Search results for: ELS detection
820 Assessment of Water Availability and Quality in the Climate Change Context in Urban Areas
Authors: Rose-Michelle Smith, Musandji Fuamba, Salomon Salumu
Abstract:
Water is vital for life. Access to drinking water and sanitation for humans is one of the Sustainable Development Goals (specifically the sixth) approved by United Nations Member States in September 2015. There are various problems identified relating to water: insufficient fresh water, inequitable distribution of water resources, poor water management in certain places on the planet, detection of water-borne diseases due to poor water quality, and the negative impacts of climate change on water. One of the major challenges in the world is finding ways to ensure that people and the environment have enough water resources to sustain and support their existence. Thus, this research project aims to develop a tool to assess the availability, quality and needs of water in current and future situations with regard to climate change. This tool was tested using threshold values for three regions in three countries: the Metropolitan Community of Montreal (Canada), Normandie Region (France) and North Department (Haiti). The WEAP software was used to evaluate the available quantity of water resources. For water quality, two models were performed: the Canadian Council of Ministers of the Environment (CCME) and the Malaysian Water Quality Index (WQI). Preliminary results showed that the ratio of the needs could be estimated at 155, 308 and 644 m3/capita in 2023 for Normandie, Cap-Haitian and CMM, respectively. Then, the Water Quality Index (WQI) varied from one country to another. Other simulations regarding the water availability and quality are still in progress. This tool will be very useful in decision-making on projects relating to water use in the future; it will make it possible to estimate whether the available resources will be able to satisfy the needs.Keywords: climate change, water needs, balance sheet, water quality
Procedia PDF Downloads 79819 Enhancing Quality Management Systems through Automated Controls and Neural Networks
Authors: Shara Toibayeva, Irbulat Utepbergenov, Lyazzat Issabekova, Aidana Bodesova
Abstract:
The article discusses the importance of quality assessment as a strategic tool in business and emphasizes the significance of the effectiveness of quality management systems (QMS) for enterprises. The evaluation of these systems takes into account the specificity of quality indicators, the multilevel nature of the system, and the need for optimal selection of the number of indicators and evaluation of the system state, which is critical for making rational management decisions. Methods and models of automated enterprise quality management are proposed, including an intelligent automated quality management system integrated with the Management Information and Control System. These systems make it possible to automate the implementation and support of QMS, increasing the validity, efficiency, and effectiveness of management decisions by automating the functions performed by decision makers and personnel. The paper also emphasizes the use of recurrent neural networks to improve automated quality management. Recurrent neural networks (RNNs) are used to analyze and process sequences of data, which is particularly useful in the context of document quality assessment and non-conformance detection in quality management systems. These networks are able to account for temporal dependencies and complex relationships between different data elements, which improves the accuracy and efficiency of automated decisions. The project was supported by a grant from the Ministry of Education and Science of the Republic of Kazakhstan under the Zhas Galym project No. AR 13268939, dedicated to research and development of digital technologies to ensure consistency of QMS regulatory documents.Keywords: automated control system, quality management, document structure, formal language
Procedia PDF Downloads 45818 Insecticide Resistance Detection on Filarial Vector, Simulium (Simulium) nobile (Diptera: Simuliidae) in Malaysia
Authors: Chee Dhang Chen, Hiroyuki Takaoka, Koon Weng Lau, Poh Ruey Tan, Ai Chdon Chin, Van Lun Low, Abdul Aziz Azidah, Mohd Sofian-Azirun
Abstract:
Susceptibility status of Simulium (Simulium) nobile (Diptera: Simuliidae) adults obtained from Pahang, Malaysia was evaluated against 11 adulticides representing four major insecticide classes: organochlorines (DDT, dieldrin), organophosphates (malathion, fenitrothion), carbamates (bendiocarb, propoxur) and pyrethroids (etofenprox, deltamethrin, lambdacyhalothrin, permethrin, cyfluthrin). The adult bioassay was conducted according to WHO standard protocol to determine the insecticide susceptibility. Mortality at 24 h post treatment was used as indicator for susceptibility status. The results revealed that S. nobile obtained was susceptible to propoxur, cyfluthrin and bendiocarb with 100% mortality. S. nobile was resistant or exhibited some tolerant against lambdacyhalothrin and deltamethrin with mortality ranged ≥ 90% but < 98%. S. nobile populations in Pahang exhibited different level of resistant against 11 adulticides with mortality ranged from 60.00 ± 10.00 to 100.00 ± 0.00. In conclusion, S. nobile populations in Pahang were susceptible to propoxur, cyfluthrin and bendiocarb. The susceptibility status of S. nobile in descending order was propoxur, cyfluthrin > bendicarb > deltamethrin > lambdacyhalothrin > permethrin > etofenprox > DDT > malathion > fenitrothion > dieldrin. Regular surveys should be conducted to monitor the susceptibility status of this insect vector in order to prevent further development of resistance.Keywords: black fly, adult bioassay, insecticide resistance, Malaysia
Procedia PDF Downloads 278817 Comparison of the Classification of Cystic Renal Lesions Using the Bosniak Classification System with Contrast Enhanced Ultrasound and Magnetic Resonance Imaging to Computed Tomography: A Prospective Study
Authors: Dechen Tshering Vogel, Johannes T. Heverhagen, Bernard Kiss, Spyridon Arampatzis
Abstract:
In addition to computed tomography (CT), contrast enhanced ultrasound (CEUS), and magnetic resonance imaging (MRI) are being increasingly used for imaging of renal lesions. The aim of this prospective study was to compare the classification of complex cystic renal lesions using the Bosniak classification with CEUS and MRI to CT. Forty-eight patients with 65 cystic renal lesions were included in this study. All participants signed written informed consent. The agreement between the Bosniak classifications of complex renal lesions ( ≥ BII-F) on CEUS and MRI were compared to that of CT and were tested using Cohen’s Kappa. Sensitivity, specificity, positive and negative predictive values (PPV/NPV) and the accuracy of CEUS and MRI compared to CT in the detection of complex renal lesions were calculated. Twenty-nine (45%) out of 65 cystic renal lesions were classified as complex using CT. The agreement between CEUS and CT in the classification of complex cysts was fair (agreement 50.8%, Kappa 0.31), and was excellent between MRI and CT (agreement 93.9%, Kappa 0.88). Compared to CT, MRI had a sensitivity of 96.6%, specificity of 91.7%, a PPV of 54.7%, and an NPV of 54.7% with an accuracy of 63.1%. The corresponding values for CEUS were sensitivity 100.0%, specificity 33.3%, PPV 90.3%, and NPV 97.1% with an accuracy 93.8%. The classification of complex renal cysts based on MRI and CT scans correlated well, and MRI can be used instead of CT for this purpose. CEUS can exclude complex lesions, but due to higher sensitivity, cystic lesions tend to be upgraded. However, it is useful for initial imaging, for follow up of lesions and in those patients with contraindications to CT and MRI.Keywords: Bosniak classification, computed tomography, contrast enhanced ultrasound, cystic renal lesions, magnetic resonance imaging
Procedia PDF Downloads 148816 A Study on How to Develop the Usage Metering Functions of BIM (Building Information Modeling) Software under Cloud Computing Environment
Authors: Kim Byung-Kon, Kim Young-Jin
Abstract:
As project opportunities for the Architecture, Engineering and Construction (AEC) industry have grown more complex and larger, the utilization of BIM (Building Information Modeling) technologies for 3D design and simulation practices has been increasing significantly; the typical applications of the BIM technologies include clash detection and design alternative based on 3D planning, which have been expanded over to the technology of construction management in the AEC industry for virtual design and construction. As for now, commercial BIM software has been operated under a single-user environment, which is why initial costs for its introduction are very high. Cloud computing, one of the most promising next-generation Internet technologies, enables simple Internet devices to use services and resources provided with BIM software. Recently in Korea, studies to link between BIM and cloud computing technologies have been directed toward saving costs to build BIM-related infrastructure, and providing various BIM services for small- and medium-sized enterprises (SMEs). This study addressed how to develop the usage metering functions of BIM software under cloud computing architecture in order to archive and use BIM data and create an optimal revenue structure so that the BIM services may grow spontaneously, considering a demand for cloud resources. To this end, the author surveyed relevant cases, and then analyzed needs and requirements from AEC industry. Based on the results & findings of the foregoing survey & analysis, the author proposed herein how to optimally develop the usage metering functions of cloud BIM software.Keywords: construction IT, BIM (Building Information Modeling), cloud computing, BIM-based cloud computing, 3D design, cloud BIM
Procedia PDF Downloads 510815 Intelligent Parking Systems for Quasi-Close Communities
Authors: Ayodele Adekunle Faiyetole, Olumide Olawale Jegede
Abstract:
This paper presents the experimental design and needs justifications for a localized intelligent parking system (L-IPS), ideal for quasi-close communities with increasing vehicular volume that depends on limited or constant parking facilities. For a constant supply in parking facilities, the demand for an increasing vehicular volume could lead to poor time conservation or extended travel time, traffic congestion or impeded mobility, and safety issues. Increased negative environmental and economic externalities are other associated and consequent downsides of disparities in demand and supply. This L-IPS is designed using a microcontroller, ultrasonic sensors, LED indicators, such that the current status, in terms of parking spots availability, can be known from the main entrance to the community or a parking zone on a LCD screen. As an advanced traffic management system (ATMS), the L-IPS is designed to resolve aspects of infrastructure-to-driver (I2D) communication and parking detection issues. Thus, this L-IPS can act as a timesaver for users by helping them know the availability of parking spots. Providing on-time, informed routing, to a next preference or seamless moving to berth on the available spot on a proximate facility as the case may be. Its use could also increase safety and increase mobility, and fuel savings and costs, therefore, reducing negative environmental and economic externalities due to transportation systems.Keywords: intelligent parking systems, localized intelligent parking system, intelligent transport systems, advanced traffic management systems, infrastructure-to-drivers communication
Procedia PDF Downloads 174814 An Application of Path Planning Algorithms for Autonomous Inspection of Buried Pipes with Swarm Robots
Authors: Richard Molyneux, Christopher Parrott, Kirill Horoshenkov
Abstract:
This paper aims to demonstrate how various algorithms can be implemented within swarms of autonomous robots to provide continuous inspection within underground pipeline networks. Current methods of fault detection within pipes are costly, time consuming and inefficient. As such, solutions tend toward a more reactive approach, repairing faults, as opposed to proactively seeking leaks and blockages. The paper presents an efficient inspection method, showing that autonomous swarm robotics is a viable way of monitoring underground infrastructure. Tailored adaptations of various Vehicle Routing Problems (VRP) and path-planning algorithms provide a customised inspection procedure for complicated networks of underground pipes. The performance of multiple algorithms is compared to determine their effectiveness and feasibility. Notable inspirations come from ant colonies and stigmergy, graph theory, the k-Chinese Postman Problem ( -CPP) and traffic theory. Unlike most swarm behaviours which rely on fast communication between agents, underground pipe networks are a highly challenging communication environment with extremely limited communication ranges. This is due to the extreme variability in the pipe conditions and relatively high attenuation of acoustic and radio waves with which robots would usually communicate. This paper illustrates how to optimise the inspection process and how to increase the frequency with which the robots pass each other, without compromising the routes they are able to take to cover the whole network.Keywords: autonomous inspection, buried pipes, stigmergy, swarm intelligence, vehicle routing problem
Procedia PDF Downloads 171813 MXene-Based Self-Sensing of Damage in Fiber Composites
Authors: Latha Nataraj, Todd Henry, Micheal Wallock, Asha Hall, Christine Hatter, Babak Anasori, Yury Gogotsi
Abstract:
Multifunctional composites with enhanced strength and toughness for superior damage tolerance are essential for advanced aerospace and military applications. Detection of structural changes prior to visible damage may be achieved by incorporating fillers with tunable properties such as two-dimensional (2D) nanomaterials with high aspect ratios and more surface-active sites. While 2D graphene with large surface areas, good mechanical properties, and high electrical conductivity seems ideal as a filler, the single-atomic thickness can lead to bending and rolling during processing, requiring post-processing to bond to polymer matrices. Lately, an emerging family of 2D transition metal carbides and nitrides, MXenes, has attracted much attention since their discovery in 2011. Metallic electronic conductivity and good mechanical properties, even with increased polymer content, coupled with hydrophilicity make MXenes a good candidate as a filler material in polymer composites and exceptional as multifunctional damage indicators in composites. Here, we systematically study MXene-based (Ti₃C₂) coated on glass fibers for fiber reinforced polymer composite for self-sensing using microscopy and micromechanical testing. Further testing is in progress through the investigation of local variations in optical, acoustic, and thermal properties within the damage sites in response to strain caused by mechanical loading.Keywords: damage sensing, fiber composites, MXene, self-sensing
Procedia PDF Downloads 124812 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks
Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas
Abstract:
Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model
Procedia PDF Downloads 67811 Development of Star Image Simulator for Star Tracker Algorithm Validation
Authors: Zoubida Mahi
Abstract:
A successful satellite mission in space requires a reliable attitude and orbit control system to command, control and position the satellite in appropriate orbits. Several sensors are used for attitude control, such as magnetic sensors, earth sensors, horizon sensors, gyroscopes, and solar sensors. The star tracker is the most accurate sensor compared to other sensors, and it is able to offer high-accuracy attitude control without the need for prior attitude information. There are mainly three approaches in star sensor research: digital simulation, hardware in the loop simulation, and field test of star observation. In the digital simulation approach, all of the processes are done in software, including star image simulation. Hence, it is necessary to develop star image simulation software that could simulate real space environments and various star sensor configurations. In this paper, we present a new stellar image simulation tool that is used to test and validate the stellar sensor algorithms; the developed tool allows to simulate of stellar images with several types of noise, such as background noise, gaussian noise, Poisson noise, multiplicative noise, and several scenarios that exist in space such as the presence of the moon, the presence of optical system problem, illumination and false objects. On the other hand, we present in this paper a new star extraction algorithm based on a new centroid calculation method. We compared our algorithm with other star extraction algorithms from the literature, and the results obtained show the star extraction capability of the proposed algorithm.Keywords: star tracker, star simulation, star detection, centroid, noise, scenario
Procedia PDF Downloads 98810 Embedded System of Signal Processing on FPGA: Underwater Application Architecture
Authors: Abdelkader Elhanaoui, Mhamed Hadji, Rachid Skouri, Said Agounad
Abstract:
The purpose of this paper is to study the phenomenon of acoustic scattering by using a new method. The signal processing (Fast Fourier Transform FFT Inverse Fast Fourier Transform iFFT and BESSEL functions) is widely applied to obtain information with high precision accuracy. Signal processing has a wider implementation in general-purpose pro-cessors. Our interest was focused on the use of FPGAs (Field-Programmable Gate Ar-rays) in order to minimize the computational complexity in single processor architecture, then be accelerated on FPGA and meet real-time and energy efficiency requirements. Gen-eral-purpose processors are not efficient for signal processing. We implemented the acous-tic backscattered signal processing model on the Altera DE-SOC board and compared it to Odroid xu4. By comparison, the computing latency of Odroid xu4 and FPGA is 60 sec-onds and 3 seconds, respectively. The detailed SoC FPGA-based system has shown that acoustic spectra are performed up to 20 times faster than the Odroid xu4 implementation. FPGA-based system of processing algorithms is realized with an absolute error of about 10⁻³. This study underlines the increasing importance of embedded systems in underwater acoustics, especially in non-destructive testing. It is possible to obtain information related to the detection and characterization of submerged cells. So we have achieved good exper-imental results in real-time and energy efficiency.Keywords: DE1 FPGA, acoustic scattering, form function, signal processing, non-destructive testing
Procedia PDF Downloads 82809 A Case Study on the Condition Monitoring of a Critical Machine in a Tyre Manufacturing Plant
Authors: Ramachandra C. G., Amarnath. M., Prashanth Pai M., Nagesh S. N.
Abstract:
The machine's performance level drops down over a period of time due to the wear and tear of its components. The early detection of an emergent fault becomes very vital in order to obtain uninterrupted production in a plant. Maintenance is an activity that helps to keep the machine's performance at an anticipated level, thereby ensuring the availability of the machine to perform its intended function. At present, a number of modern maintenance techniques are available, such as preventive maintenance, predictive maintenance, condition-based maintenance, total productive maintenance, etc. Condition-based maintenance or condition monitoring is one such modern maintenance technique in which the machine's condition or health is checked by the measurement of certain parameters such as sound level, temperature, velocity, displacement, vibration, etc. It can recognize most of the factors restraining the usefulness and efficacy of the total manufacturing unit. This research work is conducted on a Batch Mill in a tire production unit located in the Southern Karnataka region. The health of the mill is assessed using amplitude of vibration as a parameter of measurement. Most commonly, the vibration level is assessed using various points on the machine bearing. The normal or standard level is fixed using reference materials such as manuals or catalogs supplied by the manufacturers and also by referring vibration standards. The Rio-Vibro meter is placed in different locations on the batch-off mill to record the vibration data. The data collected are analyzed to identify the malfunctioning components in the batch off the mill, and corrective measures are suggested.Keywords: availability, displacement, vibration, rio-vibro, condition monitoring
Procedia PDF Downloads 96808 Design of an Acoustic Imaging Sensor Array for Mobile Robots
Authors: Dibyendu Roy, V. Ramu Reddy, Parijat Deshpande, Ranjan Dasgupta
Abstract:
Imaging of underwater objects is primarily conducted by acoustic imagery due to the severe attenuation of electro-magnetic waves in water. Acoustic imagery underwater has varied range of significant applications such as side-scan sonar, mine hunting sonar. It also finds utility in other domains such as imaging of body tissues via ultrasonography and non-destructive testing of objects. In this paper, we explore the feasibility of using active acoustic imagery in air and simulate phased array beamforming techniques available in literature for various array designs to achieve a suitable acoustic sensor array design for a portable mobile robot which can be applied to detect the presence/absence of anomalous objects in a room. The multi-path reflection effects especially in enclosed rooms and environmental noise factors are currently not simulated and will be dealt with during the experimental phase. The related hardware is designed with the same feasibility criterion that the developed system needs to be deployed on a portable mobile robot. There is a trade of between image resolution and range with the array size, number of elements and the imaging frequency and has to be iteratively simulated to achieve the desired acoustic sensor array design. The designed acoustic imaging array system is to be mounted on a portable mobile robot and targeted for use in surveillance missions for intruder alerts and imaging objects during dark and smoky scenarios where conventional optic based systems do not function well.Keywords: acoustic sensor array, acoustic imagery, anomaly detection, phased array beamforming
Procedia PDF Downloads 413807 Memory and Narratives Rereading before and after One Week
Authors: Abigail M. Csik, Gabriel A. Radvansky
Abstract:
As people read through event-based narratives, they construct an event model that captures information about the characters, goals, location, time, and causality. For many reasons, memory for such narratives is represented at different levels, namely, the surface form, textbase, and event model levels. Rereading has been shown to decrease surface form memory, while, at the same time, increasing textbase and event model memories. More generally, distributed practice has consistently shown memory benefits over massed practice for different types of materials, including texts. However, little research has investigated distributed practice of narratives at different inter-study intervals and these effects on these three levels of memory. Recent work in our lab has indicated that there may be dramatic changes in patterns of forgetting around one week, which may affect the three levels of memory. The present experiment aimed to determine the effects of rereading on the three levels of memory as a factor of whether the texts were reread before versus after one week. Participants (N = 42) read a set of stories, re-read them either before or after one week (with an inter-study interval of three days, seven days, or fourteen days), and then took a recognition test, from which the three levels of representation were derived. Signal detection results from this study reveal that differential patterns at the three levels as a factor of whether the narratives were re-read prior to one week or after one week. In particular, an ANOVA revealed that surface form memory was lower (p = .08) while textbase (p = .02) and event model memory (p = .04) were greater if narratives were re-read 14 days later compared to memory when narratives were re-read 3 days later. These results have implications for what type of memory benefits from distributed practice at various inter-study intervals.Keywords: memory, event cognition, distributed practice, consolidation
Procedia PDF Downloads 228806 Near-Infrared Hyperspectral Imaging Spectroscopy to Detect Microplastics and Pieces of Plastic in Almond Flour
Authors: H. Apaza, L. Chévez, H. Loro
Abstract:
Plastic and microplastic pollution in human food chain is a big problem for human health that requires more elaborated techniques that can identify their presences in different kinds of food. Hyperspectral imaging technique is an optical technique than can detect the presence of different elements in an image and can be used to detect plastics and microplastics in a scene. To do this statistical techniques are required that need to be evaluated and compared in order to find the more efficient ones. In this work, two problems related to the presence of plastics are addressed, the first is to detect and identify pieces of plastic immersed in almond seeds, and the second problem is to detect and quantify microplastic in almond flour. To do this we make use of the analysis hyperspectral images taken in the range of 900 to 1700 nm using 4 unmixing techniques of hyperspectral imaging which are: least squares unmixing (LSU), non-negatively constrained least squares unmixing (NCLSU), fully constrained least squares unmixing (FCLSU), and scaled constrained least squares unmixing (SCLSU). NCLSU, FCLSU, SCLSU techniques manage to find the region where the plastic is found and also manage to quantify the amount of microplastic contained in the almond flour. The SCLSU technique estimated a 13.03% abundance of microplastics and 86.97% of almond flour compared to 16.66% of microplastics and 83.33% abundance of almond flour prepared for the experiment. Results show the feasibility of applying near-infrared hyperspectral image analysis for the detection of plastic contaminants in food.Keywords: food, plastic, microplastic, NIR hyperspectral imaging, unmixing
Procedia PDF Downloads 134805 A Method to Estimate Wheat Yield Using Landsat Data
Authors: Zama Mahmood
Abstract:
The increasing demand of food management, monitoring of the crop growth and forecasting its yield well before harvest is very important. These days, yield assessment together with monitoring of crop development and its growth are being identified with the help of satellite and remote sensing images. Studies using remote sensing data along with field survey validation reported high correlation between vegetation indices and yield. With the development of remote sensing technique, the detection of crop and its mechanism using remote sensing data on regional or global scales have become popular topics in remote sensing applications. Punjab, specially the southern Punjab region is extremely favourable for wheat production. But measuring the exact amount of wheat production is a tedious job for the farmers and workers using traditional ground based measurements. However, remote sensing can provide the most real time information. In this study, using the Normalized Differentiate Vegetation Index (NDVI) indicator developed from Landsat satellite images, the yield of wheat has been estimated during the season of 2013-2014 for the agricultural area around Bahawalpur. The average yield of the wheat was found 35 kg/acre by analysing field survey data. The field survey data is in fair agreement with the NDVI values extracted from Landsat images. A correlation between wheat production (ton) and number of wheat pixels has also been calculated which is in proportional pattern with each other. Also a strong correlation between the NDVI and wheat area was found (R2=0.71) which represents the effectiveness of the remote sensing tools for crop monitoring and production estimation.Keywords: landsat, NDVI, remote sensing, satellite images, yield
Procedia PDF Downloads 337804 Knowledge and Perceptions of Final-year Students towards Pharmacovigilance and Adverse Drug Reaction Reporting at the Faculty of Medical Sciences, Al-Razi University - Sana`a - Yemen
Authors: Nabil A. Albaser
Abstract:
Background: There is a serious problem with adverse drug reactions (ADRs) everywhere, including Yemen. Since it helps with the detection, assessment, reporting and prevention of ADRs, pharmacovigilance (PV) is an essential part of the healthcare system. The unbiased reporting of ADRs remains the foundation of PV. Students majoring in healthcare should acquire the knowledge and skills necessary to conduct PV in a range of clinical settings. The primary objective of this study was to evaluate the understanding and attitudes of final-year Pharmacy, Nursing, and Midwifery students at Al-Razi University in Sana'a, Yemen, regarding PV and ADRs reporting. Methods: The study followed descriptive cross-sectional approach. A validated, self-administered questionnaire with three parts—demographic information, knowledge, and perceptions of Pharmacovigilance was online distributed to final-year Pharmacy, Nursing, and Midwifery students. The questionnaire was given to 175 students; 122 of them responded with a percentage (69.7%). Results: The majority of respondents were male (79.5%). More than the tow-third of the students, 68.9%, were beyond the age of 23. Although the majority of students, 80%, heard about the terms of ADRs and PV, but only 50% and 57.4% of the respondents, respectively, could define the both terms correctly. However, only 11.48 % of them, nevertheless, took a PV course. More than a half of them (56.6%) had a positive perceptions towards pharmacovigilance and ADR reporting and had a moderate degree of knowledge (68.9%). Conclusion: The study demonstrated that the participants lacked sufficient knowledge of pharmacovigilance and ADR reporting. They showed a moderate level of understanding of reporting ADRs as well as a favorable opinion of dealing with and reporting ADRs. Yemen's health care curriculum should include lessons on pharmacovigilance.Keywords: adverse drug reaction reporting, pharmacovigilance, yemen, knowlegde
Procedia PDF Downloads 125803 Seroepidemiology of Q Fever among Companion Dogs in Fars Province, South of Iran
Authors: Atefeh Esmailnejad, Mohammad Abbaszadeh Hasiri
Abstract:
Coxiella burnetii is a gram-negative obligatory intracellular bacterium that causes Q fever, a significant zoonotic disease. Sheep, cattle, and goats are the most commonly reported reservoirs for the bacteria, but infected cats and dogs have also been implicated in the transmission of the disease to human. The aim of present study was to investigate the presence of antibodies against Coxiella burnetii among companion dogs in Fars province, South of Iran. A total of 181 blood samples were collected from asymptomatic dogs, mostly referred to Veterinary Hospital of Shiraz University for regular vaccination. The IgG antibody detection against Coxiella burnetii was made by indirect Enzyme-linked Immunosorbent Assay (ELISA), employing phase I and II Coxiella burnetii antigens. A logistic regression model was developed to analyze multiple risk factors associated with seropositivity. An overall seropositivity of 7.7% (n=14) was observed. Prevalence was significantly higher in adult dogs above five years (18.18 %) compared with dogs between 1 and five years (7.86 %) and less than one year (6.17%) (P=0.043). Prevalence was also higher in male dogs (11.21 %) than in female (2.7 %) (P=0.035). There were no significant differences in the prevalence of positive cases and breed, type of housing, type of food and exposure to other farm animals (P>0.05). The results of this study showed the presence of Coxiella burnetii infection among the companion dogs population in Fars province. To our knowledge, this is the first study regarding Q fever in dogs carried out in Iran. In areas like Iran, where human cases of Q fever are not common or remain unreported, the public health implications of Q fever seroprevalence in dogs are quite significant.Keywords: Coxiella burnetii, dog, Iran, Q fever
Procedia PDF Downloads 315802 Evaluation of Developmental Toxicity and Teratogenicity of Perfluoroalkyl Compounds Using FETAX
Authors: Hyun-Kyung Lee, Jehyung Oh, Young Eun Jeong, Hyun-Shik Lee
Abstract:
Perfluoroalkyl compounds (PFCs) are environmental toxicants that persistently accumulate in the human blood. Their widespread detection and accumulation in the environment raise concerns about whether these chemicals might be developmental toxicants and teratogens in the ecosystem. We evaluated and compared the toxicity of PFCs of containing various numbers of carbon atoms (C8-11 carbons) on vertebrate embryogenesis. We assessed the developmental toxicity and teratogenicity of various PFCs. The toxic effects on Xenopus embryos were evaluated using different methods. We measured teratogenic indices (TIs) and investigated the mechanisms underlying developmental toxicity and teratogenicity by measuring the expression of organ-specific biomarkers such as xPTB (liver), Nkx2.5 (heart), and Cyl18 (intestine). All PFCs that we tested were found to be developmental toxicants and teratogens. Their toxic effects were strengthened with increasing length of the fluorinated carbon chain. Furthermore, we produced evidence showing that perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFuDA) are more potent developmental toxicants and teratogens in an animal model compared to the other PFCs we evaluated [perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA)]. In particular, severe defects resulting from PFDA and PFuDA exposure were observed in the liver and heart, respectively, using the whole mount in situ hybridization, real-time PCR, pathologic analysis of the heart, and dissection of the liver. Our studies suggest that most PFCs are developmental toxicants and teratogens, however, compounds that have higher numbers of carbons (i.e., PFDA and PFuDA) exert more potent effects.Keywords: PFC, xenopus, fetax, development
Procedia PDF Downloads 356801 Performance Analysis of Vision-Based Transparent Obstacle Avoidance for Construction Robots
Authors: Siwei Chang, Heng Li, Haitao Wu, Xin Fang
Abstract:
Construction robots are receiving more and more attention as a promising solution to the manpower shortage issue in the construction industry. The development of intelligent control techniques that assist in controlling the robots to avoid transparency and reflected building obstacles is crucial for guaranteeing the adaptability and flexibility of mobile construction robots in complex construction environments. With the boom of computer vision techniques, a number of studies have proposed vision-based methods for transparent obstacle avoidance to improve operation accuracy. However, vision-based methods are also associated with disadvantages such as high computational costs. To provide better perception and value evaluation, this study aims to analyze the performance of vision-based techniques for avoiding transparent building obstacles. To achieve this, commonly used sensors, including a lidar, an ultrasonic sensor, and a USB camera, are equipped on the robotic platform to detect obstacles. A Raspberry Pi 3 computer board is employed to compute data collecting and control algorithms. The turtlebot3 burger is employed to test the programs. On-site experiments are carried out to observe the performance in terms of success rate and detection distance. Control variables include obstacle shapes and environmental conditions. The findings contribute to demonstrating how effectively vision-based obstacle avoidance strategies for transparent building obstacle avoidance and provide insights and informed knowledge when introducing computer vision techniques in the aforementioned domain.Keywords: construction robot, obstacle avoidance, computer vision, transparent obstacle
Procedia PDF Downloads 83800 Commercial Automobile Insurance: A Practical Approach of the Generalized Additive Model
Authors: Nicolas Plamondon, Stuart Atkinson, Shuzi Zhou
Abstract:
The insurance industry is usually not the first topic one has in mind when thinking about applications of data science. However, the use of data science in the finance and insurance industry is growing quickly for several reasons, including an abundance of reliable customer data, ferocious competition requiring more accurate pricing, etc. Among the top use cases of data science, we find pricing optimization, customer segmentation, customer risk assessment, fraud detection, marketing, and triage analytics. The objective of this paper is to present an application of the generalized additive model (GAM) on a commercial automobile insurance product: an individually rated commercial automobile. These are vehicles used for commercial purposes, but for which there is not enough volume to apply pricing to several vehicles at the same time. The GAM model was selected as an improvement over GLM for its ease of use and its wide range of applications. The model was trained using the largest split of the data to determine model parameters. The remaining part of the data was used as testing data to verify the quality of the modeling activity. We used the Gini coefficient to evaluate the performance of the model. For long-term monitoring, commonly used metrics such as RMSE and MAE will be used. Another topic of interest in the insurance industry is to process of producing the model. We will discuss at a high level the interactions between the different teams with an insurance company that needs to work together to produce a model and then monitor the performance of the model over time. Moreover, we will discuss the regulations in place in the insurance industry. Finally, we will discuss the maintenance of the model and the fact that new data does not come constantly and that some metrics can take a long time to become meaningful.Keywords: insurance, data science, modeling, monitoring, regulation, processes
Procedia PDF Downloads 79799 Changes in Knowledge and Awareness for a Community-Based Cancer Screening Educational Program
Authors: Shenghui Wu, Patricia Chalela, Amelie G. Ramirez
Abstract:
Background: Cervical cancer (CC), colorectal cancer (CRC), and breast cancer (BC) are diseases that can be prevented/detected through early test. Through educational programs, individuals can become better informed about these cancers and understand the importance of screening and early detection. A community-based educational program was developed to improve knowledge and awareness toward the screening of the three cancer types in a South Texas underserved population. Methods: Residents living in Laredo, Texas were invited to participate in the present study. From January 2020 to April 2021, participants were recruited using social media and flyer distributions in general community. Participants received a free live web cancer education presentation delivered by bilingual community health educators, and online pre- and post-education surveys for CC, CRC, and BC separately. Pre-post changes in knowledge for individual items were compared using McNemar’s chi-squared tests. Results: Overall, participants demonstrated increases in CC (n=237), CRC (n=59), and BC (n=56) screening knowledge and awareness after receiving the cancer screening education (Ps<0.05). After receiving the cancer screening education, 85-97% of participants had an intent to talk to a healthcare provider about CC/CRC/BC screening, 88-97% had an intent to get a CC/CRC/BC screening test in the next 12 months or at the next routine appointment, and 90-97% had an intent to talk about CC/CRC/BC with their family members or friends. Conclusion: A community-based educational program can help increase knowledge and awareness about cervical, colorectal, and breast cancer screening, promote positive changes in population's knowledge and awareness about the benefits of cancer screening.Keywords: cervical cancer, colorectal cancer, breast cancer, educational program, health knowledge, awareness, Hispanics, screening, health education
Procedia PDF Downloads 110798 An Adaptive Back-Propagation Network and Kalman Filter Based Multi-Sensor Fusion Method for Train Location System
Authors: Yu-ding Du, Qi-lian Bao, Nassim Bessaad, Lin Liu
Abstract:
The Global Navigation Satellite System (GNSS) is regarded as an effective approach for the purpose of replacing the large amount used track-side balises in modern train localization systems. This paper describes a method based on the data fusion of a GNSS receiver sensor and an odometer sensor that can significantly improve the positioning accuracy. A digital track map is needed as another sensor to project two-dimensional GNSS position to one-dimensional along-track distance due to the fact that the train’s position can only be constrained on the track. A model trained by BP neural network is used to estimate the trend positioning error which is related to the specific location and proximate processing of the digital track map. Considering that in some conditions the satellite signal failure will lead to the increase of GNSS positioning error, a detection step for GNSS signal is applied. An adaptive weighted fusion algorithm is presented to reduce the standard deviation of train speed measurement. Finally an Extended Kalman Filter (EKF) is used for the fusion of the projected 1-D GNSS positioning data and the 1-D train speed data to get the estimate position. Experimental results suggest that the proposed method performs well, which can reduce positioning error notably.Keywords: multi-sensor data fusion, train positioning, GNSS, odometer, digital track map, map matching, BP neural network, adaptive weighted fusion, Kalman filter
Procedia PDF Downloads 256797 Virulence Phenotypes Among Multi-Drug Resistant Uropathogenic Bacteria
Authors: V. V. Lakshmi, Y. V. S. Annapurna
Abstract:
Urinary tract infection (UTI) is one of the most common infectious diseases seen in the community. Susceptible individuals experience multiple episodes, and progress to acute pyelonephritis or uro-sepsis or develop asymptomatic bacteriuria (ABU). Ability to cause extraintestinal infections depends on several virulence factors required for survival at extraintestinal sites. Presence of virulence phenotypes enhances the pathogenicity of these otherwise commensal organisms and thus augments its ability to cause extraintestinal infections, the most frequent in urinary tract infections(UTI). The present study focuses on detection of the virulence characters exhibited by the uropathogenic organism and most common factors exhibited in the local pathogens. A total of 700 isolates of E.coli and Klebsiella spp were included in the study. These were isolated from patients from local hospitals reported to be suffering with UTI over a period of three years. Isolation and identification was done based on Gram character and IMVIC reactions. Antibiotic sensitivity profile was carried out by disc diffusion method and multi drug resistant strains with MAR index of 0.7 were further selected.. Virulence features examined included their ability to produce exopolysaccharides, protease- gelatinase production, hemolysin production, haemagglutination and hydrophobicity test. Exopolysaccharide production was most predominant virulence feature among the isolates when checked by congo red method. The biofilms production examined by microtitre plates using ELISA reader confirmed that this is the major factor contributing to virulencity of the pathogens followed by hemolysin productionKeywords: Escherichia coli, Klebsiella sp, Uropathogens, Virulence features.
Procedia PDF Downloads 427796 Nuclear Mitochondrial Pseudogenes in Anastrepha fraterculus Complex
Authors: Pratibha Srivastava, Ayyamperumal Jeyaprakash, Gary Steck, Jason Stanley, Leroy Whilby
Abstract:
Exotic, invasive tephritid fruit flies (Diptera: Tephritidae) are a major threat to fruit and vegetable industries in the United States. The establishment of pest fruit fly in the agricultural industries and produce severe ecological and economic impacts on agricultural diversification and trade. Detection and identification of these agricultural pests in a timely manner will facilitate the possibility of eradication from newly invaded areas. Identification of larval stages to species level is difficult, but is required to determine pest loads and their pathways into the United States. The aim of this study is the New World genus, Anastrepha which includes pests of major economic importance. Mitochondrial cytochrome c oxidase I (COI) gene sequences were amplified from Anastrepha fraterculus specimens collected from South America (Ecuador and Peru). Phylogenetic analysis was performed to characterize the Anastrepha fraterculus complex at a molecular level. During phylogenetics analysis numerous nuclear mitochondrial pseudogenes (numts) were discovered in different specimens. The numts are nonfunctional copies of the mtDNA present in the nucleus and are easily coamplified with the mitochondrial COI gene copy by using conserved universal primers. This is problematic for DNA Barcoding, which attempts to characterize all living organisms by using the COI gene. This study is significant for national quarantine use, as morphological diagnostics to separate larvae of the various members remain poorly developed.Keywords: tephritid, Anastrepha fraterculus, COI, numts
Procedia PDF Downloads 241795 Novel Point of Care Test for Rapid Diagnosis of COVID-19 Using Recombinant Nanobodies against SARS-CoV-2 Spike1 (S1) Protein
Authors: Manal Kamel, Sara Maher, Hanan El Baz, Faten Salah, Omar Sayyouh, Zeinab Demerdash
Abstract:
In the recent COVID 19 pandemic, experts of public health have emphasized testing, tracking infected people, and tracing their contacts as an effective strategy to reduce the spread of the virus. Development of rapid and sensitive diagnostic assays to replace reverse transcription polymerase chain reaction (RT-PCR) is mandatory..Our innovative test strip relying on the application of nanoparticles conjugated to recombinant nanobodies for SARS-COV-2 spike protein (S1) & angiotensin-converting enzyme 2 (that is responsible for the virus entry into host cells) for rapid detection of SARS-COV-2 spike protein (S1) in saliva or sputum specimens. Comparative tests with RT-PCR will be held to estimate the significant effect of using COVID 19 nanobodies for the first time in the development of lateral flow test strip. The SARS-CoV-2 S1 (3 ng of recombinant proteins) was detected by our developed LFIA in saliva specimen of COVID-19 Patients No cross-reaction was detected with Middle East respiratory syndrome coronavirus (MERS-CoV) or SARS- CoV antigens..Our developed system revealed 96 % sensitivity and 100% specificity for saliva samples compared to 89 % and 100% sensitivity and specificity for nasopharyngeal swabs. providing a reliable alternative for the painful and uncomfortable nasopharyngeal swab process and the complexes, time consuming PCR test. An increase in testing compliances to be expected.Keywords: COVID 19, diagnosis, LFIA, nanobodies, ACE2
Procedia PDF Downloads 140794 Interaction Evaluation of Silver Ion and Silver Nanoparticles with Dithizone Complexes Using DFT Calculations and NMR Analysis
Authors: W. Nootcharin, S. Sujittra, K. Mayuso, K. Kornphimol, M. Rawiwan
Abstract:
Silver has distinct antibacterial properties and has been used as a component of commercial products with many applications. An increasing number of commercial products cause risks of silver effects for human and environment such as the symptoms of Argyria and the release of silver to the environment. Therefore, the detection of silver in the aquatic environment is important. The colorimetric chemosensor is designed by the basic of ligand interactions with a metal ion, leading to the change of signals for the naked-eyes which are very useful method to this application. Dithizone ligand is considered as one of the effective chelating reagents for metal ions due to its high selectivity and sensitivity of a photochromic reaction for silver as well as the linear backbone of dithizone affords the rotation of various isomeric forms. The present study is focused on the conformation and interaction of silver ion and silver nanoparticles (AgNPs) with dithizone using density functional theory (DFT). The interaction parameters were determined in term of binding energy of complexes and the geometry optimization, frequency of the structures and calculation of binding energies using density functional approaches B3LYP and the 6-31G(d,p) basis set. Moreover, the interaction of silver–dithizone complexes was supported by UV–Vis spectroscopy, FT-IR spectrum that was simulated by using B3LYP/6-31G(d,p) and 1H NMR spectra calculation using B3LYP/6-311+G(2d,p) method compared with the experimental data. The results showed the ion exchange interaction between hydrogen of dithizone and silver atom, with minimized binding energies of silver–dithizone interaction. However, the result of AgNPs in the form of complexes with dithizone. Moreover, the AgNPs-dithizone complexes were confirmed by using transmission electron microscope (TEM). Therefore, the results can be the useful information for determination of complex interaction using the analysis of computer simulations.Keywords: silver nanoparticles, dithizone, DFT, NMR
Procedia PDF Downloads 215793 An Exploratory Research of Human Character Analysis Based on Smart Watch Data: Distinguish the Drinking State from Normal State
Authors: Lu Zhao, Yanrong Kang, Lili Guo, Yuan Long, Guidong Xing
Abstract:
Smart watches, as a handy device with rich functionality, has become one of the most popular wearable devices all over the world. Among the various function, the most basic is health monitoring. The monitoring data can be provided as an effective evidence or a clue for the detection of crime cases. For instance, the step counting data can help to determine whether the watch wearer was quiet or moving during the given time period. There is, however, still quite few research on the analysis of human character based on these data. The purpose of this research is to analyze the health monitoring data to distinguish the drinking state from normal state. The analysis result may play a role in cases involving drinking, such as drunk driving. The experiment mainly focused on finding the figures of smart watch health monitoring data that change with drinking and figuring up the change scope. The chosen subjects are mostly in their 20s, each of whom had been wearing the same smart watch for a week. Each subject drank for several times during the week, and noted down the begin and end time point of the drinking. The researcher, then, extracted and analyzed the health monitoring data from the watch. According to the descriptive statistics analysis, it can be found that the heart rate change when drinking. The average heart rate is about 10% higher than normal, the coefficient of variation is less than about 30% of the normal state. Though more research is needed to be carried out, this experiment and analysis provide a thought of the application of the data from smart watches.Keywords: character analysis, descriptive statistics analysis, drink state, heart rate, smart watch
Procedia PDF Downloads 169792 Molecular Characterization of Dirofilaria repens in Dogs from Karnataka, India
Authors: D. S. Malatesh, K. J. Ananda, C. Ansar Kamran, K. Ganesh Udupa
Abstract:
Dirofilaria repens is a mosquito-borne filarioid nematode of dogs and other carnivores and accidentally affects humans. D. repens is reported in many countries, including India. Subcutaneous dirofilariosis caused by D. repens is a zoonotic disease, widely distributed throughout Europe, Asia, and Africa, with higher prevalence reported in dogs from Sri Lanka (30-60%), Iran (61%) and Italy (21-25%). Dirofilariasis in dogs was diagnosed by detection of microfilariae in blood. Identification of different Dirofilaria species was done by using molecular methods like polymerase chain reaction (PCR). Even though many researchers reported molecular evidence of D. repens across India, to our best knowledge there is no data available on molecular diagnosis of D. repens in dogs and its zoonotic implication in Karnataka state a southern state in India. The aim of the present study was to identify the Dirofilaria species occurring in dogs from Karnataka, India. Out of 310 samples screened for the presence of microfilariae using traditional diagnostic methods, 99 (31.93%) were positive for the presence of microfilariae. Based on the morphometry, the microfilariae were identified as D. repens. For confirmation of species, the samples were subjected to PCR using pan filarial primers (DIDR-F1, DIDR-R1) for amplification of internal transcribed spacer region 2 (ITS2) of the ribosomal DNA. The PCR product of 484 base pairs on agarose gel was indicative of D. repens. Hence, a single PCR reaction using pan filarial primers can be used to differentiate filarial species found in dogs. The present study confirms that dirofilarial species occurring in dogs from Karnataka is D. repens and further sequencing studies are needed for genotypic characterization of D. repens.Keywords: Dirofilaria repens, molecular characterization, polymerase chain reaction, Karnataka, India
Procedia PDF Downloads 145791 An Efficient Aptamer-Based Biosensor Developed via Irreversible Pi-Pi Functionalisation of Graphene/Zinc Oxide Nanocomposite
Authors: Sze Shin Low, Michelle T. T. Tan, Poi Sim Khiew, Hwei-San Loh
Abstract:
An efficient graphene/zinc oxide (PSE-G/ZnO) platform based on pi-pi stacking, non-covalent interactions for the development of aptamer-based biosensor was presented in this study. As a proof of concept, the DNA recognition capability of the as-developed PSE-G/ZnO enhanced aptamer-based biosensor was evaluated using Coconut Cadang-cadang viroid disease (CCCVd). The G/ZnO nanocomposite was synthesised via a simple, green and efficient approach. The pristine graphene was produced through a single step exfoliation of graphite in sonochemical alcohol-water treatment while the zinc nitrate hexahydrate was mixed with the graphene and subjected to low temperature hydrothermal growth. The developed facile, environmental friendly method provided safer synthesis procedure by eliminating the need of harsh reducing chemicals and high temperature. The as-prepared nanocomposite was characterised by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to evaluate its crystallinity, morphology and purity. Electrochemical impedance spectroscopy (EIS) was employed for the detection of CCCVd sequence with the use of potassium ferricyanide (K3[Fe(CN)6]). Recognition of the RNA analytes was achieved via the significant increase in resistivity for the double stranded DNA, as compared to single-stranded DNA. The PSE-G/ZnO enhanced aptamer-based biosensor exhibited higher sensitivity than the bare biosensor, attributing to the synergistic effect of high electrical conductivity of graphene and good electroactive property of ZnO.Keywords: aptamer-based biosensor, graphene/zinc oxide nanocomposite, green synthesis, screen printed carbon electrode
Procedia PDF Downloads 373