Search results for: pregnancy diagnosis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2509

Search results for: pregnancy diagnosis

2269 Radar Fault Diagnosis Strategy Based on Deep Learning

Authors: Bin Feng, Zhulin Zong

Abstract:

Radar systems are critical in the modern military, aviation, and maritime operations, and their proper functioning is essential for the success of these operations. However, due to the complexity and sensitivity of radar systems, they are susceptible to various faults that can significantly affect their performance. Traditional radar fault diagnosis strategies rely on expert knowledge and rule-based approaches, which are often limited in effectiveness and require a lot of time and resources. Deep learning has recently emerged as a promising approach for fault diagnosis due to its ability to learn features and patterns from large amounts of data automatically. In this paper, we propose a radar fault diagnosis strategy based on deep learning that can accurately identify and classify faults in radar systems. Our approach uses convolutional neural networks (CNN) to extract features from radar signals and fault classify the features. The proposed strategy is trained and validated on a dataset of measured radar signals with various types of faults. The results show that it achieves high accuracy in fault diagnosis. To further evaluate the effectiveness of the proposed strategy, we compare it with traditional rule-based approaches and other machine learning-based methods, including decision trees, support vector machines (SVMs), and random forests. The results demonstrate that our deep learning-based approach outperforms the traditional approaches in terms of accuracy and efficiency. Finally, we discuss the potential applications and limitations of the proposed strategy, as well as future research directions. Our study highlights the importance and potential of deep learning for radar fault diagnosis. It suggests that it can be a valuable tool for improving the performance and reliability of radar systems. In summary, this paper presents a radar fault diagnosis strategy based on deep learning that achieves high accuracy and efficiency in identifying and classifying faults in radar systems. The proposed strategy has significant potential for practical applications and can pave the way for further research.

Keywords: radar system, fault diagnosis, deep learning, radar fault

Procedia PDF Downloads 90
2268 Phenotypic and Genotypic Diagnosis of Gaucher Disease in Algeria

Authors: S. Hallal, Z. Chami, A. Hadji-Lehtihet, S. Sokhal-Boudella, A. Berhoune, L. Yargui

Abstract:

Gaucher disease is the most common lysosomal storage in our population, it is due to a deficiency of β –glucosidase acid. The enzyme deficiency causes a pathological accumulation of undegraded substrate in lysosomes. This metabolic overload is responsible for a multisystemic disease with hepatosplenomegaly, anemia, thrombocytopenia, and bone involvement. Neurological involvement is rare. The laboratory diagnosis of Gaucher disease consists of phenotypic diagnosis by determining the enzymatic activity of β - glucosidase by fluorimetric method, a study by genotypic diagnosis in the GBA gene, limiting the search recurrent mutations (N370S, L444P, 84 GG); PCR followed by an enzymatic digestion. Abnormal profiles were verified by sequencing. Monitoring of treated patients is provided by the determination of chitotriosidase. Our experience spaning a period of 6 years (2007-2014) has enabled us to diagnose 78 patients out of a total of 328 requests from the various departments of pediatrics, internal medicine, neurology. Genotypic diagnosis focused on the entire family of 9 children treated at pediatric CHU Mustapha, which help define the clinical form; or 5 of them had type III disease, carrying the L444P mutation in the homozygous state. Three others were composite (N370/L444P) (N370S/other unintended mutation in our study), and only in one family no recurrent mutation has been found. This molecular study permits screening of heterozygous essential for genetic counseling.

Keywords: Gaucher disease, mutations, N370S, L444P

Procedia PDF Downloads 405
2267 From Type-I to Type-II Fuzzy System Modeling for Diagnosis of Hepatitis

Authors: Shahabeddin Sotudian, M. H. Fazel Zarandi, I. B. Turksen

Abstract:

Hepatitis is one of the most common and dangerous diseases that affects humankind, and exposes millions of people to serious health risks every year. Diagnosis of Hepatitis has always been a challenge for physicians. This paper presents an effective method for diagnosis of hepatitis based on interval Type-II fuzzy. This proposed system includes three steps: pre-processing (feature selection), Type-I and Type-II fuzzy classification, and system evaluation. KNN-FD feature selection is used as the preprocessing step in order to exclude irrelevant features and to improve classification performance and efficiency in generating the classification model. In the fuzzy classification step, an “indirect approach” is used for fuzzy system modeling by implementing the exponential compactness and separation index for determining the number of rules in the fuzzy clustering approach. Therefore, we first proposed a Type-I fuzzy system that had an accuracy of approximately 90.9%. In the proposed system, the process of diagnosis faces vagueness and uncertainty in the final decision. Thus, the imprecise knowledge was managed by using interval Type-II fuzzy logic. The results that were obtained show that interval Type-II fuzzy has the ability to diagnose hepatitis with an average accuracy of 93.94%. The classification accuracy obtained is the highest one reached thus far. The aforementioned rate of accuracy demonstrates that the Type-II fuzzy system has a better performance in comparison to Type-I and indicates a higher capability of Type-II fuzzy system for modeling uncertainty.

Keywords: hepatitis disease, medical diagnosis, type-I fuzzy logic, type-II fuzzy logic, feature selection

Procedia PDF Downloads 306
2266 Application of Local Mean Decomposition for Rolling Bearing Fault Diagnosis Based On Vibration Signals

Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine

Abstract:

Vibration analysis has been frequently applied in the condition monitoring and fault diagnosis of rolling element bearings. Unfortunately, the vibration signals collected from a faulty bearing are generally non stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. The results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.

Keywords: fault diagnosis, condition monitoring, local mean decomposition, rolling element bearing, vibration analysis

Procedia PDF Downloads 397
2265 The Importance of Development in Laboratory Diagnosis at the Intersection

Authors: Agus Sahri, Cahya Putra Dinata, Faishal Andhi Rokhman

Abstract:

Intersection is a critical area on a highway which is a place of conflict points and congestion due to the meeting of two or more roads. Conflicts that occur at the intersection include diverging, merging, weaving, and crossing. To deal with these conflicts, a crossing control system is needed, at a plot of intersection there are two control systems namely signal intersections and non-signalized intersections. The control system at a plot of intersection can affect the intersection performance. In Indonesia there are still many intersections with poor intersection performance. In analyzing the parameters to measure the performance of a plot of intersection in Indonesia, it is guided by the 1997 Indonesian Road Capacity Manual. For this reason, this study aims to develop laboratory diagnostics at plot intersections to analyze parameters that can affect the performance of an intersection. The research method used is research and development. The laboratory diagnosis includes anamnesis, differential diagnosis, inspection, diagnosis, prognosis, specimens, analysis and sample data analysts. It is expected that this research can encourage the development and application of laboratory diagnostics at a plot of intersection in Indonesia so that intersections can function optimally.

Keywords: intersection, the laboratory diagnostic, control systems, Indonesia

Procedia PDF Downloads 185
2264 Online Electric Current Based Diagnosis of Stator Faults on Squirrel Cage Induction Motors

Authors: Alejandro Paz Parra, Jose Luis Oslinger Gutierrez, Javier Olaya Ochoa

Abstract:

In the present paper, five electric current based methods to analyze electric faults on the stator of induction motors (IM) are used and compared. The analysis tries to extend the application of the multiple reference frames diagnosis technique. An eccentricity indicator is presented to improve the application of the Park’s Vector Approach technique. Most of the fault indicators are validated and some others revised, agree with the technical literatures and published results. A tri-phase 3hp squirrel cage IM, especially modified to establish different fault levels, is used for validation purposes.

Keywords: motor fault diagnosis, induction motor, MCSA, ESA, Extended Park´s vector approach, multiparameter analysis

Procedia PDF Downloads 348
2263 The Role of Genetic Markers in Prostate Cancer Diagnosis and Treatment

Authors: Farman Ali, Asif Mahmood

Abstract:

The utilization of genetic markers in prostate cancer management represents a significant advance in personalized medicine, offering the potential for more precise diagnosis and tailored treatment strategies. This paper explores the pivotal role of genetic markers in the diagnosis and treatment of prostate cancer, emphasizing their contribution to the identification of individual risk profiles, tumor aggressiveness, and response to therapy. By integrating current research findings, we discuss the application of genetic markers in developing targeted therapies and the implications for patient outcomes. Despite the promising advancements, challenges such as accessibility, cost, and the need for further validation in diverse populations remain. The paper concludes with an outlook on future directions, underscoring the importance of genetic markers in revolutionizing prostate cancer care.

Keywords: prostate cancer, genetic markers, personalized medicine, BRCA1 and BRCA2

Procedia PDF Downloads 61
2262 A Unique Immunization Card for Early Detection of Retinoblastoma

Authors: Hiranmoyee Das

Abstract:

Aim. Due to late presentation and delayed diagnosis mortality rate of retinoblastoma is more than 50% in developing counties. So to facilitate the diagnosis, to decrease the disease and treatment burden and to increase the disease survival rate, an attempt was made for early diagnosis of Retinoblastoma by including fundus examination in routine immunization programs. Methods- A unique immunization card is followed in a tertiary health care center where examination of pupillary reflex is made mandatory in each visit of the child for routine immunization. In case of any abnormality, the child is referred to the ophthalmology department. Conclusion- Early detection is the key in the management of retinoblastoma. Every child is brought to the health care system at least five times before the age of 2 years for routine immunization. We should not miss this golden opportunity for early detection of retinoblastoma.

Keywords: retinoblastoma, immunization, unique, early

Procedia PDF Downloads 197
2261 The Various Forms of a Soft Set and Its Extension in Medical Diagnosis

Authors: Biplab Singha, Mausumi Sen, Nidul Sinha

Abstract:

In order to deal with the impreciseness and uncertainty of a system, D. Molodtsov has introduced the concept of ‘Soft Set’ in the year 1999. Since then, a number of related definitions have been conceptualized. This paper includes a study on various forms of Soft Sets with examples. The paper contains the concepts of domain and co-domain of a soft set, conversion to one-one and onto function, matrix representation of a soft set and its relation with one-one function, upper and lower triangular matrix, transpose and Kernel of a soft set. This paper also gives the idea of the extension of soft sets in medical diagnosis. Here, two soft sets related to disease and symptoms are considered and using AND operation and OR operation, diagnosis of the disease is calculated through appropriate examples.

Keywords: kernel of a soft set, soft set, transpose of a soft set, upper and lower triangular matrix of a soft set

Procedia PDF Downloads 344
2260 Calculating Ventricle’s Area Based on Clinical Dementia Rating Values on Coronal MRI Image

Authors: Retno Supriyanti, Ays Rahmadian Subhi, Yogi Ramadhani, Haris B. Widodo

Abstract:

Alzheimer is one type of disease in the elderly that may occur in the world. The severity of the Alzheimer can be measured using a scale called Clinical Dementia Rating (CDR) based on a doctor's diagnosis of the patient's condition. Currently, diagnosis of Alzheimer often uses MRI machine, to know the condition of part of the brain called Hippocampus and Ventricle. MRI image itself consists of 3 slices, namely Coronal, Sagittal and Axial. In this paper, we discussed the measurement of the area of the ventricle especially in the Coronal slice based on the severity level referring to the CDR value. We use Active Contour method to segment the ventricle’s region, therefore that ventricle’s area can be calculated automatically. The results show that this method can be used for further development in the automatic diagnosis of Alzheimer.

Keywords: Alzheimer, CDR, coronal, ventricle, active contour

Procedia PDF Downloads 265
2259 Prediction of Live Birth in a Matched Cohort of Elective Single Embryo Transfers

Authors: Mohsen Bahrami, Banafsheh Nikmehr, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Tamer M. Yalcinkaya

Abstract:

In recent years, we have witnessed an explosion of studies aimed at using a combination of artificial intelligence (AI) and time-lapse imaging data on embryos to improve IVF outcomes. However, despite promising results, no study has used a matched cohort of transferred embryos which only differ in pregnancy outcome, i.e., embryos from a single clinic which are similar in parameters, such as: morphokinetic condition, patient age, and overall clinic and lab performance. Here, we used time-lapse data on embryos with known pregnancy outcomes to see if the rich spatiotemporal information embedded in this data would allow the prediction of the pregnancy outcome regardless of such critical parameters. Methodology—We did a retrospective analysis of time-lapse data from our IVF clinic utilizing Embryoscope 100% of the time for embryo culture to blastocyst stage with known clinical outcomes, including live birth vs nonpregnant (embryos with spontaneous abortion outcomes were excluded). We used time-lapse data from 200 elective single transfer embryos randomly selected from January 2019 to June 2021. Our sample included 100 embryos in each group with no significant difference in patient age (P=0.9550) and morphokinetic scores (P=0.4032). Data from all patients were combined to make a 4th order tensor, and feature extraction were subsequently carried out by a tensor decomposition methodology. The features were then used in a machine learning classifier to classify the two groups. Major Findings—The performance of the model was evaluated using 100 random subsampling cross validation (train (80%) - test (20%)). The prediction accuracy, averaged across 100 permutations, exceeded 80%. We also did a random grouping analysis, in which labels (live birth, nonpregnant) were randomly assigned to embryos, which yielded 50% accuracy. Conclusion—The high accuracy in the main analysis and the low accuracy in random grouping analysis suggest a consistent spatiotemporal pattern which is associated with pregnancy outcomes, regardless of patient age and embryo morphokinetic condition, and beyond already known parameters, such as: early cleavage or early blastulation. Despite small samples size, this ongoing analysis is the first to show the potential of AI methods in capturing the complex morphokinetic changes embedded in embryo time-lapse data, which contribute to successful pregnancy outcomes, regardless of already known parameters. The results on a larger sample size with complementary analysis on prediction of other key outcomes, such as: euploidy and aneuploidy of embryos will be presented at the meeting.

Keywords: IVF, embryo, machine learning, time-lapse imaging data

Procedia PDF Downloads 92
2258 Integrating AI into Breast Cancer Diagnosis: Aligning Perspectives for Effective Clinical Practice

Authors: Mehrnaz Mostafavi, Mahtab Shabani, Alireza Azani, Fatemeh Ghafari

Abstract:

Artificial intelligence (AI) can transform breast cancer diagnosis and therapy by providing sophisticated solutions for screening, imaging interpretation, histopathological analysis, and treatment planning. This literature review digs into the many uses of AI in breast cancer treatment, highlighting the need for collaboration between AI scientists and healthcare practitioners. It emphasizes advances in AI-driven breast imaging interpretation, such as computer-aided detection and diagnosis (CADe/CADx) systems and deep learning algorithms. These have shown significant potential for improving diagnostic accuracy and lowering radiologists' workloads. Furthermore, AI approaches such as deep learning have been used in histopathological research to accurately predict hormone receptor status and categorize tumor-associated stroma from regular H&E stains. These AI-powered approaches simplify diagnostic procedures while providing insights into tumor biology and prognosis. As AI becomes more embedded in breast cancer care, it is crucial to ensure its ethical, efficient, and patient-focused implementation to improve outcomes for breast cancer patients ultimately.

Keywords: breast cancer, artificial intelligence, cancer diagnosis, clinical practice

Procedia PDF Downloads 68
2257 Between Efficacy and Danger: Narratives of Female University Students about Emergency Contraception Methods

Authors: Anthony Idowu Ajayi, Ezebunwa Ethelbert Nwokocha, Wilson Akpan, Oladele Vincent Adeniyi

Abstract:

Studies on emergency contraception (EC) mostly utilise quantitative methods and focus on medically approved drugs for the prevention of unwanted pregnancies. This methodological bias necessarily obscures insider perspectives on sexual behaviour, particularly on why specific methods are utilized by women who seek to prevent unplanned pregnancies. In order to privilege this perspective, with a view to further enriching the discourse and policy on the prevention and management of unplanned pregnancies, this paper brings together the findings from several focus groups and in-depth interviews conducted amongst unmarried female undergraduate students in two Nigerian universities. The study found that while the research participants had good knowledge of the consequences of unprotected sexual intercourses - with abstinence and condom widely used - participants’ willingness to rely only on medically sound measures to prevent unwanted pregnancies was not always mediated by such knowledge. Some of the methods favored by participants appeared to be those commonly associated with people of low socio-economic status in the society where the study was conducted. Medically unsafe concoctions, some outright dangerous, were widely believed to be efficacious in preventing unwanted pregnancy. Furthermore, respondents’ narratives about their sexual behaviour revealed that inadequate sex education, socio-economic pressures, and misconceptions about the efficacy of “crude” emergency contraception methods were all interrelated. The paper therefore suggests that these different facets of the unplanned pregnancy problem should be the focus of intervention.

Keywords: unplanned pregnancy, unsafe abortion, emergency contraception, concoctions

Procedia PDF Downloads 424
2256 The Influence of Age and Education on Patients' Attitudes Towards Contraceptives in Rural California

Authors: Shivani Thakur, Jasmin Dominguez Cervantes, Ahmed Zabiba, Fatima Zabiba, Sandhini Agarwal, Kamalpreet Kaur, Hussein Maatouk, Shae Chand, Omar Madriz, Tiffany Huang, Saloni Bansal

Abstract:

Contraceptives are an effective public health achievement, allowing for family planning and reducing the risk of sexually transmitted diseases (STDs). California’s rural Central Valley has high rates of teenage pregnancy and STDs. Factors affecting contraceptive usage here may include religious concerns, financial issues, and regional variations in the accessibility and availability of contraceptives. The increasing population and diversity of the Central Valley make the understanding of the determinants of unintended pregnancy and STDs increasingly nuanced. Patients in California’s Central Valley were surveyed at 6 surgical clinics to assess attitudes toward contraceptives. The questionnaire consisted of demographics and 14 Likert-scale statements investigating patients’ feelings regarding contraceptives. Parametric and non-parametric analysis was performed on the Likert statements. A correlation matrix for the Likert-scale statements was used to evaluate the strength of the relationship between each question. 76 patients aged 18-75 years completed the questionnaire. 90% of the participants were female, 76% Hispanic, 36% married, 44% with an income range between 30-60K, and 83% were between childbearing ages. 60% of participants stated they are currently using or had used some type of contraceptive. 25% of participants had at least one unplanned pregnancy. The most common type of contraceptives used were oral contraceptives(28%) and condoms(38%). The top reasons for patients’ contraceptive usage were: prevention of pregnancy (72%), safe sex/prevention of STDs (32%), and regulation of menstrual cycle (19%). Further analysis of Likert responses revealed that contraception usage increased due to approval of contraceptives (x̄=3.98, σ =1.02); partner approval of contraceptives (x̄=3.875, σ =1.16); and reduced anxiety about pregnancy (x̄=3.875, σ =1.23). Younger females (18-34 years old) agreed more with the statement that the cost of contraceptive supplies is too expensive than older females (35-75 years old), (x̄=3.2, σ = 1.4 vs x̄=2.8, σ =1.3, p<0.05). Younger females (44%) were also more likely to use short-acting contraceptive methods (oral and male condoms) compared to older females (64%) who use long-acting methods (implants/ intrauterine devices). 51% of Hispanic females were using some type of contraceptive. Of those Hispanic females who do not use contraceptives, 33% stated having no children, and all plan to have at least one child in the future. 35% of participants had a bachelor's degree. Those with bachelor’s degrees were more likely to use contraceptives, 58% vs 51%, p<0.05, and less likely to have unplanned pregnancy, 50% vs. 12%, p<0.01. There is increasing use and awareness among patients in rural settings concerning contraceptives. Our finding shows that younger women and women with higher educational attainment tend to have more positive attitudes towards the use of contraceptives. This work gives physicians an understanding of patients’ concerns about contraceptive methods and offers insight into culturally competent intervention programs that respect individual values.

Keywords: contraceptives, public health, rural california, women of child baring age

Procedia PDF Downloads 57
2255 Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris

Authors: Piyush Samant, Ravinder Agarwal

Abstract:

Complementary and Alternative Medicine (CAM) techniques are quite popular and effective for chronic diseases. Iridology is more than 150 years old CAM technique which analyzes the patterns, tissue weakness, color, shape, structure, etc. for disease diagnosis. The objective of this paper is to validate the use of iridology for the diagnosis of the diabetes. The suggested model was applied in a systemic disease with ocular effects. 200 subject data of 100 each diabetic and non-diabetic were evaluated. Complete procedure was kept very simple and free from the involvement of any iridologist. From the normalized iris, the region of interest was cropped. All 63 features were extracted using statistical, texture analysis, and two-dimensional discrete wavelet transformation. A comparison of accuracies of six different classifiers has been presented. The result shows 89.66% accuracy by the random forest classifier.

Keywords: complementary and alternative medicine, classification, iridology, iris, feature extraction, disease prediction

Procedia PDF Downloads 407
2254 Cross-Sectional Analysis of Partner Support and Contraceptive Use in Adolescent Females

Authors: Ketan Tamirisa, Kathleen P. Tebb

Abstract:

In the U.S., annually, there are over 1 million pregnancies in teenagers and most (85%) are unintended. The need for proactive prevention measures is imperative to support adolescents with their pregnancy prevention and family planning goals. To date, there is limited research examining the extent to which support from a sexual partner(s) influences contraceptive use. To address this gap, this study assessed the relationship between sexually active adolescents, sex-assigned birth as female, and their perceived support from their sexual partner(s) about their contraceptive use in the last three months. Baseline data from sexually active adolescent females, between 13-19 years who were not currently using a long-acting contraceptive device, were recruited from 32 school-based health centers (SBHCs) in seven states in the U.S. as part of a larger study to evaluate Health-E You/ Salud iTuTM, a web-based contraceptive decision support tool. Fisher’s exact test assessed the cross-sectional association between perceived sexual partner support of contraceptive use in the past three months (felt no support, felt little support, and felt a lot of support), and current use of non-barrier contraception. A total of 91 sexually active adolescent females were eligible and completed the baseline survey. The mean age was 16.7 and nearly half (49.3%) were Hispanic/Latina. Most (85.9%) indicated it was very important to avoid becoming pregnant. A total of 60 participants (65.9%) reported use of non-barrier contraception. Of these, most used birth control pills (n=26), followed by Depo-Provera injection (n=12), patch (n=1), and ring (n=1). Most of the participants (80.2%) indicated that they perceived a lot of support from their partners and 19.8% reported no or little support. Among those reporting a lot of support, 69.9% (51/73) reported current use of non-barrier contraception compared to 50% (9/18) who felt no/little support and reported contraceptive use. This difference approached but did not reach statistical significance (p=0.096). Results from this preliminary data indicate that many adolescents who are coming in for care at SBHCs are at risk of unintended pregnancy. Many participants also reported a lot of support from their sexual partner(s) to use contraception. While the associations only approached significance, this is likely due to the small sample size. This and future research can better understand this association to inform interventions aimed at sexual partners to strengthen education and social support, increase healthcare accessibility, and ultimately reduce rates of unintended pregnancy.

Keywords: adolescents, contraception, pregnancy, SBHCs, sexual partners

Procedia PDF Downloads 44
2253 Health Portals for Specific Populations: A Design for Pregnant Women

Authors: Janine Sommer, Mariana Daus, Mariana Simon, Maria Smith, Daniel Luna

Abstract:

The technologies and communication advances contributed to new tools development which allows patients to have an active role in their own health. In the light of information needs and paradigms changes about health, the patient self-manages their care. This line of care focuses on patients; specific portals come up to people with particular requirements like pregnant women. Thinking of a portal design to this sector of the population, in September 2016 a survey was made to users with the objective to knowing and understanding information’s needs at the moment to use an application for pregnant. Also, prototypes of the portal´s features were designed to try and validate with users, using the methodology of human-centered design. Investigations have made possible the identification of needs of this population and develop a tool who try to satisfy, providing timely information for each part of pregnancy and allowing the patients to make a physical check and the follow up of pregnancy seeking advice from our obstetricians.

Keywords: electronic health record, health personal record, mobile applications, pregnant women

Procedia PDF Downloads 351
2252 Knowledge, Attitude and Practice of Pregnant Women toward Antenatal Care at Public Hospitals in Sana'a City-Yemen

Authors: Abdulfatah Al-Jaradi, Marzoq Ali Odhah, Abdulnasser A. Haza’a

Abstract:

Background: Antenatal care can be defined as the care provided by skilled healthcare professionals to pregnant women and adolescent girls to ensure the best health conditions for both mother and baby during pregnancy. The components of ANC include risk identification; prevention and management of pregnancy-related or concurrent diseases; and health education and health promotion. The aim of this study: to assess the knowledge, attitude, and practice of pregnant women regarding antenatal care. Methodology: A descriptive KAP study was conducting in public hospitals in Sana'a City-Yemen. The study population was included all pregnant women that intended to the prenatal department and clinical outpatient department, the final sample size was 371 pregnant women, a self-administered questionnaire was used to collect the data, statistical package for social sciences SPSS was used to data analysis. The results: Most (79%) of pregnant women were had correct answers in total knowledge regarding antenatal care, and about two-thirds (67%) of pregnant women were had performance practice regarding antenatal care and two-third (68%) of pregnant women were had a positive attitude. Conclusions & Recommendations: We concluded that a significant association between overall knowledge and practice level toward antenatal care and demographic characteristics of pregnant women, women (residence place, level of education, did your husband support you in attending antenatal care and place of delivery of the last baby), at (P-value ≤ 0.05). We recommended more education and training courses, lecturers and education sessions in clinical facilitators focused ANC, which relies on evidence-based interventions provided to women during pregnancy by skilled healthcare providers such as midwives, doctors, and nurses.

Keywords: antenatal care, knowledge, practice, attitude, pregnant women

Procedia PDF Downloads 189
2251 Usability Evaluation of Rice Doctor as a Diagnostic Tool for Agricultural Extension Workers in Selected Areas in the Philippines

Authors: Jerome Cayton Barradas, Rowely Parico, Lauro Atienza, Poornima Shankar

Abstract:

The effective agricultural extension is essential in facilitating improvements in various agricultural areas. One way of doing this is through Information and communication technologies (ICTs) like Rice Doctor (RD), an app-based diagnostic tool that provides accurate and timely diagnosis and management recommendations for more than 80 crop problems. This study aims to evaluate the RD usability by determining the effectiveness, efficiency, and user satisfaction of RD in making an accurate and timely diagnosis. It also aims to identify other factors that affect RD usability. This will be done by comparing RD with two other diagnostic methods: visual identification-based diagnosis and reference-guided diagnosis. The study was implemented in three rice-producing areas and has involved 96 extension workers. Respondents accomplished a self-administered survey and participated in group discussions. Data collected was then subjected to qualitative and quantitative analysis. Most of the respondents were satisfied with RD and believed that references are needed in assuring the accuracy of diagnosis. The majority found it efficient and easy to use. Some found it confusing and complicated, but this is because of their unfamiliarity with RD. Most users were also able to achieve accurate diagnosis proving effectiveness. Lastly, although users have reservations, they are satisfied and open to using RD. The study also found out the importance of visual identification skills in using RD and the need for capacity development and improvement of access to RD devices. From these results, the following are recommended to improve RD usability: review and upgrade diagnostic keys, expand further RD content, initiate capacity development for AEWs, and prepare and implement an RD communication plan.

Keywords: agricultural extension, crop protection, information and communication technologies, rice doctor

Procedia PDF Downloads 253
2250 Robust Diagnosability of PEMFC Based on Bond Graph LFT

Authors: Ould Bouamama, M. Bressel, D. Hissel, M. Hilairet

Abstract:

Fuel cell (FC) is one of the best alternatives of fossil energy. Recently, the research community of fuel cell has shown a considerable interest for diagnosis in view to ensure safety, security, and availability when faults occur in the process. The problematic for model based FC diagnosis consists in that the model is complex because of coupling of several kind of energies and the numerical values of parameters are not always known or are uncertain. The present paper deals with use of one tool: the Linear Fractional Transformation bond graph tool not only for uncertain modelling but also for monitorability (ability to detect and isolate faults) analysis and formal generation of robust fault indicators with respect to parameter uncertainties.The developed theory applied to a nonlinear FC system has proved its efficiency.

Keywords: bond graph, fuel cell, fault detection and isolation (FDI), robust diagnosis, structural analysis

Procedia PDF Downloads 366
2249 A New Approach of Preprocessing with SVM Optimization Based on PSO for Bearing Fault Diagnosis

Authors: Tawfik Thelaidjia, Salah Chenikher

Abstract:

Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, feature extraction from faulty bearing vibration signals is performed by a combination of the signal’s Kurtosis and features obtained through the preprocessing of the vibration signal samples using Db2 discrete wavelet transform at the fifth level of decomposition. In this way, a 7-dimensional vector of the vibration signal feature is obtained. After feature extraction from vibration signal, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. To improve the classification accuracy for bearing fault prediction, particle swarm optimization (PSO) is employed to simultaneously optimize the SVM kernel function parameter and the penalty parameter. The results have shown feasibility and effectiveness of the proposed approach

Keywords: condition monitoring, discrete wavelet transform, fault diagnosis, kurtosis, machine learning, particle swarm optimization, roller bearing, rotating machines, support vector machine, vibration measurement

Procedia PDF Downloads 437
2248 Artificial Neural Networks with Decision Trees for Diagnosis Issues

Authors: Y. Kourd, D. Lefebvre, N. Guersi

Abstract:

This paper presents a new idea for fault detection and isolation (FDI) technique which is applied to industrial system. This technique is based on Neural Networks fault-free and Faulty behaviors Models (NNFM's). NNFM's are used for residual generation, while decision tree architecture is used for residual evaluation. The decision tree is realized with data collected from the NNFM’s outputs and is used to isolate detectable faults depending on computed threshold. Each part of the tree corresponds to specific residual. With the decision tree, it becomes possible to take the appropriate decision regarding the actual process behavior by evaluating few numbers of residuals. In comparison to usual systematic evaluation of all residuals, the proposed technique requires less computational effort and can be used for on line diagnosis. An application example is presented to illustrate and confirm the effectiveness and the accuracy of the proposed approach.

Keywords: neural networks, decision trees, diagnosis, behaviors

Procedia PDF Downloads 505
2247 Diagnosis of Alzheimer Diseases in Early Step Using Support Vector Machine (SVM)

Authors: Amira Ben Rabeh, Faouzi Benzarti, Hamid Amiri, Mouna Bouaziz

Abstract:

Alzheimer is a disease that affects the brain. It causes degeneration of nerve cells (neurons) and in particular cells involved in memory and intellectual functions. Early diagnosis of Alzheimer Diseases (AD) raises ethical questions, since there is, at present, no cure to offer to patients and medicines from therapeutic trials appear to slow the progression of the disease as moderate, accompanying side effects sometimes severe. In this context, analysis of medical images became, for clinical applications, an essential tool because it provides effective assistance both at diagnosis therapeutic follow-up. Computer Assisted Diagnostic systems (CAD) is one of the possible solutions to efficiently manage these images. In our work; we proposed an application to detect Alzheimer’s diseases. For detecting the disease in early stage we used the three sections: frontal to extract the Hippocampus (H), Sagittal to analysis the Corpus Callosum (CC) and axial to work with the variation features of the Cortex(C). Our method of classification is based on Support Vector Machine (SVM). The proposed system yields a 90.66% accuracy in the early diagnosis of the AD.

Keywords: Alzheimer Diseases (AD), Computer Assisted Diagnostic(CAD), hippocampus, Corpus Callosum (CC), cortex, Support Vector Machine (SVM)

Procedia PDF Downloads 384
2246 Diagnosis and Treatment of Sleep Disorders

Authors: Andrew Anis Fakhrey Mosaad

Abstract:

Introduction: There are many different types of sleep disorders, each with serious implications for a person's health and a large financial burden on society. Method: This review offers a framework based on the International Classification of Sleep Disorders to aid in the diagnosis and treatment of sleep disorders. Differentiating between primary and secondary insomnia is covered, along with pharmacological and nonpharmacological therapy options. Common abnormalities of the circadian rhythm are mentioned along with their therapies, such as light therapy and chronotherapy. This article discusses the identification and management of periodic limb movement disorder and restless legs syndrome. The therapy of upper airway resistance syndrome and obstructive sleep apnea are the main topics of discussion. Conclusion: The range of narcolepsy symptoms and results, as well as diagnostic procedures and treatment, are discussed. The causes, outcomes, and treatments of many types of insomnias, such as sleep terrors, somnambulism, and rapid eye movement (REM) behavior sleep disorders, are discussed.

Keywords: diagnosis, treatment, sleep disorders, insomnia

Procedia PDF Downloads 62
2245 Development of an Interactive and Robust Image Analysis and Diagnostic Tool in R for Early Detection of Cervical Cancer

Authors: Kumar Dron Shrivastav, Ankan Mukherjee Das, Arti Taneja, Harpreet Singh, Priya Ranjan, Rajiv Janardhanan

Abstract:

Cervical cancer is one of the most common cancer among women worldwide which can be cured if detected early. Manual pathology which is typically utilized at present has many limitations. The current gold standard for cervical cancer diagnosis is exhaustive and time-consuming because it relies heavily on the subjective knowledge of the oncopathologists which leads to mis-diagnosis and missed diagnosis resulting false negative and false positive. To reduce time and complexities associated with early diagnosis, we require an interactive diagnostic tool for early detection particularly in developing countries where cervical cancer incidence and related mortality is high. Incorporation of digital pathology in place of manual pathology for cervical cancer screening and diagnosis can increase the precision and strongly reduce the chances of error in a time-specific manner. Thus, we propose a robust and interactive cervical cancer image analysis and diagnostic tool, which can categorically process both histopatholgical and cytopathological images to identify abnormal cells in the least amount of time and settings with minimum resources. Furthermore, incorporation of a set of specific parameters that are typically referred to for identification of abnormal cells with the help of open source software -’R’ is one of the major highlights of the tool. The software has the ability to automatically identify and quantify the morphological features, color intensity, sensitivity and other parameters digitally to differentiate abnormal from normal cells, which may improve and accelerate screening and early diagnosis, ultimately leading to timely treatment of cervical cancer.

Keywords: cervical cancer, early detection, digital Pathology, screening

Procedia PDF Downloads 178
2244 Impact of Breed and Physiological Status on Blood Content of Goats in Arid Conditions of Algeria

Authors: Lilia Belkacem, Zahra Rouabah, Assia Allaoui, Karina Bachtarzi, Souhila Belkadi, Boubakeur Safsaf, Madjid Tlidjane

Abstract:

The Damascus breed, known for its prolificacy and milking ability, is recently imported in Algeria. Farmers tend to improve the local native herds by crossbreeding with Damascus bucks. The aim of the current investigation was to study the effects of physiological status on blood progesterone and some biochemical parameters in Shami goats and their crosses with local breed in arid conditions of Algeria. Ten does with an age range of 1.5- 3 years and BSC between 2.5 and 3.5 were used. Female goats were divided into two groups of five animals each: Damascus, and crossbred (Damascus x Arbia). All females were estrus synchronized and naturally mated. Blood samples were collected before intravaginal sponge insertion (non- pregnant), in early (30 days after sponge removal), mid (90 days), late pregnancy (130 days) and after kidding (30 days post-partum). Results demonstrate a significant effect of the reproductive stage on progesterone (P4) levels in both groups, on glycemia and cholesterolemia in crossbred does (p<0.05) and on albuminemia and uremia in Damascus ones. Concentrations of triglycerides, total proteins, globulin and creatinine revealed no significant difference between physiological phases in both groups (p>0.05). Breed effect was detected in early and mid-pregnancy for P4, in early pregnancy and lactation for total proteins and in lactation for globulin with lower concentrations in Damascus compared to crossbred does. Changes in P4 and biochemical profiles of both groups reflect the female goat’s adaptation to increased requirement of gestation and lactation in arid conditions of Algeria.

Keywords: damascus goat, crossbred, reproductive status, progesterone, biochemical metabolites

Procedia PDF Downloads 61
2243 An Early Detection Type 2 Diabetes Using K - Nearest Neighbor Algorithm

Authors: Ng Liang Shen, Ngahzaifa Abdul Ghani

Abstract:

This research aimed at developing an early warning system for pre-diabetic and diabetics by analyzing simple and easily determinable signs and symptoms of diabetes among the people living in Malaysia using Particle Swarm Optimized Artificial. With the skyrocketing prevalence of Type 2 diabetes in Malaysia, the system can be used to encourage affected people to seek further medical attention to prevent the onset of diabetes or start managing it early enough to avoid the associated complications. The study sought to find out the best predictive variables of Type 2 Diabetes Mellitus, developed a system to diagnose diabetes from the variables using Artificial Neural Networks and tested the system on accuracy to find out the patent generated from diabetes diagnosis result in machine learning algorithms even at primary or advanced stages.

Keywords: diabetes diagnosis, Artificial Neural Networks, artificial intelligence, soft computing, medical diagnosis

Procedia PDF Downloads 336
2242 Vehicle Gearbox Fault Diagnosis Based on Cepstrum Analysis

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

Research on damage of gears and gear pairs using vibration signals remains very attractive, because vibration signals from a gear pair are complex in nature and not easy to interpret. Predicting gear pair defects by analyzing changes in vibration signal of gears pairs in operation is a very reliable method. Therefore, a suitable vibration signal processing technique is necessary to extract defect information generally obscured by the noise from dynamic factors of other gear pairs. This article presents the value of cepstrum analysis in vehicle gearbox fault diagnosis. Cepstrum represents the overall power content of a whole family of harmonics and sidebands when more than one family of sidebands is present at the same time. The concept for the measurement and analysis involved in using the technique are briefly outlined. Cepstrum analysis is used for detection of an artificial pitting defect in a vehicle gearbox loaded with different speeds and torques. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers introduce the load on the flanges of the output joint shafts. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. Also, a method for fault diagnosis of gear faults is presented based on order cepstrum. The procedure is illustrated with the experimental vibration data of the vehicle gearbox. The results show the effectiveness of cepstrum analysis in detection and diagnosis of the gear condition.

Keywords: cepstrum analysis, fault diagnosis, gearbox, vibration signals

Procedia PDF Downloads 379
2241 Disaster Management in Indonesia: A Study on Indonesian Law No. 24 Year 2007

Authors: Eva Fadhilah, Ummi Sholihah Pertiwi Abidin

Abstract:

One common problem in Indonesia is a matter of disaster and its management. Therefore, Indonesia is recognized as ones of disaster-prone nations. The serious problem of a high number of disasters and victims in Indonesia is the lack of attention from various parties related to aid which is given to victims in the evacuation areas. In Indonesia, it is estimated that 25 percents of disaster victims are fertile women, 4 percents of them are pregnants, and 15-20 percents among them encountered complication of pregnancy. Unfortunately, disaster management is frequently viewed as ethnicity, so that, the way to treat them is also done in the same way either to treat men or women, toddler or adult, young or aged. This matter then caused the imbalance in helping distribution which caused an inappropriateness towards help distribution. Whereas if we look in depth, the needs of every human are totally different. Sometimes susceptible groups such as women need to gain priority help compared with man. This is caused such as in the certain times that women could be in menstruation period, pregnancy, suckling period which never be experienced by men. This paper aims to study Indonesian Law No. 24 Year 2007 about Disaster management. This study was done by qualitative study which emphasizes on literature study to discuss the study.

Keywords: disaster management, Indonesian law, disaster victims’ needs, women’s needs

Procedia PDF Downloads 349
2240 Case-Based Options Counseling Panel To Supplement An Indiana Medical School’s Pre-Clinical Family Planning and Abortion Education Curriculum

Authors: Alexandra McKinzie, Lucy Brown, Sarah Komanapalli, Sarah Swiezy, Caitlin Bernard

Abstract:

Background: While 25% of US women will seek an abortion before age 45, targeted laws have led to a decline in abortion clinics, subsequently leaving 96% of Indiana counties and the 70% of Hoosier women residing in these counties without access to services they desperately need.1,2 Despite the need for a physician workforce that is educated and able to provide full-spectrum reproductive health care, few medical institutions have a standardized family planning and abortion pre-clinical curriculum. Methods: A Qualtrics survey was disseminated to students from Indiana University School of Medicine (IUSM) to evaluate (1) student interest in curriculum reform, (2) self-assessed preparedness to counsel on contraceptive and pregnancy options, and (3) preferred modality of instruction for family planning and abortion topics. Based on the pre-panel survey feedback, a case-based pregnancy options counseling panel will be implemented in the students’ pre-clinical, didactic course Endocrine, Reproductive, Musculoskeletal, Dermatologic Systems (ERMD) in February 2022. A Qualtrics post-panel survey will be disseminated to evaluate students’ perceived efficacy and quality of the panel, as well as their self-assessed preparedness to counsel on pregnancy options. Results: Participants in the pre-panel survey (n=303) were primarily female (61.72%) and White (74.43%). Across all class levels, many (60.80%) students expected to learn about family planning and abortion in their pre-clinical education. While most (84-88%) participants felt prepared to counsel about common, non-controversial pharmacotherapies (e.g. beta-blockers and diuretics), only 20% of students felt prepared to counsel on abortion options. Overall, 85.67% of students believed that IUSM should enhance its reproductive health coverage in pre-clinical, didactic courses. Traditional lectures, panels, and direct clinical exposure were the most popular instructional modalities. Expected Results: The authors predict that following the panel, students will indicate improved confidence in providing pregnancy options counseling. Additionally, students will provide constructive feedback on the structure and content of the panel for incorporation into future years’ curriculum. Conclusions: IUSM students overwhelmingly expressed interest in expanding their pre-clinical curriculum’s coverage of family planning and abortion topics. To specifically improve students’ self-assessed preparedness to provide pregnancy options counseling and address students’ self-cited learning gaps, a case-based provider panel session will be implemented in response to students’ preferred modality feedback.

Keywords: options counseling, family planning, abortion, curriculum reform, case-based panel

Procedia PDF Downloads 146