-15 cm), subsoil (15 -30 cm). The metal concentration results showed that the soils were heavily contaminated by HMs at topsoil and subsoil. The geoaccummulation and ecological risk indices revealed high pollution level from all studied site. The health risk assessment results suggested that there is high possibility of carcinogenic risk to humans because the carcinogenic risk via corresponding exposure pathways exceeded the safety limit of 10-6 (the acceptable level of carcinogenic risk for human). Furthermore, inhalation of soil particles is the main exposure pathway for Cr to enter the human body for all ages. Children in the vicinity are exposed more to ingestion of Pb since they tend to eat earth (pica) and repeatedly suck their fingers. This study provides basic information to create awareness for a need to introduce pollution control measures and the need to protect the ecosystem and human health within the study area at Alaba international market.

Keywords: contaminated soil, ecological risk, hazard index, risk factor, exposure pathways, heavy metals

Procedia PDF Downloads 249
4655 Characterization of Biocomposites Based on Mussel Shell Wastes

Authors: Suheyla Kocaman, Gulnare Ahmetli, Alaaddin Cerit, Alize Yucel, Merve Gozukucuk

Abstract:

Shell wastes represent a considerable quantity of byproducts in the shellfish aquaculture. From the viewpoint of ecofriendly and economical disposal, it is highly desirable to convert these residues into high value-added products for industrial applications. So far, the utilization of shell wastes was confined at relatively lower levels, e.g. wastewater decontaminant, soil conditioner, fertilizer constituent, feed additive and liming agent. Shell wastes consist of calcium carbonate and organic matrices, with the former accounting for 95-99% by weight. Being the richest source of biogenic CaCO3, shell wastes are suitable to prepare high purity CaCO3 powders, which have been extensively applied in various industrial products, such as paper, rubber, paints and pharmaceuticals. Furthermore, the shell waste could be further processed to be the filler of polymer composites. This paper presents a study on the potential use of mussel shell waste as biofiller to produce the composite materials with different epoxy matrices, such as bisphenol-A type, CTBN modified and polyurethane modified epoxy resins. Morphology and mechanical properties of shell particles reinforced epoxy composites were evaluated to assess the possibility of using it as a new material. The effects of shell particle content on the mechanical properties of the composites were investigated. It was shown that in all composites, the tensile strength and Young’s modulus values increase with the increase of mussel shell particles content from 10 wt% to 50 wt%, while the elongation at break decreased, compared to pure epoxy resin. The highest Young’s modulus values were determined for bisphenol-A type epoxy composites.

Keywords: biocomposite, epoxy resin, mussel shell, mechanical properties

Procedia PDF Downloads 309
4654 Biliteracy and Latinidad: Catholic Youth Group as a Site of Cosmopolitan Identity Building

Authors: Natasha Perez

Abstract:

This autobiographical narrative inquiry explores the relationship between religious practice, identity, language and literacy in the author’s life experience as a second-generation Cuban-American growing up in the bilingual spaces of South Florida. The author describes how the social practices around language, including the flexibility to communicate in English and Spanish simultaneously, known as translanguaging, were instrumental to developing a biliterate cosmopolitan identity, along with a greater sense of Latinidad through interactions with diverse Latinx church members. This narrative study involved cycles of writing, reading, and reflection within a three-dimensional narrative inquiry space in order to discover the ways in which language and literacy development in the relationship between the personal and the social, across time and space, as historically situated phenomena. The findings show that Catholic faith practices have always been a source and expression of Cuban-ness, a means of sustaining Cuban identity, as well as a medium for bilingual language and literacy practice in the author’s life. Despite lacking formal literacy education in Spanish, she benefitted from the Catholic Church’s response to the surge of Spanish-speaking immigrants in South Florida in the 1980s and the subsequent flexibility of language practice in church-sponsored youth groups. The faith-sharing practices of the youth group created a space to use Spanish in more sophisticated ways that served to build confidence as a bilingual speaker and expand bilingual competence. These experiences also helped the author develop a more salient identity as Cuban-American and a deeper connection to her Cuban-ness in relation to the Nicaraguan, Venezuelan, and first-generation Cuban identities of my peers. The youth group also fostered cosmopolitan identity building through interactions with pan-ethnic Spanish speakers, with Catholicism as a common language and culture that served as a uniting force. Interaction with these peers also fostered cosmopolitan understandings that deepened the author’s knowledge of the geographical boundaries, political realities, and socio-historical differences between these groups of immigrants. This narrative study opens a window onto the micro-processes and socio-cultural dynamics of language and identity development in the second generation, with the potential to deepen our understanding of the impact of religious practice on these.

Keywords: literacy, religion, identity, comopolitanism, culture, language, translanguaging

Procedia PDF Downloads 85
4653 Under-Reporting and Under-Recording of Hate Crimes against Muslim Women in Italy

Authors: Broccolo Cinzia, Grigaliunaite Ruta, Saint-Nom Cloé, Savasta Guido

Abstract:

The present article analyses the root causes of under-reporting and under-recording of hate crimes against Muslim women in Italy. The main findings emerged from the survey conducted between May and September 2022 within the framework of the TRUST project (co-funded by the CERV programme (CERV-2021-EQUAL) of the European Union) with relevant practitioners and members of the Muslim community, including first-generation and second-generation Muslim women residing in Italy. The findings reveal that multiple factors contribute to the low reporting rate as well as to the flaws in recording episodes of intolerance and hatred against the above-mentioned group. Lack of trust in the judiciary or the police may represent one of the main causes of under-reporting; however, the phenomenon is not limited to such aspects, and additional factors and sources of discrimination paving the way to under-recording have been identified during the survey. The significant “tendency” to not report a case of intolerance as the difficulties in identifying the discriminatory nature of the crime are two faces of the same coin and are particularly intertwined; despite this, at first, both issues need to be assessed and analysed separately in order to take their own specificities into duly consideration. By contrast, the potential solution to low recording and reporting trends should be found collectively, namely by involving all the relevant parties and bodies facing the above-mentioned issues. In this regard, a participatory and multi-agency approach may curb the root causes leading Muslim women not to report and, besides this, support law enforcement officials as well as public authorities in providing a more effective service to the victims of hatred, whether offline or online.

Keywords: hate crime, under-reporting, under-recording, Islamophobia, Muslim women

Procedia PDF Downloads 98
4652 A Simple Chemical Approach to Regenerating Strength of Thermally Recycled Glass Fibre

Authors: Sairah Bashir, Liu Yang, John Liggat, James Thomason

Abstract:

Glass fibre is currently used as reinforcement in over 90% of all fibre-reinforced composites produced. The high rigidity and chemical resistance of these composites are required for optimum performance but unfortunately results in poor recyclability; when such materials are no longer fit for purpose, they are frequently deposited in landfill sites. Recycling technologies, for example, thermal treatment, can be employed to address this issue; temperatures typically between 450 and 600 °C are required to allow degradation of the rigid polymeric matrix and subsequent extraction of fibrous reinforcement. However, due to the severe thermal conditions utilised in the recycling procedure, glass fibres become too weak for reprocessing in second-life composite materials. In addition, more stringent legislation is being put in place regarding disposal of composite waste, and so it is becoming increasingly important to develop long-term recycling solutions for such materials. In particular, the development of a cost-effective method to regenerate strength of thermally recycled glass fibres will have a positive environmental effect as a reduced volume of composite material will be destined for landfill. This research study has demonstrated the positive impact of sodium hydroxide (NaOH) and potassium hydroxide (KOH) solution, prepared at relatively mild temperatures and at concentrations of 1.5 M and above, on the strength of heat-treated glass fibres. As a result, alkaline treatments can potentially be implemented to glass fibres that are recycled from composite waste to allow their reuse in second-life materials. The optimisation of the strength recovery process is being conducted by varying certain reaction parameters such as molarity of alkaline solution and treatment time. It is believed that deep V-shaped surface flaws exist commonly on severely damaged fibre surfaces and are effectively removed to form smooth, U-shaped structures following alkaline treatment. Although these surface flaws are believed to be present on glass fibres they have not in fact been observed, however, they have recently been discovered in this research investigation through analytical techniques such as AFM (atomic force microscopy) and SEM (scanning electron microscopy). Reaction conditions such as molarity of alkaline solution affect the degree of etching of the glass fibre surface, and therefore the extent to which fibre strength is recovered. A novel method in determining the etching rate of glass fibres after alkaline treatment has been developed, and the data acquired can be correlated with strength. By varying reaction conditions such as alkaline solution temperature and molarity, the activation energy of the glass etching process and the reaction order can be calculated respectively. The promising results obtained from NaOH and KOH treatments have opened an exciting route to strength regeneration of thermally recycled glass fibres, and the optimisation of the alkaline treatment process is being continued in order to produce recycled fibres with properties that match original glass fibre products. The reuse of such glass filaments indicates that closed-loop recycling of glass fibre reinforced composite (GFRC) waste can be achieved. In fact, the development of a closed-loop recycling process for GFRC waste is already underway in this research study.

Keywords: glass fibers, glass strengthening, glass structure and properties, surface reactions and corrosion

Procedia PDF Downloads 251
4651 Experimental Studies of the Reverse Load-Unloading Effect on the Mechanical, Linear and Nonlinear Elastic Properties of n-AMg6/C60 Nanocomposite

Authors: Aleksandr I. Korobov, Natalia V. Shirgina, Aleksey I. Kokshaiskiy, Vyacheslav M. Prokhorov

Abstract:

The paper presents the results of an experimental study of the effect of reverse mechanical load-unloading on the mechanical, linear, and nonlinear elastic properties of n-AMg6/C60 nanocomposite. Samples for experimental studies of n-AMg6/C60 nanocomposite were obtained by grinding AMg6 polycrystalline alloy in a planetary mill with 0.3 wt % of C60 fullerite in an argon atmosphere. The resulting product consisted of 200-500-micron agglomerates of nanoparticles. X-ray coherent scattering (CSL) method has shown that the average nanoparticle size is 40-60 nm. The resulting preform was extruded at high temperature. Modifications of C60 fullerite interferes the process of recrystallization at grain boundaries. In the samples of n-AMg6/C60 nanocomposite, the load curve is measured: the dependence of the mechanical stress σ on the strain of the sample ε under its multi-cycle load-unloading process till its destruction. The hysteresis dependence σ = σ(ε) was observed, and insignificant residual strain ε < 0.005 were recorded. At σ≈500 MPa and ε≈0.025, the sample was destroyed. The destruction of the sample was fragile. Microhardness was measured before and after destruction of the sample. It was found that the loading-unloading process led to an increase in its microhardness. The effect of the reversible mechanical stress on the linear and nonlinear elastic properties of the n-AMg6/C60 nanocomposite was studied experimentally by ultrasonic method on the automated complex Ritec RAM-5000 SNAP SYSTEM. In the n-AMg6/C60 nanocomposite, the velocities of the longitudinal and shear bulk waves were measured with the pulse method, and all the second-order elasticity coefficients and their dependence on the magnitude of the reversible mechanical stress applied to the sample were calculated. Studies of nonlinear elastic properties of the n-AMg6/C60 nanocomposite at reversible load-unloading of the sample were carried out with the spectral method. At arbitrary values of the strain of the sample (up to its breakage), the dependence of the amplitude of the second longitudinal acoustic harmonic at a frequency of 2f = 10MHz on the amplitude of the first harmonic at a frequency f = 5MHz of the acoustic wave is measured. Based on the results of these measurements, the values of the nonlinear acoustic parameter in the n-AMg6/C60 nanocomposite sample at different mechanical stress were determined. The obtained results can be used in solid-state physics, materials science, for development of new techniques for nondestructive testing of structural materials using methods of nonlinear acoustic diagnostics. This study was supported by the Russian Science Foundation (project №14-22-00042).

Keywords: nanocomposite, generation of acoustic harmonics, nonlinear acoustic parameter, hysteresis

Procedia PDF Downloads 148
4650 Environmental Accounting: A Conceptual Study of Indian Context

Authors: Pradip Kumar Das

Abstract:

As the entire world continues its rapid move towards industrialization, it has seriously threatened mankind’s ability to maintain an ecological balance. Geographical and natural forces have a significant influence on the location of industries. Industrialization is the foundation stone of the development of any country, while the unplanned industrialization and discharge of waste by industries is the cause of environmental pollution. There is growing degree of awareness and concern globally among nations about environmental degradation or pollution. Environmental resources endowed by the gift of nature and not manmade are invaluable natural resources of a country like India. Any developmental activity is directly related to natural and environmental resources. Economic development without environmental considerations brings about environmental crises and damages the quality of life of present, as well as future generation. As corporate sectors in the global market, especially in India, are becoming anxious about environmental degradation, naturally more and more emphasis will be ascribed to how environment-friendly the outcomes are. Maintaining accounts of such environmental and natural resources in the country has become more urgent. Moreover, international awareness and acceptance of the importance of environmental issues has motivated the development of a branch of accounting called “Environmental Accounting”. Environmental accounting attempts to detect and focus the resources consumed and the costs rendered by an industrial unit to the environment. For the sustainable development of mankind, a healthy environment is indispensable. Gradually, therefore, in many countries including India, environment matters are being given top most priority. Accounting and disclosure of environmental matters have been increasingly manifesting as an important dimension of corporate accounting and reporting practices. But, as conventional accounting deals with mainly non-living things, the formulation of valuation, and measurement and accounting techniques for incorporating environment-related matters in the corporate financial statement sometimes creates problems for the accountant. In the light of this situation, the conceptual analysis of the study is concerned with the rationale of environmental accounting on the economy and society as a whole, and focuses the failures of the traditional accounting system. A modest attempt has been made to throw light on the environmental awareness in developing nations like India and discuss the problems associated with the implementation of environmental accounting. The conceptual study also reflects that despite different anomalies, environmental accounting is becoming an increasing important aspect of the accounting agenda within the corporate sector in India. Lastly, a conclusion, along with recommendations, has been given to overcome the situation.

Keywords: environmental accounting, environmental degradation, environmental management, environmental resources

Procedia PDF Downloads 337
4649 Geochemical Characterization for Identification of Hydrocarbon Generation: Implication of Unconventional Gas Resources

Authors: Yousif M. Makeen

Abstract:

This research will address the processes of geochemical characterization and hydrocarbon generation process occurring within hydrocarbon source and/or reservoir rocks. The geochemical characterization includes organic-inorganic associations that influence the storage capacity of unconventional hydrocarbon resources (e.g. shale gas) and the migration process of oil/gas of the petroleum source/reservoir rocks. Kerogen i.e. the precursor of petroleum, occurs in various forms and types, may either be oil-prone, gas-prone, or both. China has a number of petroleum-bearing sedimentary basins commonly associated with shale gas, oil sands, and oil shale. Taken Sichuan basin as a selected basin in this study, the Sichuan basin has recorded notable successful discoveries of shale gas especially in the marine shale reservoirs within the area. However, a notable discoveries of lacustrine shale in the North-Este Fuling area indicate the accumulation of shale gas within non-marine source rock. The objective of this study is to evaluate the hydrocarbon storage capacity, generation, and retention processes in the rock matrix of hydrocarbon source/reservoir rocks within the Sichuan basin using an advanced X-ray tomography 3D imaging computational technology, commonly referred to as Micro-CT, SEM (Scanning Electron Microscope), optical microscope as well as organic geochemical facilities (e.g. vitrinite reflectance and UV light). The preliminary results of this study show that the lacustrine shales under investigation are acting as both source and reservoir rocks, which are characterized by very fine grains and very low permeability and porosity. Three pore structures have also been characterized in the study in the lacustrine shales, including organic matter pores, interparticle pores and intraparticle pores using x-ray Computed Tomography (CT). The benefits of this study would be a more successful oil and gas exploration and higher recovery factor, thus having a direct economic impact on China and the surrounding region. Methodologies: SRA TOC/TPH or Rock-Eval technique will be used to determine the source rock richness (S1 and S2) and Tmax. TOC analysis will be carried out using a multi N/C 3100 analyzer. The SRA and TOC results were used in calculating other parameters such as hydrogen index (HI) and production index (PI). This analysis will indicate the quantity of the organic matter. Minimum TOC limits generally accepted as essential for a source-rock are 0.5% for shales and 0.2% for carbonates. Contributions: This research could solve issues related to oil potential, provide targets, and serve as a pathfinder to future exploration activity in the Sichuan basin.

Keywords: shale gas, unconventional resources, organic chemistry, Sichuan basin

Procedia PDF Downloads 30
4648 The Role of Nickel on the High-Temperature Corrosion of Modell Alloys (Stainless Steels) before and after Breakaway Corrosion at 600°C: A Microstructural Investigation

Authors: Imran Hanif, Amanda Persdotter, Sedigheh Bigdeli, Jesper Liske, Torbjorn Jonsson

Abstract:

Renewable fuels such as biomass/waste for power production is an attractive alternative to fossil fuels in order to achieve a CO₂ -neutral power generation. However, the combustion results in the release of corrosive species. This puts high demands on the corrosion resistance of the alloys used in the boiler. Stainless steels containing nickel and/or nickel containing coatings are regarded as suitable corrosion resistance material especially in the superheater regions. However, the corrosive environment in the boiler caused by the presence of water vapour and reactive alkali very rapidly breaks down the primary protection, i.e., the Cr-rich oxide scale formed on stainless steels. The lifetime of the components, therefore, relies on the properties of the oxide scale formed after breakaway, i.e., the secondary protection. The aim of the current study is to investigate the role of varying nickel content (0–82%) on the high-temperature corrosion of model alloys with 18% Cr (Fe in balance) in the laboratory mimicking industrial conditions at 600°C. The influence of nickel is investigated on both the primary protection and especially the secondary protection, i.e., the scale formed after breakaway, during the oxidation/corrosion process in the dry O₂ (primary protection) and more aggressive environment such as H₂O, K₂CO₃ and KCl (secondary protection). All investigated alloys experience a very rapid loss of the primary protection, i.e., the Cr-rich (Cr, Fe)₂O₃, and the formation of secondary protection in the aggressive environments. The microstructural investigation showed that secondary protection of all alloys has a very similar microstructure in all more aggressive environments consisting of an outward growing iron oxide and inward growing spinel-oxide (Fe, Cr, Ni)₃O₄. The oxidation kinetics revealed that it is possible to influence the protectiveness of the scale formed after breakaway (secondary protection) through the amount of nickel in the alloy. The difference in oxidation kinetics of the secondary protection is linked to the microstructure and chemical composition of the complex spinel-oxide. The detailed microstructural investigations were carried out using the extensive analytical techniques such as electron back scattered diffraction (EBSD), energy dispersive X-rays spectroscopy (EDS) via the scanning and transmission electron microscopy techniques and results are compared with the thermodynamic calculations using the Thermo-Calc software.

Keywords: breakaway corrosion, EBSD, high-temperature oxidation, SEM, TEM

Procedia PDF Downloads 135
4647 Recovery of Au and Other Metals from Old Electronic Components by Leaching and Liquid Extraction Process

Authors: Tomasz Smolinski, Irena Herdzik-Koniecko, Marta Pyszynska, M. Rogowski

Abstract:

Old electronic components can be easily found nowadays. Significant quantities of valuable metals such as gold, silver or copper are used for the production of advanced electronic devices. Old useless electronic device slowly became a new source of precious metals, very often more efficient than natural. For example, it is possible to recover more gold from 1-ton personal computers than seventeen tons of gold ore. It makes urban mining industry very profitable and necessary for sustainable development. For the recovery of metals from waste of electronic equipment, various treatment options based on conventional physical, hydrometallurgical and pyrometallurgical processes are available. In this group hydrometallurgy processes with their relatively low capital cost, low environmental impact, potential for high metal recoveries and suitability for small scale applications, are very promising options. Institute of Nuclear Chemistry and Technology has great experience in hydrometallurgy processes especially focused on recovery metals from industrial and agricultural wastes. At the moment, urban mining project is carried out. The method of effective recovery of valuable metals from central processing units (CPU) components has been developed. The principal processes such as acidic leaching and solvent extraction were used for precious metals recovery from old processors and graphic cards. Electronic components were treated by acidic solution at various conditions. Optimal acid concentration, time of the process and temperature were selected. Precious metals have been extracted to the aqueous phase. At the next step, metals were selectively extracted by organic solvents such as oximes or tributyl phosphate (TBP) etc. Multistage mixer-settler equipment was used. The process was optimized.

Keywords: electronic waste, leaching, hydrometallurgy, metal recovery, solvent extraction

Procedia PDF Downloads 132
4646 The Methanotrophic Activity in a Landfill Bio-Cover through a Subzero Winter

Authors: Parvin Berenjkar, Qiuyan Yuan, Richard Sparling, Stan Lozecznik

Abstract:

Landfills highly contribute to anthropological global warming through CH₄ emissions. Landfills are usually capped by a conventional soil cover to control the migration of gases. Methane is consumed by CH₄-oxidizing microorganisms known as methanotrophs that naturally exist in the landfill soil cover. The growth of methanotrophs can be optimized in a bio-cover that typically consists of a gas distribution layer (GDL) to homogenize landfill gas fluxes and an overlying oxidation layer composed of suitable materials that support methanotrophic populations. Materials such as mature yard waste composts can provide an inexpensive and favourable porous support for the growth and activity of methanotrophs. In areas with seasonal cold climates, it is valuable to know if methanotrophs in a bio-cover can survive in winter until the next spring, and how deep they are active in the bio-cover to mitigate CH₄. In this study, a pilot bio-cover was constructed in a closed landfill cell in Winnipeg that has a very cold climate in Canada. The bio-cover has a surface area of 2.5 m x 3.5 m and 1.5 m of depth, filled with 50 cm of gravel as a GDL and 70 cm of biosolids compost amended with yard and leaf waste compost. The observed in situ potential of methanotrophs for CH₄ oxidation was investigated at a specific period of time from December 2016 to April 2017 as well as November 2017 to April 2018, when the transition to surface frost and thawing happens in the bio-cover. Compost samples taken from different depths of the bio-cover were incubated in the laboratory under standardized conditions; an optimal air: methane atmosphere, at 22ºC, but at in situ moisture content. Results showed that the methanotrophs were alive oxidizing methane without a lag, indicating that there was the potential for methanotrophic activity at some depths of the bio-cover.

Keywords: bio-cover, global warming, landfill, methanotrophic activity

Procedia PDF Downloads 117
4645 Overview Studies of High Strength Self-Consolidating Concrete

Authors: Raya Harkouss, Bilal Hamad

Abstract:

Self-Consolidating Concrete (SCC) is considered as a relatively new technology created as an effective solution to problems associated with low quality consolidation. A SCC mix is defined as successful if it flows freely and cohesively without the intervention of mechanical compaction. The construction industry is showing high tendency to use SCC in many contemporary projects to benefit from the various advantages offered by this technology. At this point, a main question is raised regarding the effect of enhanced fluidity of SCC on the structural behavior of high strength self-consolidating reinforced concrete. A three phase research program was conducted at the American University of Beirut (AUB) to address this concern. The first two phases consisted of comparative studies conducted on concrete and mortar mixes prepared with second generation Sulphonated Naphtalene-based superplasticizer (SNF) or third generation Polycarboxylate Ethers-based superplasticizer (PCE). The third phase of the research program investigates and compares the structural performance of high strength reinforced concrete beam specimens prepared with two different generations of superplasticizers that formed the unique variable between the concrete mixes. The beams were designed to test and exhibit flexure, shear, or bond splitting failure. The outcomes of the experimental work revealed comparable resistance of beam specimens cast using self-compacting concrete and conventional vibrated concrete. The dissimilarities in the experimental values between the SCC and the control VC beams were minimal, leading to a conclusion, that the high consistency of SCC has little effect on the flexural, shear and bond strengths of concrete members.

Keywords: self-consolidating concrete (SCC), high-strength concrete, concrete admixtures, mechanical properties of hardened SCC, structural behavior of reinforced concrete beams

Procedia PDF Downloads 248
4644 Comparative Analysis of the Third Generation of Research Data for Evaluation of Solar Energy Potential

Authors: Claudineia Brazil, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Rafael Haag

Abstract:

Renewable energy sources are dependent on climatic variability, so for adequate energy planning, observations of the meteorological variables are required, preferably representing long-period series. Despite the scientific and technological advances that meteorological measurement systems have undergone in the last decades, there is still a considerable lack of meteorological observations that form series of long periods. The reanalysis is a system of assimilation of data prepared using general atmospheric circulation models, based on the combination of data collected at surface stations, ocean buoys, satellites and radiosondes, allowing the production of long period data, for a wide gamma. The third generation of reanalysis data emerged in 2010, among them is the Climate Forecast System Reanalysis (CFSR) developed by the National Centers for Environmental Prediction (NCEP), these data have a spatial resolution of 0.50 x 0.50. In order to overcome these difficulties, it aims to evaluate the performance of solar radiation estimation through alternative data bases, such as data from Reanalysis and from meteorological satellites that satisfactorily meet the absence of observations of solar radiation at global and/or regional level. The results of the analysis of the solar radiation data indicated that the reanalysis data of the CFSR model presented a good performance in relation to the observed data, with determination coefficient around 0.90. Therefore, it is concluded that these data have the potential to be used as an alternative source in locations with no seasons or long series of solar radiation, important for the evaluation of solar energy potential.

Keywords: climate, reanalysis, renewable energy, solar radiation

Procedia PDF Downloads 206
4643 Detection of Transgenes in Cotton (Gossypium hirsutum L.) by using Biotechnology/Molecular Biological Techniques

Authors: Ahmad Ali Shahid, M Shakil Shaukat

Abstract:

Agriculture is the backbone of economy of Pakistan and Cotton is the major agricultural export and supreme source of raw fiber for our textile industry. To combat against the developing resistance in the target insects and combating these challenges wholesomely, a novel combination of pyramided/stacked genes was conceptualized and later realized, through the means of biotechnology i.e., transformation of three genes namely, Cry1Ac, Cry2A, and EPSP synthase (glyphosate tolerant) genes in the locally cultivated cotton variety. The progenies of the transformed plants were successfully raised and screened under the tunnel conditions for two generations and the present study focused on the screening of plants which were confirmed for containing all of these three genes and their expressions. Initially, the screening was done through glyphosate spray assay and the plants which were healthy and showed no damage on leaves were selected after 07 days of spray. In the laboratory, the DNA of these plants were isolated and subjected to amplification of the three genes. Thus, seventeen out of twenty were confirmed positive for Cry1Ac gene and ten out of twenty were positive for Cry2A gene and all twenty were positive for presence of EPSP synthase gene. Then, the ten plant samples which were confirmed with presence of all three genes were subjected to expression analysis of these proteins through ELISA. The results showed that eight out of ten plants were actively expressing the three transgenes. Real-time PCR was also done to quantify the expression levels of the EPSP synthase gene. Finally, eight plants were confirmed for the presence and active expression of all three genes in T3 generation of the triple gene transformed cotton. These plants may be subjected to T4 generation to develop a new stable variety in due course of time.

Keywords: agriculture, cotton, transformation, cry genes, ELISA, PCR

Procedia PDF Downloads 389
4642 Nanocomposites Based Micro/Nano Electro-Mechanical Systems for Energy Harvesters and Photodetectors

Authors: Radhamanohar Aepuru, R. V. Mangalaraja

Abstract:

Flexible electronic devices have drawn potential interest and provide significant new insights to develop energy conversion and storage devices such as photodetectors and nanogenerators. Recently, self-powered electronic systems have captivated huge attention for next generation MEMS/NEMS devices that can operate independently by generating built-in field without any need of external bias voltage and have wide variety of applications in telecommunication, imaging, environmental and defence sectors. The basic physical process involved in these devices are charge generation, separation, and charge flow across the electrodes. Many inorganic nanostructures have been exploring to fabricate various optoelectronic and electromechanical devices. However, the interaction of nanostructures and their excited charge carrier dynamics, photoinduced charge separation, and fast carrier mobility are yet to be studied. The proposed research is to address one such area and to realize the self-powered electronic devices. In the present work, nanocomposites of inorganic nanostructures based on ZnO, metal halide perovskites; and polyvinylidene fluoride (PVDF) based nanocomposites are realized for photodetectors and nanogenerators. The characterization of the inorganic nanostructures is carried out through steady state optical absorption and luminescence spectroscopies as well as X-ray diffraction and high-resolution transmission electron microscopy (TEM) studies. The detailed carrier dynamics is investigated using various spectroscopic techniques. The developed composite nanostructures exhibit significant optical and electrical properties, which have wide potential applications in various MEMS/NEMS devices such as photodetectors and nanogenerators.

Keywords: dielectrics, nanocomposites, nanogenerators, photodetectors

Procedia PDF Downloads 126