Search results for: solid lipid nanoparticles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4167

Search results for: solid lipid nanoparticles

1497 High Efficiency Electrolyte Lithium Battery and RF Characterization

Authors: Wei Quan, Liu Chao, Mohammed N. Afsar

Abstract:

The dielectric properties and ionic conductivity of novel "ceramic state" polymer electrolytes for high capacity lithium battery are characterized by radio-frequency and Microwave methods in two broad frequency ranges from 50 Hz to 20 KHz and 4 GHz to 40 GHz. This innovative solid polymer electrolyte which is highly ionic conductive (10-3 S/cm at room temperature) from -40 oC to +150 oC and can be used in any battery application. Such polymer exhibits properties more like a ceramic rather than polymer. The various applied measurement methods produced accurate dielectric results for comprehensive analysis of electrochemical properties and ion transportation mechanism of this newly invented polymer electrolyte. Two techniques and instruments employing air gap measurement by capacitance bridge and inwave guide measurement by vector network analyzer are applied to measure the complex dielectric spectra. The complex dielectric spectra are used to determine the complex alternating current electrical conductivity and thus the ionic conductivity.

Keywords: polymer electrolyte, dielectric permittivity, lithium battery, ionic relaxation, microwave measurement

Procedia PDF Downloads 478
1496 Hot Spot Stress Analysis and Parametric Study on Rib-To-Deck Welded Connections in Orthotropic Steel Bridge Decks

Authors: Dibu Dave Mbako, Bin Cheng

Abstract:

This paper study the stress variation of the welded joints in the rib-to-deck connection structure, the influence stress of the deck plate and u-rib thickness at different positions. A Finite-element model of orthotropic steel deck structure using solid element and shell element was established in ABAQUS. Under a single wheel load, the static response was analyzed to understand the structural behaviors and examine stress distribution. A parametric study showed that the geometric parameters have a significant effect on the hot spot stress at the weld toe, but has little impact on the stress concentration factor. The increase of the thickness of the deck plate will lead to the decrease of the hot spot stress at the weld toe and the maximum deflection of the deck plate. The surface stresses of the deck plate are significantly larger than those of the rib near the joint in the 80% weld penetration into the u-rib.

Keywords: orthotropic steel bridge deck, rib-to-deck connection, hot spot stress, finite element method, stress distribution

Procedia PDF Downloads 221
1495 Falling and Rising of Solid Particles in Thermally Stratified Fluid

Authors: Govind Sharma, Bahni Ray

Abstract:

Ubiquitous nature of particle settling is governed by the presence of the surrounding fluid medium. Thermally stratified fluid alters the settling phenomenon of particles as well as their interactions. Direct numerical simulation (DNS) is carried out with an open-source library Immersed Boundary Adaptive Mesh Refinement (IBAMR) to quantify the fundamental mechanism based on Distributed Lagrangian Multiplier (DLM). The presence of background density gradient due to thermal stratification replaces the drafting-kissing-tumbling in a homogeneous fluid to drafting-kissing-separation behavior. Simulations are performed with a varying range of particle-fluid density ratios, and it is shown that the stratification effect on particle interactions varies with density ratio. It is observed that the combined role of buoyancy and inertia govern the physical mechanism of particle-particle interaction.

Keywords: direct numerical simulation, distributed lagrangian multiplier, rigidity constraint, sedimentation, stratification

Procedia PDF Downloads 136
1494 Monomial Form Approach to Rectangular Surface Modeling

Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong

Abstract:

Geometric modeling plays an important role in the constructions and manufacturing of curve, surface and solid modeling. Their algorithms are critically important not only in the automobile, ship and aircraft manufacturing business, but are also absolutely necessary in a wide variety of modern applications, e.g., robotics, optimization, computer vision, data analytics and visualization. The calculation and display of geometric objects can be accomplished by these six techniques: Polynomial basis, Recursive, Iterative, Coefficient matrix, Polar form approach and Pyramidal algorithms. In this research, the coefficient matrix (simply called monomial form approach) will be used to model polynomial rectangular patches, i.e., Said-Ball, Wang-Ball, DP, Dejdumrong and NB1 surfaces. Some examples of the monomial forms for these surface modeling are illustrated in many aspects, e.g., construction, derivatives, model transformation, degree elevation and degress reduction.

Keywords: monomial forms, rectangular surfaces, CAGD curves, monomial matrix applications

Procedia PDF Downloads 146
1493 S. cerevisiae Strains Co-Cultured with Isochrysis Galbana Create Greater Biomass for Biofuel Production than Nannochloropsis sp.

Authors: Madhalasa Iyer

Abstract:

The increase in sustainable practices have encouraged the research and production of alternative fuels. New techniques of bio flocculation with the addition of yeast and bacteria strains have increased the efficiency of biofuel production. Fatty acid methyl ester (FAME) analysis in previous research has indicated that yeast can serve as a plausible enhancer for microalgal lipid production. The research hopes to identify the yeast and microalgae treatment group that produces the largest algae biomass. The mass of the dried algae is used as a proxy for TAG production correlating to the cultivation of biofuels. The study uses a model bioreactor created and built using PVC pipes, 8-port sprinkler system manifold, CO2 aquarium tank, and disposable water bottles to grow the microalgae. Nannochloropsis sp., and Isochrysis galbanawere inoculated separately in experimental group 1 and 2 with no treatments and in experimental groups 3 and 4 with each algaeco-cultured with Saccharomyces cerevisiae in the medium of standard garden stone fertilizer. S. cerevisiae was grown in a petri dish with nutrient agar medium before inoculation. A Secchi stick was used before extraction to collect data for the optical density of the microalgae. The biomass estimator was then used to measure the approximate production of biomass. The microalgae were grown and extracted with a french press to analyze secondary measurements using the dried biomass. The experimental units of Isochrysis galbana treated with the baker’s yeast strains showed an increase in the overall mass of the dried algae. S. cerevisiae proved to be an accurate and helpful addition to the solution to provide for the growth of algae. The increase in productivity of this fuel source legitimizes the possible replacement of non-renewable sources with more promising renewable alternatives. This research furthers the notion that yeast and mutants can be engineered to be employed in efficient biofuel creation.

Keywords: biofuel, co-culture, S. cerevisiae, microalgae, yeast

Procedia PDF Downloads 108
1492 Highly Selective Conversion of CO2 to CO on Cu Nanoparticles

Authors: Rauf Razzaq, Kaiwu Dong, Muhammad Sharif, Ralf Jackstell, Matthias Beller

Abstract:

Carbon dioxide (CO2), a key greenhouse gas produced from both anthropogenic and natural sources, has been recently considered to be an important C1 building-block for the synthesis of many industrial fuels and chemicals. Catalytic hydrogenation of CO2 using a heterogeneous system is regarded as an efficient process for CO2 valorization. In this regard CO2 reduction to CO via the reverse water gas shift reaction (RWGSR) has attracted much attention as a viable process for large scale commercial CO2 utilization. This process can generate syn-gas (CO+H2) which can provide an alternative route to direct CO2 conversion to methanol and/or liquid HCs from FT reaction. Herein, we report a highly active and selective silica supported copper catalyst with efficient CO2 reduction to CO in a slurry-bed batch autoclave reactor. The reactions were carried out at 200°C and 60 bar initial pressure with CO2/H2 ratio of 1:3 with varying temperature, pressure and fed-gas ratio. The gaseous phase products were analyzed using FID while the liquid products were analyzed by using FID detectors. It was found that Cu/SiO2 catalyst prepared using novel ammonia precipitation-urea gelation method achieved 26% CO2 conversion with a CO and methanol selectivity of 98 and 2% respectively. The high catalytic activity could be attributed to its strong metal-support interaction with highly dispersed and stabilized Cu+ species active for RWGSR. So, it can be concluded that reduction of CO2 to CO via RWGSR could address the problem of using CO2 gas in C1 chemistry.

Keywords: CO2 reduction, methanol, slurry reactor, synthesis gas

Procedia PDF Downloads 327
1491 Time Series Analysis of Radon Concentration at Different Depths in an Underground Goldmine

Authors: Theophilus Adjirackor, Frederic Sam, Irene Opoku-Ntim, David Okoh Kpeglo, Prince K. Gyekye, Frank K. Quashie, Kofi Ofori

Abstract:

Indoor radon concentrations were collected monthly over a period of one year in 10 different levels in an underground goldmine, and the data was analyzed using a four-moving average time series to determine the relationship between the depths of the underground mine and the indoor radon concentration. The detectors were installed in batches within four quarters. The measurements were carried out using LR115 solid-state nuclear track detectors. Statistical models are applied in the prediction and analysis of the radon concentration at various depths. The time series model predicted a positive relationship between the depth of the underground mine and the indoor radon concentration. Thus, elevated radon concentrations are expected at deeper levels of the underground mine, but the relationship was insignificant at the 5% level of significance with a negative adjusted R2 (R2 = – 0.021) due to an appropriate engineering and adequate ventilation rate in the underground mine.

Keywords: LR115, radon concentration, rime series, underground goldmine

Procedia PDF Downloads 45
1490 Iodine-Doped Carbon Dots as a Catalyst for Water Remediation Application

Authors: Anurag Kumar Pandey, Tapan Kumar Nath, Santanu Dhara

Abstract:

Polluted water by industrial effluents or dyes has become a major global concern, particularly in developing countries. Such environmental contaminants constitute a serious threat to biodiversity, ecosystems, and human health worldwide; thus, their treatment is critical. The usage of nanoparticles has been discovered to be a potential water treatment method with high efficiency, cheap manufacturing costs, and green synthesis. Carbon dots have attracted the interest of researchers due to their unique properties, such as high water solubility, ease of production, great electron-donating ability, and low toxicity. In this context, we synthesized iodine-doped clove buds-derived carbon dots (I-CCDs) for the Fenton-like degradation of environmental contaminants in water (such as methylene blue (MB) and rhodamine-B (Rh-B) dye). The formation of I-CCDs has been confirmed using various spectroscopy techniques. I-CCDs have demonstrated remarkable optical, cytocompatibility, and antibacterial capabilities. The C-dots that were synthesized were found to be an effective catalyst for the reduction of MB and Rh-B utilizing NaBH4 as a reducing agent. UV-visible spectroscopy was used to construct a detailed pathway for dye reduction step by step. As-prepared I-CCDs have the potential to be a promising solution for wastewater purification and treatment systems.

Keywords: iodine-doped carbon dots, wastewater treatment and purification, environmental friendly, antibacterial

Procedia PDF Downloads 82
1489 Hydration Evaluation In A Working Population in Greece

Authors: Aikaterini-Melpomeni Papadopoulou, Kyriaki Apergi, Margarita-Vasiliki Panagopoulou, Olga Malisova

Abstract:

Introduction: Adequate hydration is a vital factor that enhances concentration, memory, and decision-making abilities throughout the workday. Various factors may affect hydration status in workplace settings, and many variables, such as age, gender and activity level affect hydration needs. Employees frequently overlook their hydration needs amid busy schedules and demanding tasks, leading to dehydration that can negatively affect cognitive function, productivity, and overall well-being In addition, dietary habits, including fluid intake and food choices, can either support or hinder optimal hydration. However, factors that affect hydration balance among workers in Greece have not been adequately studied. Objective: This study aims to evaluate the hydration status of the working population in Greece and investigate the various factors that impact hydration status in workplace settings, considering demographic, dietary, and occupational influences in a Greek sample of employees from diverse working environments Materials & Methods: The study included 212 participants (46.2% women) from the working population in Greece. Water intake from both solid and liquid foods was recorded using a semi-quantified drinking frequency questionnaire the validated Water Balance Questionnaire was used to evaluate hydration status. The calculation of water from solid and liquid foods was based on data from the USDA National Nutrient Database. Water balance was calculated subtracting the total fluid loss from the total fluid intake in the body. Furthermore, the questionnaire including additional questions on drinking habits and work-related factors.volunteers answered questions of different categories such as a) demographic socio-economic b) work style characteristics c) health, d) physical activity, e) food and fluid intake, f) fluid excretion and g) trends on fluid and water intake. Individual and multivariate regression analyses were performed to assess the relationships between demographic, work-related factors, and hydration balance. Results: Analysis showed that demographic factors like gender, age, and BMI, as well as certain work-related factors, had a weak and statistically non-significant effect on hydration balance. However, the use of a bottle or water container during work hours (b = 944.93, p < 0.001) and engaging in intense physical activity outside of work (b = -226.28, p < 0.001) were found to have a significant impact. Additionally, the consumption of beverages other than water (b = -416.14, p = 0.059) could negatively impact hydration balance. On average, the total consumption of the sample is 3410 ml of water daily, with men consuming approximately 440 ml / day more water (3470 ml / day) compared to women (3030 ml / day) with this difference also being statistically significant. Finally, the water balance, defined as the difference between water intake and water excretion, was found to be negative on average for the entire sample. Conclusions: This study is among the first to explore hydration status within the Greek working population. Findings indicate that awareness of adequate hydration and individual actions, such as using a water bottle during work, may influence hydration balance.

Keywords: hydration, working population, water balance, workplace behavior

Procedia PDF Downloads 11
1488 Formulation and in Vitro Characterization of Bioactives Loaded Polymeric Nanoparticle Incorporated into Multiphase Hydrogel System for the Treatment of Infected Burn Wound

Authors: Rajni Kant Panik, Deependra Singh, Manju Singh

Abstract:

Despite significant advances in the treatment of severe burn injury, infection and sepsis persist as frequent causes of morbidity and mortality for burn victims due to extensive compromise of the skin and contiguous tissue that serve as a protective barrier against microbial invasion. In the setting of a burn wound infection, Staphylococcus aureus is the most commonly isolated pathogens from bloodstream infections in burn care hospitals. We aimed to develop a biocompatible system of Poly vinyl alcohol (PVA)-sodium alginate hydrogel carrying multiple drugs- catalase and mupirocin in controlled manner for effective and complete burn wound healing. PLGA nanoparticles of Catalase and mupirocin were prepared by homogenization method and optimized system was incorporated in PVA-sodium alginate slurry. PVA-sodium alginate hydrogels were prepared by freeze thaw method. The prepared dispersion was casted into films to prepare multiphase hydrogel system and characterized by in vitro and in vivo studies. The study clearly showed the beneficial effect of antioxidant enzyme and antibiotic in the treatment of infected burn wound, as evidenced by the reduced incidence of wound infection and the shortening of healing time.

Keywords: burn wound, catalase, mupirocin, wound healing

Procedia PDF Downloads 503
1487 Research on Eco-Sustainable Recycling of Industrial Wastes

Authors: Liliana Crăc, Nicolae Giorgi, Gheorghe Fometescu

Abstract:

In Romania, billions of tonnes of wastes are generated yearly, an important amount being stored within industrial dumps that covers high soil areas and affects the environment quality, especially of ground and surface waters. Landfill represents in Romania the most important way for wastes removal, over 75% being generated every year, the costs with the dumps construction being considerable. In most of the cases, the wastes generated mainly by the energy industry, oil exploitation and metallurgy, are still considered wastes with NO-use, and their removal and neutralization represent for transport, handling and storing, high non-productive expenses which raise the cost of the useful products obtained. The paper presents a recycling idea of three types of wastes in order to use them for building materials manufacturing, by promoting ECOWASTES LIFE+ project, whose aim is to demonstrate that the recycling of waste from energy industry (coal combustion waste), petroleum extraction (drilling mud) and metallurgy (steelmaking slag) is technically feasible.

Keywords: fly ash, drilled solid wastes, metallurgical slag, recycling, building materials

Procedia PDF Downloads 312
1486 The Effects of Lithofacies on Oil Enrichment in Lucaogou Formation Fine-Grained Sedimentary Rocks in Santanghu Basin, China

Authors: Guoheng Liu, Zhilong Huang

Abstract:

For more than the past ten years, oil and gas production from marine shale such as the Barnett shale. In addition, in recent years, major breakthroughs have also been made in lacustrine shale gas exploration, such as the Yanchang Formation of the Ordos Basin in China. Lucaogou Formation shale, which is also lacustrine shale, has also yielded a high production in recent years, for wells such as M1, M6, and ML2, yielding a daily oil production of 5.6 tons, 37.4 tons and 13.56 tons, respectively. Lithologic identification and classification of reservoirs are the base and keys to oil and gas exploration. Lithology and lithofacies obviously control the distribution of oil and gas in lithological reservoirs, so it is of great significance to describe characteristics of lithology and lithofacies of reservoirs finely. Lithofacies is an intrinsic property of rock formed under certain conditions of sedimentation. Fine-grained sedimentary rocks such as shale formed under different sedimentary conditions display great particularity and distinctiveness. Hence, to our best knowledge, no constant and unified criteria and methods exist for fine-grained sedimentary rocks regarding lithofacies definition and classification. Consequently, multi-parameters and multi-disciplines are necessary. A series of qualitative descriptions and quantitative analysis were used to figure out the lithofacies characteristics and its effect on oil accumulation of Lucaogou formation fine-grained sedimentary rocks in Santanghu basin. The qualitative description includes core description, petrographic thin section observation, fluorescent thin-section observation, cathode luminescence observation and scanning electron microscope observation. The quantitative analyses include X-ray diffraction, total organic content analysis, ROCK-EVAL.II Methodology, soxhlet extraction, porosity and permeability analysis and oil saturation analysis. Three types of lithofacies were mainly well-developed in this study area, which is organic-rich massive shale lithofacies, organic-rich laminated and cloddy hybrid sedimentary lithofacies and organic-lean massive carbonate lithofacies. Organic-rich massive shale lithofacies mainly include massive shale and tuffaceous shale, of which quartz and clay minerals are the major components. Organic-rich laminated and cloddy hybrid sedimentary lithofacies contain lamina and cloddy structure. Rocks from this lithofacies chiefly consist of dolomite and quartz. Organic-lean massive carbonate lithofacies mainly contains massive bedding fine-grained carbonate rocks, of which fine-grained dolomite accounts for the main part. Organic-rich massive shale lithofacies contain the highest content of free hydrocarbon and solid organic matter. Moreover, more pores were developed in organic-rich massive shale lithofacies. Organic-lean massive carbonate lithofacies contain the lowest content solid organic matter and develop the least amount of pores. Organic-rich laminated and cloddy hybrid sedimentary lithofacies develop the largest number of cracks and fractures. To sum up, organic-rich massive shale lithofacies is the most favorable type of lithofacies. Organic-lean massive carbonate lithofacies is impossible for large scale oil accumulation.

Keywords: lithofacies classification, tuffaceous shale, oil enrichment, Lucaogou formation

Procedia PDF Downloads 220
1485 Nutrition and Physical Activity Intervention on Health Screening Outcomes for Singaporean Employees: A Worksite Based Randomised Controlled Trial

Authors: Elaine Wong

Abstract:

This research protocol aims to explore and justify the need for nutrition and physical activity intervention to improve health outcomes among SME (Small Medium Enterprise) employees. It was found that the worksite is an ideal and convenient setting for employees to take charge of their health thru active participation in health programmes since they spent a great deal of time at their workplace. This study will examine the impact of both general or/and targeted health interventions in both SME and non-SME companies utilizing the Workplace Health Promotion (WHP) grant over a 12 months period and assessed the improvement in chronic health disease outcomes in Singapore. Random sampling of both non-SME and SME companies will be conducted to undergo health intervention and statistical packages such as Statistical Package for Social Science (SPSS) 25 will be used to examine the impact of both general and targeted interventions on employees who participate and those who do not participate in the intervention and their effects on blood glucose (BG), blood lipid, blood pressure (BP), body mass index (BMI), and body fat percentage. Using focus groups and interviews, the data results will be transcribed to investigate enablers and barriers to workplace health intervention revealed by employees and WHP coordinators that could explain the variation in the health screening results across the organisations. Dietary habits and physical activity levels of the employees participating and not participating in the intervention will be collected before and after intervention to assess any changes in their lifestyle practices. It makes economic sense to study the impact of these interventions on health screening outcomes across various organizations that are existing grant recipients to justify the sustainability of these programmes by the local government. Healthcare policy makers and employers can then tailor appropriate and relevant programmes to manage these escalating chronic health disease conditions which is integral to the competitiveness and productivity of the nation’s workforce.

Keywords: chronic diseases, health screening, nutrition and fitness intervention , workplace health

Procedia PDF Downloads 148
1484 The Comparation of Limits of Detection of Lateral Flow Immunochromatographic Strips of Different Types of Mycotoxins

Authors: Xinyi Zhao, Furong Tian

Abstract:

Mycotoxins are secondary metabolic products of fungi. These are poisonous, carcinogens and mutagens in nature and pose a serious health threat to both humans and animals, causing severe illnesses and even deaths. The rapid, simple and cheap detection methods of mycotoxins are of immense importance and in great demand in the food and beverage industry as well as in agriculture and environmental monitoring. Lateral flow immunochromatographic strips (ICSTs) have been widely used in food safety, environment monitoring. Forty-six papers were identified and reviewed on Google Scholar and Scopus for their limit of detection and nanomaterial on Lateral flow immunochromatographic strips on different types of mycotoxins. The papers were dated 2001-2021. Twenty five papers were compared to identify the lowest limit of detection of among different mycotoxins (Aflatoxin B1: 10, Zearalenone:5, Fumonisin B1: 5, Trichothecene-A: 5). Most of these highly sensitive strips are competitive. Sandwich structure are usually used in large scale detection. In conclusion, the mycotoxin receives that most researches is aflatoxin B1 and its limit of detection is the lowest. Gold-nanopaticle based immunochromatographic test strips has the lowest limit of detection. Five papers involve smartphone detection and they all detect aflatoxin B1 with gold nanoparticles. In these papers, quantitative concentration results can be obtained when the user uploads the photograph of test lines using the smartphone application.

Keywords: aflatoxin B1, limit of detection, gold nanoparticle, lateral flow immunochromatographic strips, mycotoxins

Procedia PDF Downloads 195
1483 Volatile Composition of Sucuks: A Traditional Dry-Fermented Sausage Affected by Meat and Fat Types

Authors: Mina Kargozari, Isabel Revilla Martin, Ángel A. Carbonell-Barrachina, Antoni Szumny

Abstract:

The profiles of volatile compounds of differently formulated sausages including CH (camel meat-hump), CB (camel meat-beef fat), BH (beef-hump) and BB (beef-beef fat) were analyzed by gas chromatography/mass spectrometry (GC-MS) using a solid phase micro-extraction (SPME) in order to investigate the role of meat and fat type in aroma compounds release. A total of 47 compounds identified, were consisted of 3 acids, 1 ester, 3 alcohols, 7 aldehydes, 5 sulphur compounds, and 27 terpenes. The significant differences were observed in the aroma compounds among four batches. The CH sucuk samples containing the highest (p<0.05) fat amount among the others showed higher amounts of volatiles in consequence. The sausages prepared with hump showed higher amounts of aldehydes and lower amounts of terpenes compared to the sausages made with beef fat (p<0.05). It seemed that meat type had an inconsiderable effect on the volatile profile of the sausages.

Keywords: aromatic compounds, camel meat, hump, SPME

Procedia PDF Downloads 433
1482 Low Temperature Powders Synthesis of la1-xMgxAlO3 through Sol-Gel Method

Authors: R. Benakcha, M. Omari

Abstract:

Powders of La1-xMgxAlO3 (0 ≤ x ≤ 5) oxides, with large surface areas were synthesized by sol-gel process, utilizing citric acid. Heating of a mixed solution of CA, EtOH, and nitrates of lanthanum, aluminium and magnesium at 70°C gave transparent gel without any precipitation. The formation of pure perovskite La1-xMgxAlO3, occurred when the precursor was heat-treated at 800°C for 6 h. No X-ray diffraction evidence for the presence of crystalline impurities was obtained. The La1-xMgxAlO3 powders prepared by the sol-gel method have a considerably large surface area in the range of 12.9–20 m^2.g^-1 when compared with 0.3 m^2.g^-1 for the conventional solid-state reaction of LaAlO3. The structural characteristics were examined by means of conventional techniques namely X-ray diffraction, infrared spectroscopy, thermogravimetry and differential thermal (TG-DTA) and specific surface SBET. Pore diameters and crystallite sizes are in the 8.8-11.28 nm and 25.4-30.5 nm ranges, respectively. The sol-gel method is a simple technique that has several advantages. In addition to that of not requiring high temperatures, it has the potential to synthesize many kinds of mixed oxides and obtain other materials homogeneous and large purities. It also allows formatting a variety of materials: very fine powders, fibers and films.

Keywords: aluminate, lanthan, perovskite, sol-gel

Procedia PDF Downloads 279
1481 Contribution to the Analytical Study of Barrier Surface Waves: Decomposition of the Solution

Authors: T. Zitoun, M. Bouhadef

Abstract:

When a partially or completely immersed solid moves in a liquid such as water, it undergoes a force called hydrodynamic drag. Reducing this force has always been the objective of hydrodynamic engineers to make water slide better on submerged bodies. This paper deals with the examination of the different terms composing the analytical solution of the flow over an obstacle embedded at the bottom of a hydraulic channel. We have chosen to use a linear method to study a two-dimensional flow over an obstacle, in order to understand the evolution of the drag. We set the following assumptions: incompressible inviscid fluid, irrotational flow, low obstacle height compared to the water height. Those assumptions allow overcoming the difficulties associated with modelling these waves. We will mathematically formulate the equations that allow the determination of the stream function, and then the free surface equation. A similar method is used to determine the exact analytical solution for an obstacle in the shape of a sinusoidal arch.

Keywords: analytical solution, free-surface wave, hydraulic channel, inviscid fluid

Procedia PDF Downloads 197
1480 Asymmetric Synthesis and Biological Study of Suberosanes

Authors: Mohammad Kousara, Françoise Dumas, Rama Ibrahim, Joëlle Dubois, Joël Raingeaud

Abstract:

Suberosanes are a small group of marine natural sesquiterpenes discovered since 1996 by Boyd, Sheu and Qi from three gorgonians. Their skeleton was previously found in quadranes produced by the terrestrial fungus Aspergillus terreus. Up to date, eleven suberosanes are described from which (-)-suberosanone and (-)-suberosenol A are reaching the picomolar cytotoxicity level on human solid tumors cell lines. Due to their impressive cytotoxic properties and their limited availability, we undertook an asymmetric synthesis of the most active members of this family in order to get insight into their absolute configurations and their biological properties. The challenge of their synthesis is the regio- and stereoselective elaboration of the compact bridged tricyclic skeleton with up to five all adjacent asymmetric centers, including a central quaternary carbon one. Our strategy is based on an aza-ene-synthesis key step which is regio-and stereo-controlled by the choice of a chiral amine enantiomer. it approach is concise and flexible, the enantiopur ABC tricyclic intermediate that have been synthesized being the common precursor of suberosanes.

Keywords: suberosanes, asymmetric synthesis, sesquiterpenes, quadranes

Procedia PDF Downloads 92
1479 Chemical Composition and Characteristics of Organic Solvent Extracts from the Omani Seaweeds Melanothamnus Somalensis and Gelidium Omanense

Authors: Abdullah Al-Nassri, Ahmed Al-Alawi

Abstract:

Seaweeds are classified into three groups: red, green, and brown. Each group of seaweeds consists of several types that have differences in composition. Even at the species level, there are differences in some ingredients, although in general composition, they are the same. Environmental conditions, availability of nutrients, and maturity stage are the main reasons for composition differences. In this study, two red seaweed species, Melanothamnus somalensis & Gelidium omanense, were collected in September 2021 from Sadh (Dhofar governorate, Oman). Five organic solvents were used sequentially to achieve extraction. The solvents were applied in the following order: hexane, dichloromethane, ethyl acetate, acetone, and methanol. Preparative HPLC (PrepLC) was performed to fraction the extracts. The chemical composition was measured; also, total phenols, flavonoids, and tannins were investigated. The structure of the extracts was analyzed by Fourier-transform infrared spectroscopy (FTIR). Seaweeds demonstrated high differences in terms of chemical composition, total phenolic content (TPC), total flavonoid content (TFC), and total tannin content (TTC). Gelidium omanense showed high moisture content, lipid content and carbohydrates (9.8 ± 0.15 %, 2.29 ± 0.09 % and 70.15 ± 0.42 %, respectively) compared to Melanothamnus somalensis (6.85 ± 0.01 %, 2.05 ± 0.12 % and 52.7 ± 0.36 % respectively). However, Melanothamnus somalensis showed high ash content and protein (27.68 ± 0.40 % and 52.7 ± 0.36 % respectively) compared to Gelidium omanense (8.07 ± 0.39 % and 9.70 ± 0.22 % respectively). Melanothamnus somalensis showed higher elements and minerals content, especially sodium and potassium. This is attributed to the jelly-like structure of Melanothamnus somalensis, which allows storage of more solutes compared to the leafy-like structure of Gelidium omanense. Furthermore, Melanothamnus somalensis had higher TPC in all fractions except the hexane fraction than Gelidium omanense. Except with hexane, TFC in the other solvents’ extracts was significantly different between Gelidium omanense and Melanothamnus somalensis. In all fractions, except dichloromethane and ethyl acetate fractions, there were no significant differences in TTC between Gelidium omanense and Melanothamnus somalensis. FTIR spectra showed variation between fractions, which is an indication of different functional groups.

Keywords: chemical composition, organic extract, Omani seaweeds, biological activity, FTIR

Procedia PDF Downloads 69
1478 Investigation of Hydrate Formation of Associated Petroleum Gas from Promoter Solutions for the Purpose of Utilization and Reduction of Its Burning

Authors: M. E. Semenov, U. Zh. Mirzakimov, A. S. Stoporev, R. S. Pavelev, M. A. Varfolomeev

Abstract:

Gas hydrates are host-guest compounds. Guest molecules can be low molecular weight components of associated petroleum gas (C1-C4 hydrocarbons), carbon dioxide, hydrogen sulfide, nitrogen. Gas hydrates have a number of unique properties that make them interesting from a technological point of view, for example, for storing hydrocarbon gases in solid form under moderate thermobaric conditions. Currently, the possibility of storing and transporting hydrocarbon gases in the form of solid hydrate is being actively explored throughout the world. The hydrate form of gas has a number of advantages, including a significant gas content in the hydrate, relative safety and environmental friendliness of the process. Recently, new developments have been proposed that seek to reduce the number of steps to obtain the finished hydrate, for example, using a pressing device/screw inside the reactor. However, the energy consumption required for the hydrate formation process remains a challenge. Thus, the goal of the current work is to study the patterns and mechanisms of the hydrate formation process using small additions of hydrate formation promoters under static conditions. The study of these aspects will help solve the problem of accelerated production of gas hydrates with minimal energy consumption. New compounds have been developed at Kazan Federal University that can accelerate the formation of methane hydrate with a small amount of promoter in water, not exceeding 0.1% by weight. These promoters were synthesized based on available natural compounds and showed high efficiency in accelerating the growth of methane hydrate. To test the influence of promoters on the process of hydrate formation, standard experiments are carried out under dynamic conditions with stirring. During such experiments, the time at which hydrate formation begins (induction period), the temperature at which formation begins (supercooling), the rate of hydrate formation, and the degree of conversion of water to hydrate are assessed. This approach helps to determine the most effective compound in comparative experiments with different promoters and select their optimal concentration. These experimental studies made it possible to study the features of the formation of associated petroleum gas hydrate from promoter solutions under static conditions. Phase transformations were studied using high-pressure micro-differential scanning calorimetry under various experimental conditions. Visual studies of the growth mode of methane hydrate depending on the type of promoter were also carried out. The work is an extension of the methodology for studying the effect of promoters on the process of associated petroleum gas hydrate formation in order to identify new ways to accelerate the formation of gas hydrates without the use of mixing. This work presents the results of a study of the process of associated petroleum gas hydrate formation using high-pressure differential scanning micro-calorimetry, visual investigation, gas chromatography, autoclave study, and stability data. It was found that the synthesized compounds multiply the conversion of water into hydrate under static conditions up to 96% due to a change in the growth mechanism of associated petroleum gas hydrate. This work was carried out in the framework of the program Priority-2030.

Keywords: gas hydrate, gas storage, promotor, associated petroleum gas

Procedia PDF Downloads 70
1477 Influence of the Low Frequency Ultrasound on the Cadmium (II) Biosorption by an Ecofriendly Biocomposite (Extraction Solid Waste of Ammi visnaga / Calcium Alginate): Kinetic Modeling

Authors: L. Nouri Taiba, Y. Bouhamidi, F. Kaouah, Z. Bendjama, M. Trari

Abstract:

In the present study, an ecofriendly biocomposite namely calcium alginate immobilized Ammi Visnaga (Khella) extraction waste (SWAV/CA) was prepared by electrostatic extrusion method and used on the cadmium biosorption from aqueous phase with and without the assistance of ultrasound in batch conditions. The influence of low frequency ultrasound (37 and 80 KHz) on the cadmium biosorption kinetics was studied. The obtained results show that the ultrasonic irradiation significantly enhances and improves the efficiency of the cadmium removal. The Pseudo first order, Pseudo-second-order, Intraparticle diffusion, and Elovich models were evaluated using the non-linear curve fitting analysis method. Modeling of kinetic results shows that biosorption process is best described by the pseudo-second order and Elovich, in both the absence and presence of ultrasound.

Keywords: biocomposite, biosorption, cadmium, non-linear analysis, ultrasound

Procedia PDF Downloads 277
1476 The Effect of Bacteria on Mercury's Biological Removal

Authors: Nastaran Soltani

Abstract:

Heavy metals such as Mercury are toxic elements that enter the environment through different ways and endanger the environment, plants, animals, and humans’ health. Microbial activities reduce the amount of heavy metals. Therefore, an effective mechanism to eliminate heavy metals in the nature and factory slops, is using bacteria living in polluted areas. Karun River in Khuzestan Province in Iran has been always polluted by heavy metals as it is located among different industries in the region. This study was performed based on the data from sampling water and sediments of four stations across the river during the four seasons of a year. The isolation of resistant bacteria was performed through enrichment and direct cultivation in a solid medium containing mercury. Various bacteria such as Pseudomonas sp., Serratia Marcescens, and E.coli were identified as mercury-resistant bacteria. The power of these bacteria to remove mercury varied from 28% to 86%, with strongest power belonging to Pseudomonas sp. isolated in spring making a good candidate to be used for mercury biological removal from factory slops.

Keywords: bacteria, Karun River, mercury, biological removal, mercury-resistant

Procedia PDF Downloads 286
1475 Copper Chelation by 3-(Bromoacetyl) Coumarin Derivative Induced Apoptosis in Cancer Cells: Influence of Copper Chelation Strategy in Cancer Treatment

Authors: Saman Khan, Imrana Naseem

Abstract:

Copper is an essential trace element required for pro-angiogenic co-factors including vascular endothelial growth factor (VEGF). Elevated levels of copper are found in various types of cancer including prostrate, colon, breast, lung and liver for angiogensis and metastasis. Therefore, targeting copper via copper-specific chelators in cancer cells can be developed as effective anticancer treatment strategy. In continuation of our pursuit to design and synthesize copper chelators, herein we opted for a reaction to incorporate di-(2-picolyl) amine in 3-(bromoacetyl) coumarin (parent backbone) for the synthesis of complex 1. We evaluated lipid peroxidation, protein carbonylation, ROS generation, DNA damage and consequent apoptosis by complex 1 in exogenously added Cu(II) in human peripheral lymphocytes (simulate malignancy condition). Results showed that Cu(II)-complex 1 interaction leads to cell proliferation inhibition, apoptosis, ROS generation and DNA damage in human lymphocytes, and these effects were abrogated by cuprous chelator neocuproine and ROS scavengers (thiourea, catalase, SOD). This indicates that complex 1 cytotoxicity is due to redox cycling of copper to generate ROS which leads to pro-oxidant cell death in cancer cells. To further confirm our hypothesis, using the rat model of diethylnitrosamine (DEN) induced hepatocellular carcinoma; we showed that complex 1 mediates DNA breakage and cell death in isolated carcinoma cells. Membrane permeant copper chelator, neocuproine, and ROS scavengers inhibited the complex 1-mediated cellular DNA degradation and apoptosis. In summary, complex 1 anticancer activity is due to its copper chelation capability. These results will provide copper chelation as an effective targeted cancer treatment strategy for selective cytotoxic action against malignant cells without affecting normal cells.

Keywords: cancer treatment, copper chelation, ROS generation, DNA damage, redox cycling, apoptosis

Procedia PDF Downloads 291
1474 Effect of Diazepam on Internal Organs of Chrysomya megacephala Using Micro-Computed Tomograph

Authors: Sangkhao M., Butcher B. A.

Abstract:

Diazepam (known as valium) is a medication for calming effect. Many reports on committed suicide cases shown that diazepam is frequently used for this purpose. This research aims to study effect of diazepam on the development of forensically important blowflies, Chrysomya megacephala (Diptera: Calliphoridae) using micro-computed tomography (micro CT). In this study, four rabbits were treated with three different lethal doses of diazepam and one control (LD₀, LD₅₀, LD₁₀₀ and LC). The rabbit’s livers were removed for rearing the blowflies. Pupae were sampled for two series (ages; S1: 24h and S2: 120h) of development. After preparing the specimens, all samples were performed Micro CT using Skyscan 1172. The results shown the effect of diazepam on internal organs and tissues such as brain, cavity of the body, gas bubble, meconium and especially fat body. In the control group, in series 1 (LCS1), fat body was equally dispersed in the head, thorax, and abdomen, development of internal organs were not completed, however, brain, thoracic muscle, wings, legs and rectum were able to observe at 24h after developing into the pupal stage. Development of each organ in the control group in the series two was completed. In the treatment groups, LD₀, LD₅₀, LD₁₀₀ (Series 1 and Series 2), tissues are different, such as gas bubble in LD₀S1, was observed due to rapidity morphological changes during the metamorphosis of blowfly’s pupa in this treatment. Meconium was observed in LD₅₀S2 group because excretion of metabolic waste was not completed. All of the samples in the treatment groups had differentiation of fat bodies because metabolic activities were not completed and these changes affected on functions of every internal system. Discovering of differentiated fat bodies are important results because fat bodies of insect functions as liver in human, therefore it is shown that toxin eliminates from blowfly’s body and homeostatic maintenance of the hemolymph proteins, lipid and carbohydrates in each treatment group are abnormal.

Keywords: forensic toxicology, forensic entomology, diptera, diazepam

Procedia PDF Downloads 127
1473 Effects of Additives on Thermal Decompositions of Carbon Black/High Density Polyethylene Compounds

Authors: Orathai Pornsunthorntawee, Wareerom Polrut, Nopphawan Phonthammachai

Abstract:

In the present work, the effects of additives, including contents of the added antioxidants and type of the selected metallic stearates (either calcium stearate (CaSt) or zinc stearate (ZnSt)), on the thermal stabilities of carbon black (CB)/high density polyethylene (HDPE) compounds were studied. The results showed that the AO contents played a key role in the thermal stabilities of the CB/HDPE compounds—the higher the AO content, the higher the thermal stabilities. Although the CaSt-containing compounds were slightly superior to those with ZnSt in terms of the thermal stabilities, the remaining solid residue of CaSt after heated to the temperature of 600 °C (mainly calcium carbonate (CaCO3) as characterized by the X-ray diffraction (XRD) technique) seemed to catalyze the decomposition of CB in the HDPE-based compounds. Hence, the quantification of CB in the CaSt-containing compounds with a muffle furnace gave an inaccurate CB content—much lower than actual value. However, this phenomenon was negligible in the ZnSt-containing system.

Keywords: antioxidant, stearate, carbon black, polyethylene

Procedia PDF Downloads 363
1472 In vivo Antidiabetic and Antioxidant Potential of Pseudovaria macrophylla Extract

Authors: Aditya Arya, Hairin Taha, Ataul Karim Khan, Nayiar Shahid, Hapipah Mohd Ali, Mustafa Ali Mohd

Abstract:

This study has investigated the antidiabetic and antioxidant potential of Pseudovaria macrophylla bark extract on streptozotocin–nicotinamide induced type 2 diabetic rats. LCMS-QTOF and NMR experiments were done to determine the chemical composition in the methanolic bark extract. For in vivo experiments, the STZ (60 mg/kg/b.w, 15 min after 120 mg/kg/1 nicotinamide, i.p.) induced diabetic rats were treated with methanolic extract of Pseuduvaria macrophylla (200 and 400 mg/kg∙bw) and glibenclamide (2.5 mg/kg) as positive control respectively. Biochemical parameters were assayed in the blood samples of all groups of rats. The pro-inflammatory cytokines, antioxidant status and plasma transforming growth factor βeta-1 (TGF-β1) were evaluated. The histological study of the pancreas was examined and its expression level of insulin was observed by immunohistochemistry. In addition, the expression of glucose transporters (GLUT 1, 2 and 4) were assessed in pancreas tissue by western blot analysis. The outcomes of the study displayed that the bark methanol extract of Pseuduvaria macrophylla has potentially normalized the elevated blood glucose levels and improved serum insulin and C-peptide levels with significant increase in the antioxidant enzyme, reduced glutathione (GSH) and decrease in the level of lipid peroxidation (LPO). Additionally, the extract has markedly decreased the levels of serum pro-inflammatory cytokines and transforming growth factor beta-1 (TGF-β1). Histopathology analysis demonstrated that Pseuduvaria macrophylla has the potential to protect the pancreas of diabetic rats against peroxidation damage by downregulating oxidative stress and elevated hyperglycaemia. Furthermore, the expression of insulin protein, GLUT-1, GLUT-2 and GLUT-4 in pancreatic cells was enhanced. The findings of this study support the anti-diabetic claims of Pseudovaria macrophylla bark.

Keywords: diabetes mellitus, Pseuduvaria macrophylla, alkaloids, caffeic acid

Procedia PDF Downloads 357
1471 Reduction of Rotor-Bearing-Support Finite Element Model through Substructuring

Authors: Abdur Rosyid, Mohamed El-Madany, Mohanad Alata

Abstract:

Due to simplicity and low cost, rotordynamic system is often modeled by using lumped parameters. Recently, finite elements have been used to model rotordynamic system as it offers higher accuracy. However, it involves high degrees of freedom. In some applications such as control design, this requires higher cost. For this reason, various model reduction methods have been proposed. This work demonstrates the quality of model reduction of rotor-bearing-support system through substructuring. The quality of the model reduction is evaluated by comparing some first natural frequencies, modal damping ratio, critical speeds and response of both the full system and the reduced system. The simulation shows that the substructuring is proven adequate to reduce finite element rotor model in the frequency range of interest as long as the numbers and the locations of master nodes are determined appropriately. However, the reduction is less accurate in an unstable or nearly-unstable system.

Keywords: rotordynamic, finite element model, timoshenko beam, 3D solid elements, Guyan reduction method

Procedia PDF Downloads 272
1470 Improvisation of N₂ Foam with Black Rice Husk Ash in Enhanced Oil Recovery

Authors: Ishaq Ahmad, Zhaomin Li, Liu Chengwen, Song yan Li, Wang Lei, Zhoujie Wang, Zheng Lei

Abstract:

Because nanoparticles have the potential to improve foam stability, only a small amount of surfactant or polymer is required to control gas mobility in the reservoir. Numerous researches have revealed that this specific application is in use. The goal is to improve foam formation and foam stability. As a result, the foam stability and foam ability of black rice husk ash were investigated. By injecting N₂ gases into a core flood condition, black rice husk ash was used to produce stable foam. The properties of black rice husk ash were investigated using a variety of characterization techniques. The black rice husk ash was mixed with the best-performing anionic foaming surfactants at various concentrations (ppm). Sodium dodecyl benzene sulphonate was the anionic surfactant used (SDBS). In this article, the N₂ gas- black rice husk ash (BRHA) with high Silica content is shown to be beneficial for foam stability and foam ability. For the test, a 30 cm sand pack was prepared. For the experiment, N₂ gas cylinders and SDBS surfactant liquid cylinders were used. Two N₂ gas experiments were carried out: one without a sand pack and one with a sand pack and oil addition. The black rice husk and SDBS surfactant concentration was 0.5 percent. The high silica content of black rice husk ash has the potential to improve foam stability in sand pack conditions, which is beneficial. On N₂ foam, there is an increase in black rice husk ash particles, which may play an important role in oil recovery.

Keywords: black rice husk ash nanoparticle, surfactant, N₂ foam, sand pack

Procedia PDF Downloads 206
1469 Photoluminescence Properties of Lu1.98Er0.02Ti2O7 Pyrochlore (A2B2O7) Phosphor

Authors: Esra Öztürk, Erkul Karacaoglu

Abstract:

Pyrochlores, having compounds of the general formula, A2B2O7 (A and B are metals/rare earths) are important class of materials thanks to having technological applications like in luminescence, ionic conductivity, nuclear waste immobilization etc. The rare earths included pyrochlore compounds have also potential photoluminescence characteristics. In this context, Er3+-activated Lu2Ti2O7 pyrochlore was chosen and synthesized through a high-temperature solid-state reaction route that was sintered under the open atmosphere in this study. The optimal reaction conditions to obtain expected single phase system, the thermal analysis (DTA/TG) were carried out. The X-ray powder diffraction (XRD) was used to determine phase properties of the sample. The photoluminescence (PL) results were done to obtain excitation, emission and decay time properties by a PL spectrometer under room temperature. According to the PL, there are excitation bands at 352 nm, 388 nm, 423 nm and 453 nm that are due to 4I15/2 → 2G7/2, 4I15/2 → 4G11/2 and 4I15/2 → 4F5/2 transitions of Er3+ ions, respectively. The emission bands are placed at 582 nm, 677 nm and 762 nm that are associated with 2H11/2, 4S3/2 → 4I15/2, 4F9/2 → 4I15/2, 4I9/2 → 4I15/2 transitions of Er3+ ions, respectively.

Keywords: Er3+, Lu2Ti2O7, photoluminescence, pyrochlore, rare-earths

Procedia PDF Downloads 269
1468 Biohydrogen Production from Starch Residues

Authors: Francielo Vendruscolo

Abstract:

This review summarizes the potential of starch agroindustrial residues as substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio-processing conditions for biohydrogen production will be discussed. Biohydrogen is a clean energy source with great potential to be an alternative fuel, because it releases energy explosively in heat engines or generates electricity in fuel cells producing water as only by-product. Anaerobic hydrogen fermentation or dark fermentation seems to be more favorable, since hydrogen is yielded at high rates and various organic waste enriched with carbohydrates as substrate result in low cost for hydrogen production. Abundant biomass from various industries could be source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Carbohydrate-rich nitrogen-deficient solid wastes such as starch residues can be used for hydrogen production by using suitable bioprocess technologies. Alternatively, converting biomass into gaseous fuels, such as biohydrogen is possibly the most efficient way to use these agroindustrial residues.

Keywords: biofuel, dark fermentation, starch residues, food waste

Procedia PDF Downloads 398