Search results for: lung diseases
2863 Epidemiology, Prevention and Treatment of Leishmaniasis in Afghanistan
Authors: Mohammad Reza Mohammadi, Layegheh Daliri
Abstract:
Introduction: Leishmaniasis occurs in infectious diseases of Leishmania protozoa in Afghanistan, anthroponotic leishmaniasis and common cutaneous leishmaniasis (ZCL). Anthroponotic skin leishmania tropica may cause urban diseases and transmitted by Phlebotomus Sergenti. In different parts of Afghanistan, different species of Leishmania are observed. We report the epidemiological characteristics of prevention and treatment in this study. Methods: This study examines the epidemiology and prevention of religious diseases in Afghanistan. Knowledge gaps were analyzed and collected with our own data. Results: In Afghanistan, most of the Lishmania Tropic seekers are Four species of Leishmania in northern Afghanistan, including Leishmania Tropica, L. Major and L. Donovani, cause skin lesions, but L. Donovani and L. infantum are visible. Even combined prevention can significantly reduce the amount of infection. Conclusion: Skinny, as well as visceral leishmaniasis, can occur among the returnees from Afghanistan. Unusual and poor skin lesions can be created by L. Donovani. In most pathogenic areas, the transmission of common diseases between humans and animals. Home dogs are the main reservoir, transferring in some areas such as India and Sudan.Keywords: leishmania donovani, leishmania tropica, treatment, disease, epidemiology
Procedia PDF Downloads 1832862 Survey and Identification of Coinfecting Botryosphaeriales Causing Stem Canker Diseases of Eucalyptus camaldulensis in Ethiopia
Authors: Wendu Admasu, Assefa Sintayehu, Alemu Gezahgne, Zewdu Terefework
Abstract:
Eucalyptus is the most widely planted forest tree species in the world. In Ethiopia, pathogenic fungi pose an increasing threat to Eucalyptus species. Due to limited research, there is insufficient information on the associated diseases and pathogens. This study investigated Eucalyptus diseases, the extent of their damage, and the causal fungal pathogens. A Eucalyptus disease survey was conducted in the Eucalyptus forestry areas of Ethiopia during the growth years 2019/20 and 2020/21. Disease assessment and sampling were carried out in eighteen plantations at nine locations. E. camaldulensis was the most dominant species planted in the surveyed areas. The field study shows a high incidence and severity of canker diseases. Diseased stem and branch samples were collected, cultured on malt extract agar media and studied. The results of morphological and ITS sequence analysis confirmed that the fungal species Neofusicoccum parvum, Lasiodiplodia theobromae, and Aplosporella hesperidica caused the observed canker symptoms. This is the first report of Lasiodiplodia theobromae and Aplosporella hesperidica causing diseases in Eucalyptus plants in Ethiopia. Changes in global climate and environmental factors, such as altitude, are believed to have a strong impact on the susceptibility of Eucalyptus plants to diseases. Strict quarantine practices and continuous monitoring of pathogenic and endophytic fungal species associated with Eucalyptus trees are issued to be prioritized to effectively control and manage the disease.Keywords: Neofusicoccum, Lasiodiplodia, Aplosporella, pathogenicity, phylogeny, severity
Procedia PDF Downloads 702861 Sparse Modelling of Cancer Patients’ Survival Based on Genomic Copy Number Alterations
Authors: Khaled M. Alqahtani
Abstract:
Copy number alterations (CNA) are variations in the structure of the genome, where certain regions deviate from the typical two chromosomal copies. These alterations are pivotal in understanding tumor progression and are indicative of patients' survival outcomes. However, effectively modeling patients' survival based on their genomic CNA profiles while identifying relevant genomic regions remains a statistical challenge. Various methods, such as the Cox proportional hazard (PH) model with ridge, lasso, or elastic net penalties, have been proposed but often overlook the inherent dependencies between genomic regions, leading to results that are hard to interpret. In this study, we enhance the elastic net penalty by incorporating an additional penalty that accounts for these dependencies. This approach yields smooth parameter estimates and facilitates variable selection, resulting in a sparse solution. Our findings demonstrate that this method outperforms other models in predicting survival outcomes, as evidenced by our simulation study. Moreover, it allows for a more meaningful interpretation of genomic regions associated with patients' survival. We demonstrate the efficacy of our approach using both real data from a lung cancer cohort and simulated datasets.Keywords: copy number alterations, cox proportional hazard, lung cancer, regression, sparse solution
Procedia PDF Downloads 472860 Harnessing Clinical Trial Capacity to Mitigate Zoonotic Diseases: The Role of Expert Scientists in Ethiopia
Authors: Senait Belay Adugna, Mirutse Giday, Tsegahun Manyazewal
Abstract:
Background: The emergence and resurgence of zoonotic diseases have continued to be a major threat to global health and the economy. Developing countries are particularly vulnerable due to agricultural expansions and the domestication of animals by humans. Scientifically sound clinical trials are important to find better ways to prevent, diagnose, and treat zoonotic diseases, while there is a lack of evidence to inform the clinical trials’ capacity and practice in countries highly affected by the diseases. This study aimed to investigate researchers’ perceptions and experiences in conducting clinical trials on zoonotic diseases in Ethiopia. Methods: This study employed a descriptive, qualitative study design. It included major academic and research institutions in Ethiopia that had active engagements in veterinary and public health research. It included the National Veterinary Institute, the National Animal Health Diagnostic and Investigation Center, the College of Veterinary Medicine at Addis Ababa University, the Ethiopian Public Health Institute, the Armauer Hansen Research Institute, and the College of Health Sciences at Addis Ababa University. In-depth interviews were conducted with 14 senior researcher investigators in the institutions who hold a proven exhibit primarily leading research activities or research units. Data were collected from October 2019 to April 2020. Data analysis was undertaken using open code 4.03 for qualitative data analysis. Results: Five major themes, with 18 sub-themes, emerged from the in-depth interview in connection. These were: challenges in the prevention, control, and treatment of zoonotic diseases; One Health approach to mitigate zoonotic diseases; personal and institutional experiences in conducting clinical trials on zoonotic diseases; barriers in conducting clinical trials towards zoonotic diseases; and strategies that promote conducting clinical trials on zoonotic diseases. Conducting clinical trials on zoonotic diseases in Ethiopia is hampered by a lack of clearly articulated ethics and regulatory frameworks, trial experts, financial resources, and good governance. Conclusions: In Ethiopia, conducting clinical trials on zoonotic diseases deserves due attention. Strengthening institutional and human resources capacity is a precondition to harnessing effective implementation of clinical trials on zoonotic diseases in the country. In Ethiopia, where skilled human resource is scarce, the One Health approach has the potential to form multidisciplinary teams to systematically improve clinical trials capacity and outcomes in the country.Keywords: Ethiopia, clinical triak, zoonoses, disease
Procedia PDF Downloads 952859 Using Multiomic Plasma Profiling From Liquid Biopsies to Identify Potential Signatures for Disease Diagnostics in Late-Stage Non-small Cell Lung Cancer (NSCLC) in Trinidad and Tobago
Authors: Nicole Ramlachan, Samuel Mark West
Abstract:
Lung cancer is the leading cause of cancer-associated deaths in North America, with the vast majority being non-small cell lung cancer (NSCLC), with a five-year survival rate of only 24%. Non-invasive discovery of biomarkers associated with early-diagnosis of NSCLC can enable precision oncology efforts using liquid biopsy-based multiomics profiling of plasma. Although tissue biopsies are currently the gold standard for tumor profiling, this method presents many limitations since these are invasive, risky, and sometimes hard to obtain as well as only giving a limited tumor profile. Blood-based tests provides a less-invasive, more robust approach to interrogate both tumor- and non-tumor-derived signals. We intend to examine 30 stage III-IV NSCLC patients pre-surgery and collect plasma samples.Cell-free DNA (cfDNA) will be extracted from plasma, and next-generation sequencing (NGS) performed. Through the analysis of tumor-specific alterations, including single nucleotide variants (SNVs), insertions, deletions, copy number variations (CNVs), and methylation alterations, we intend to identify tumor-derived DNA—ctDNA among the total pool of cfDNA. This would generate data to be used as an accurate form of cancer genotyping for diagnostic purposes. Using liquid biopsies offer opportunities to improve the surveillance of cancer patients during treatment and would supplement current diagnosis and tumor profiling strategies previously not readily available in Trinidad and Tobago. It would be useful and advantageous to use this in diagnosis and tumour profiling as well as to monitor cancer patients, providing early information regarding disease evolution and treatment efficacy, and reorient treatment strategies in, timethereby improving clinical oncology outcomes.Keywords: genomics, multiomics, clinical genetics, genotyping, oncology, diagnostics
Procedia PDF Downloads 1622858 Covid-19, Diagnosis with Computed Tomography and Artificial Intelligence, in a Few Simple Words
Authors: Angelis P. Barlampas
Abstract:
Target: The (SARS-CoV-2) is still a threat. AI software could be useful, categorizing the disease into different severities and indicate the extent of the lesions. Materials and methods: AI is a new revolutionary technique, which uses powered computerized systems, to do what a human being does more rapidly, more easily, as accurate and diagnostically safe as the original medical report and, in certain circumstances, even better, saving time and helping the health system to overcome problems, such as work overload and human fatigue. Results: It will be given an effort to describe to the inexperienced reader (see figures), as simple as possible, how an artificial intelligence system diagnoses computed tomography pictures. First, the computerized machine learns the physiologic motives of lung parenchyma by being feeded with normal structured images of the lung tissue. Having being used to recognizing normal structures, it can then easily indentify the pathologic ones, as their images do not fit to known normal picture motives. It is the same way as when someone spends his free time in reading magazines with quizzes, such as <Keywords: covid-19, artificial intelligence, automated imaging, CT, chest imaging
Procedia PDF Downloads 532857 Predication Model for Leukemia Diseases Based on Data Mining Classification Algorithms with Best Accuracy
Authors: Fahd Sabry Esmail, M. Badr Senousy, Mohamed Ragaie
Abstract:
In recent years, there has been an explosion in the rate of using technology that help discovering the diseases. For example, DNA microarrays allow us for the first time to obtain a "global" view of the cell. It has great potential to provide accurate medical diagnosis, to help in finding the right treatment and cure for many diseases. Various classification algorithms can be applied on such micro-array datasets to devise methods that can predict the occurrence of Leukemia disease. In this study, we compared the classification accuracy and response time among eleven decision tree methods and six rule classifier methods using five performance criteria. The experiment results show that the performance of Random Tree is producing better result. Also it takes lowest time to build model in tree classifier. The classification rules algorithms such as nearest- neighbor-like algorithm (NNge) is the best algorithm due to the high accuracy and it takes lowest time to build model in classification.Keywords: data mining, classification techniques, decision tree, classification rule, leukemia diseases, microarray data
Procedia PDF Downloads 3212856 Isolation of Cytotoxic Compound from Tectona grandis Stem to Be Used as Thai Medicinal Preparation for Cancer Treatment
Authors: Onmanee Prajuabjinda, Pakakrong Thondeeying, Jipisute Chunthorng-Orn, Bhanuz Dechayont, Arunporn Itharat
Abstract:
A Thai medicinal preparation has been used for cancer treatment more than ten years ago in Khampramong Temple. Tectona grandis stem is one ingredient of this Thai medicinal remedy. The ethanolic extract of Tectona grandis stem showed the highest cytotoxic activities against human breast adenocarcinoma (MCF-7), but was less cytotoxic against large cell lung carcinoma (COR-L23) (IC50 = 3.92 and 7.78 µg/ml, respectively). It was isolated by bioassay-guided isolation method. Tectoquinone, a anthraquinone compound was isolated from this plant. This compound showed high specific cytotoxicity against human breast adenocarcinoma (MCF-7), but was less cytotoxic against large cell lung carcinoma (COR-L23)(IC50 =16.15 and 47.56 µg/ml or 72.67 and 214.00 µM, respectively). However, it showed less cytotoxic activity than the crude extract. In conclusion, tectoquinone as a main compound, is not the best cytotoxic compound from Tectona grandis, so there are more active cytotoxic compounds in this extract which should be isolated in the future. Moreover, tectoquinone displayed specific cytotoxicity against only human breast adenocarcinoma (MCF-7) which is a good criterion for cancer treatment.Keywords: Tectona grandis, SRB assay, cytotoxicity, tectoquinone
Procedia PDF Downloads 4332855 Association between Cholesterol Levels and Atopy among Adolescents with and without Sufficient Amount of Physical Activity
Authors: Keith T. S. Tung, H. W. Tsang, Rosa S. Wong, Frederick K. Ho, Patrick Ip
Abstract:
Objectives: Atopic diseases are increasingly prevalent among children and adolescents, both locally and internationally. One of the possible contributing factors could be the hypercholesterolemia which leads to cholesterol accumulation in macrophages and other immune cells that would eventually promote inflammatory responses, including augmentation of toll-like receptor (TLR). Meanwhile, physical activity is well known for its beneficial effects against the condition of hypercholesterolemia and incidence of atopic diseases. This study, therefore, explored whether atopic diseases were associated with increased cholesterol levels and whether physical activity habit influenced this association. Methods: This is a sub-study derived from the longitudinal cohort study which recruited a group of children at five years of age in Kindergarten 3 (K3) to investigate the long-term impact of family socioeconomic status on child development. In 2018/19, adolescents (average age: 13 years old) were asked to report their physical activity habit and history of any atopic diseases. During health assessment, peripheral blood samples were collected from the adolescents to study their lipid profile [total cholesterol, high-density lipoprotein (HDL)-cholesterol, and low-density lipoprotein (LDL)-cholesterol]. Regression analyses were performed to test the relationships between variables of interest. Results: Among the 315 adolescents, 99 (31.4%) reported to have allergic rhinitis. There were 45 (14.3%) with eczema, 17 (5.4%) with a food allergy, and 12 (3.8%) with asthma. Regression analyses showed that adolescents with a history of any type of atopic diseases had significantly higher total cholesterol (B=13.3, p < 0.01) and LDL cholesterol (B=7.9, p < 0.05) levels. Further subgroup analyses were conducted to examine the effect of physical activity level on the association between atopic diseases and cholesterol levels. We found stronger associations among those who did not meet the World Health Organization recommendation of at least 60 minutes of moderate-to-vigorous activities each day (total cholesterol: B=15.5, p < 0.01; LDL cholesterol: B=10.4, p < 0.05). For those who met this recommendation, the associations between atopic diseases and cholesterol levels became insignificant. Conclusion: Our study results support the current research evidence on the relationship between an elevated level of cholesterol and atopic diseases. More importantly, our results provide preliminary support for the protective effect of regular exercises against elevated cholesterol level due to atopic diseases. The findings highlight the importance of a healthy lifestyle for keeping cholesterol levels in the normal range, which can bring benefits to both physical and mental health.Keywords: atopic diseases, Chinese adolescents, cholesterol level, physical activity
Procedia PDF Downloads 1222854 Assessment and Adaptation Strategy of Climate Change to Water Quality in the Erren River and Its Impact to Health
Authors: Pei-Chih Wu, Hsin-Chih Lai, Yung-Lung Lee, Yun-Yao Chi, Ching-Yi Horng, Hsien-Chang Wang
Abstract:
The impact of climate change to health has always been well documented. Amongst them, water-borne infectious diseases, chronic adverse effects or cancer risks due to chemical contamination in flooding or drought events are especially important in river basin. This study therefore utilizes GIS and different models to integrate demographic, land use, disaster prevention, social-economic factors, and human health assessment in the Erren River basin. Therefore, through the collecting of climatic, demographic, health surveillance, water quality and other water monitoring data, potential risks associated with the Erren River Basin are established and to understand human exposure and vulnerability in response to climate extremes. This study assesses the temporal and spatial patterns of melioidosis (2000-2015) and various cancer incidents in Tainan and Kaohsiung cities. The next step is to analyze the spatial association between diseases incidences, climatic factors, land uses, and other demographic factors by using ArcMap and GeoDa. The study results show that amongst all melioidosis cases in Taiwan, 24% cases (115) residence occurred in the Erren River basin. The relationship between the cases and in Tainan and Kaohsiung cities are associated with population density, aging indicator, and residence in Erren River basin. Risks from flooding due to heavy rainfall and fish farms in spatial lag regression are also related. Through liver cancer, the preliminary analysis in temporal and spatial pattern shows an increases pattern in annual incidence without clusters in Erren River basin. Further analysis of potential cancers connected to heavy metal contamination from water pollution in Erren River is established. The final step is to develop an assessment tool for human exposure from water contamination and vulnerability in response to climate extremes for the second year.Keywords: climate change, health impact, health adaptation, Erren River Basin
Procedia PDF Downloads 3052853 Ethnobotanical Study of Spontaneous Medicinal Plants Used in the Treatment of Viral Respiratory Diseases in the Prerif, Morocco
Authors: El Amane Salma, Rahou Abdelilah
Abstract:
Viral respiratory infections (common cold, flu, sinusitis, bronchiolitis, etc.) are among the most common infections in the world with severe symptoms. In Morocco, as everywhere in the world, especially in developing countries, the therapeutic indications of medicinal plants are very present to treat several diseases, including the respiratory system. The objective of our study is to identify and document medicinal plants used in traditional medicine to treat viral respiratory infections and alleviate their symptoms in order to generate interest for future studies in verifying the efficacy of these traditional medicines and their conservation. The information acquired from 81 questionnaires and the floristic identification allowed us to identify 19 spontaneous species belonging to 11 families, used as traditional therapies for viral respiratory diseases in the Prerif. The herbs are the most used life form. The results also showed that leaves were the most commonly used plant parts and most of the herbal medicines were prepared in the form of infusions and administered orally. Documented data was evaluated using use value (UV), family importance value (FIV) and relative frequency citation (RCF).Keywords: medicinal plants, ethnobotanical, ethnopharmacological, viral respiratory diseases, Morocco
Procedia PDF Downloads 1942852 Early Biological Effects in Schoolchildren Living in an Area of Salento (Italy) with High Incidence of Chronic Respiratory Diseases: The IMP.AIR. Study
Authors: Alessandra Panico, Francesco Bagordo, Tiziana Grassi, Adele Idolo, Marcello Guido, Francesca Serio, Mattia De Giorgi, Antonella De Donno
Abstract:
In the Province of Lecce (Southeastern Italy) an area with unusual high incidence of chronic respiratory diseases, including lung cancer, was recently identified. The causes of this health emergency are still not entirely clear. In order to determine the risk profile of children living in five municipalities included in this area an epidemiological-molecular study was performed in the years 2014-2016: the IMP.AIR. (Impact of air quality on health of residents in the Municipalities of Sternatia, Galatina, Cutrofiano, Sogliano Cavour and Soleto) study. 122 children aged 6-8 years attending primary school in the study area were enrolled to evaluate the frequency of micronuclei (MNs) in their buccal exfoliated cells. The samples were collected in May 2015 by rubbing the oral mucosa with a soft bristle disposable toothbrush. At the same time, a validated questionnaire was administered to parents to obtain information about health, lifestyle and eating habits of the children. In addition, information on airborne pollutants, routinely detected by the Regional Environmental Agency (ARPA Puglia) in the study area, was acquired. A multivariate analysis was performed to detect any significant association between frequency of MNs (dependent variable) and behavioral factors (independent variables). The presence of MNs was highlighted in the buccal exfoliated cells of about 42% of recruited children with a mean frequency of 0.49 MN/1000 cells, greater than in other areas of Salento. The survey on individual characteristics and lifestyles showed that one in three children was overweight and that most of them had unhealthy eating habits with frequent consumption of foods considered ‘risky’. Moreover many parents (40% of fathers and 12% of mothers) were smokers and about 20% of them admitted to smoking in the house where the children lived. Information regarding atmospheric contaminants was poor. Of the few substances routinely detected by the only one monitoring station located in the study area (PM2.5, SO2, NO2, CO, O3) only ozone showed high concentrations exceeding the limits set by the legislation for 67 times in the year 2015. The study showed that the level of early biological effect markers in children was not negligible. This critical condition could be related to some individual factors and lifestyles such as overweight, unhealthy eating habits and exposure to passive smoking. At present, no relationship with airborne pollutants can be established due to the lack of information on many substances. Therefore, it would be advisable to modify incorrect behaviors and to intensify the monitoring of airborne pollutants (e.g. including detection of PM10, heavy metals, aromatic polycyclic hydrocarbons, benzene) given the epidemiology of chronic respiratory diseases registered in this area.Keywords: chronic respiratory diseases, environmental pollution, lifestyle, micronuclei
Procedia PDF Downloads 2022851 Association of Hypoxia-Inducible Factor-1α in Patients with Chronic Obstructive Pulmonary Diseases
Authors: Kriti Upadhyay, Ashraf Ali, Puja Sohal, Randeep Guleria
Abstract:
Background: In Chronic Obstructive Pulmonary diseases (COPD) pathogenesis oxidative stress plays an important role. Hypoxia-Inducible factor (HIF-1α) is a dimeric protein complex which Functions as a master transcriptional regulator of the adaptive response to hypoxiaand is a risk factor that increases when oxidative stress triggers. The role ofHIF-1αin COPD due to smoking is lacking. Aim: This study aims to evaluate the role of HIF-1α in smoker COPD patients comparing its association with diseases severity. Method: In this cross-sectional study, we recruited 87 subjects, 57 were smokers with COPD,15 were smokers without COPD and other 15 were non-smoker healthy controls. The mean age was 54.6± 9.32 (cases 57.08±8.15; controls 50.0± 9.8). There were 62%smokers, 25% non-smokers,7% tobacco chewers and 6% ex-smokers. Enzyme-linked immune sorbent assay (ELISA) method was used for analyzing serum samples wherein HIF-1α was analyzed by Sandwich-ELISA. Results: In smoker COPD patients, a significantly higher HIF-1α level showed positive association with hypoxia, smoking status and severity of disease (p=0.03). The mean value of HIF-1α was not significantly different in smokers without COPD and healthy controls. Conclusion: It is found that HIF-1α level was increased in smoker COPD, but not in smokers without COPD. This suggests that development of COPD drive the HIF-1α pathway and it correlates with the severity of diseases.Keywords: COPD, chronic obstructive pulmonary diseases, smokers, nonsmokers, hypoxia
Procedia PDF Downloads 1492850 The Contribution of Sanitation Practices to Marine Pollution and the Prevalence of Water-Borne Diseases in Prampram Coastal Area, Greater Accra-Ghana
Authors: Precious Roselyn Obuobi
Abstract:
Background: In Ghana, water-borne diseases remain a public health concern due to its impact. While marine pollution has been linked to outbreak of diseases especially in communities along the coast, associated risks such as oil spillage, marine debris, erosion, improper waste disposal and management practices persist. Objective: The study seeks to investigate sanitation practices that contribute to marine pollution in Prampram and the prevalence of selected water-borne diseases (diarrhea and typhoid fever). Method: This study used a descriptive cross-sectional design, employing the mix-method (qualitative and quantitative) approach. Twenty-two (22) participants were selected and semistructured questionnaire were administered to them. Additionally, interviews were conducted to collect more information. Further, an observation check-list was used to aid the data collection process. Secondary data comprising information on water-borne diseases in the district was acquired from the district health directorate to determine the prevalence of selected water-borne diseases in the community. Data Analysis: The qualitative data was analyzed using NVIVO® software by adapting the six steps thematic analysis by Braun and Clarke whiles STATA® version 16 was used to analyze the secondary data collected from the district health directorate. A descriptive statistic employed using mean, standard deviation, frequencies and proportions were used to summarize the results. Results: The results showed that open defecation and indiscriminate waste disposal were the main practices contributing to marine pollution in Prampram and its effect on public health. Conclusion: These findings have implications on public health and the environment, thus effort needs to be stepped up in educating the community on best sanitation practices.Keywords: environment, sanitation, marine pollution, water-borne diseases
Procedia PDF Downloads 772849 Generation of High-Quality Synthetic CT Images from Cone Beam CT Images Using A.I. Based Generative Networks
Authors: Heeba A. Gurku
Abstract:
Introduction: Cone Beam CT(CBCT) images play an integral part in proper patient positioning in cancer patients undergoing radiation therapy treatment. But these images are low in quality. The purpose of this study is to generate high-quality synthetic CT images from CBCT using generative models. Material and Methods: This study utilized two datasets from The Cancer Imaging Archive (TCIA) 1) Lung cancer dataset of 20 patients (with full view CBCT images) and 2) Pancreatic cancer dataset of 40 patients (only 27 patients having limited view images were included in the study). Cycle Generative Adversarial Networks (GAN) and its variant Attention Guided Generative Adversarial Networks (AGGAN) models were used to generate the synthetic CTs. Models were evaluated by visual evaluation and on four metrics, Structural Similarity Index Measure (SSIM), Peak Signal Noise Ratio (PSNR) Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), to compare the synthetic CT and original CT images. Results: For pancreatic dataset with limited view CBCT images, our study showed that in Cycle GAN model, MAE, RMSE, PSNR improved from 12.57to 8.49, 20.94 to 15.29 and 21.85 to 24.63, respectively but structural similarity only marginally increased from 0.78 to 0.79. Similar, results were achieved with AGGAN with no improvement over Cycle GAN. However, for lung dataset with full view CBCT images Cycle GAN was able to reduce MAE significantly from 89.44 to 15.11 and AGGAN was able to reduce it to 19.77. Similarly, RMSE was also decreased from 92.68 to 23.50 in Cycle GAN and to 29.02 in AGGAN. SSIM and PSNR also improved significantly from 0.17 to 0.59 and from 8.81 to 21.06 in Cycle GAN respectively while in AGGAN SSIM increased to 0.52 and PSNR increased to 19.31. In both datasets, GAN models were able to reduce artifacts, reduce noise, have better resolution, and better contrast enhancement. Conclusion and Recommendation: Both Cycle GAN and AGGAN were significantly able to reduce MAE, RMSE and PSNR in both datasets. However, full view lung dataset showed more improvement in SSIM and image quality than limited view pancreatic dataset.Keywords: CT images, CBCT images, cycle GAN, AGGAN
Procedia PDF Downloads 842848 Detection of Elephant Endotheliotropic Herpes Virus in a Wild Asian Elephant Calf in Thailand by Using Real-Time PCR
Authors: Bopit Puyati, Anchittha Kaewchana, Nuntita Ruksachat
Abstract:
In January 2018, a male wild elephant, approximately 2 years old, was found dead in Phu Luang Wildlife Sanctuary, Loei province. The elephant was likely to die around 2 weeks earlier. The carcass was decayed without any signs of attack or bullet. No organs were removed. A deadly viral disease was suspected. Different organs including lung, liver, intestine and tongue were collected and submitted to the veterinary research and development center, Surin province for viral detection. The samples were then examined with real-time PCR for detecting U41 Major DNA binding protein (MDBP) gene and with conventional PCR for the presence of specific polymerase gene. We used tumor necrosis factor (TNF) gene as the internal control. In our real-time PCR, elephant endotheliotropic herpesvirus (EEHV) was recovered from lung, liver, and tongue whereas only tongue provided a positive result in the conventional PCR. All samples were positive with TNF gene detection. To our knowledge, this is the first report of EEHV detection in wild elephant in Thailand. EEHV surveillance in this wild population is strongly suggested. Linkage between EEHV in wild and domestic elephants should be further explored.Keywords: elephant endotheliotropic herpes virus, PCR, Thailand, wild Asian elephant
Procedia PDF Downloads 1442847 Molecular Docking Analysis of Flavonoids Reveal Potential of Eriodictyol for Breast Cancer Treatment
Authors: Nicole C. Valdez, Vincent L. Borromeo, Conrad C. Chong, Ahmad F. Mazahery
Abstract:
Breast cancer is the most prevalent cancer worldwide, where the majority of cases are estrogen-receptor positive and involve 2 receptor proteins. The binding of estrogen to estrogen receptor alpha (ERα) promotes breast cancer growth, while it's binding to estrogen-receptor beta (ERβ) inhibits tumor growth. While natural products have been a promising source of chemotherapeutic agents, the challenge remains in finding a bioactive compound that specifically targets cancer cells, minimizing side effects on normal cells. Flavonoids are natural products that act as phytoestrogens and induce the same response as estrogen. They are able to compete with estrogen for binding to ERα; however, it has a higher binding affinity for ERβ. Their abundance in nature and low toxicity make them a potential candidate for breast cancer treatment. This study aimed to determine which particular flavonoids can specifically recognize ERβ and potentially be used for breast cancer treatment through molecular docking. A total of 206 flavonoids comprised of 97 isoflavones and 109 flavanones were collected from ZINC15, while the 3D structures of ERβ and ERα were obtained from Protein Data Bank. These flavonoid subclasses were chosen as they bind more strongly to ERs due to their chemical structure. The structures of the flavonoid ligands were converted using Open Babel, while the estrogen receptor protein structures were prepared using Autodock MGL Tools. The optimal binding site was found using BIOVIA Discovery Studio Visualizer before docking all flavonoids on both ERβ and ERα through Autodock Vina. Genistein is a flavonoid that exhibits anticancer effects by binding to ERβ, so its binding affinity was used as a baseline. Eriodictyol and 4”,6”-Di-O-Galloylprunin both exceeded genistein’s binding affinity for ERβ and was lower than its binding affinity for ERα. Of the two, eriodictyol was pursued due to its antitumor properties on a lung cancer cell line and on glioma cells. It is able to arrest the cell cycle at the G2/M phase by inhibiting the mTOR/PI3k/Akt cascade and is able to induce apoptosis via the PI3K/Akt/NF-kB pathway. Protein pathway and gene analysis were also conducted using ChEMBL and PANTHER and it was shown that eriodictyol might induce anticancer effects through the ROS1, CA7, KMO, and KDM1A genes which are involved in cell proliferation in breast cancer, non-small cell lung cancer, and other diseases. The high binding affinity of eriodictyol to ERβ, as well as its potential affected genes and antitumor effects, therefore, make it a candidate for the development of new breast cancer treatment. Verification through in vitro experiments such as checking the upregulation and downregulation of genes through qPCR and checking cell cycle arrest using a flow cytometry assay is recommended.Keywords: breast cancer, estrogen receptor, flavonoid, molecular docking
Procedia PDF Downloads 892846 LncRNA NEAT1 Promotes NSCLC Progression through Acting as a ceRNA of miR-377-3p
Authors: Chengcao Sun, Shujun Li, Cuili Yang, Yongyong Xi, Liang Wang, Feng Zhang, Dejia Li
Abstract:
Recently, the long non-coding RNA (lncRNA) NEAT1 has been identified as an oncogenic gene in multiple cancer types and elevated expression of NEAT1 was tightly linked to tumorigenesis and cancer progression. However, the molecular basis for this observation has not been characterized in progression of non-small cell lung cancer (NSCLC). In our studies, we identified NEAT1 was highly expressed in NSCLC patients and was a novel regulator of NSCLC progression. Patients whose tumors had high NEAT1 expression had a shorter overall survival than patients whose tumors had low NEAT1 expression. Further, NEAT1 significantly accelerates NSCLC cell growth and metastasis in vitro and tumor growth in vivo. Additionally, by using bioinformatics study and RNA pull down combined with luciferase reporter assays, we demonstrated that NEAT1 functioned as a competing endogenous RNA (ceRNA) for has-miR-377-3p, antagonized its functions and led to the de-repression of its endogenous targets E2F3, which was a core oncogene in promoting NSCLC progression. Taken together, these observations imply that the NEAT1 modulated the expression of E2F3 gene by acting as a competing endogenous RNA, which may build up the missing link between the regulatory miRNA network and NSCLC progression.Keywords: long non-coding RNA NEAT1, hsa-miRNA-377-3p, E2F3, non-small cell lung cancer, tumorigenesis
Procedia PDF Downloads 3702845 DNA Based Identification of Insect Vectors for Zoonotic Diseases From District Faisalabad, Pakistan
Authors: Zain Ul Abdin, Mirza Aizaz Asim, Rao Sohail Ahmad Khan, Luqman Amrao, Fiaz Hussain, Hasooba Hira, Saqi Kosar Abbas
Abstract:
The success of Integrated vector management programmes mainly depends on the correct identification of insect vector species involved in vector borne diseases. Based on molecular data the most important insect species involved as vectors for Zoonotic diseases in Pakistan were identified. The precise and accurate identification of such type of organism is only possible through molecular based techniques like “DNA barcoding”. Morphological species identification in insects at any life stage, is very challenging, therefore, DNA barcoding was used as a tool for rapid and accurate species identification in a wide variety of taxa across the globe and parallel studies revealed that DNA barcoding data can be effectively used in resolving taxonomic ambiguities, detection of cryptic diversity, invasion biology, description of new species etc. A comprehensive survey was carried out for the collection of insects (both adult and immature stages) in district Faisalabad, Pakistan and their DNA was extracted and mitochondrial cytochrome oxidase subunit I (COI-59) barcode sequences was used for molecular identification of immature and adult life stage.This preliminary research work opens new frontiers for developing sustainable insect vectors management programmes for saving lives of mankind from fatal diseases.Keywords: zoonotic diseases, cytochrome oxidase, and insect vectors, CO1
Procedia PDF Downloads 1692844 Design and Fabrication of Optical Nanobiosensors for Detection of MicroRNAs Involved in Neurodegenerative Diseases
Authors: Mahdi Rahaie
Abstract:
MicroRNAs are a novel class of small RNAs which regulate gene expression by translational repression or degradation of messenger RNAs. To produce sensitive, simple and cost-effective assays for microRNAs, detection is in urgent demand due to important role of these biomolecules in progression of human disease such as Alzheimer’s, Multiple sclerosis, and some other neurodegenerative diseases. Herein, we report several novel, sensitive and specific microRNA nanobiosensors which were designed based on colorimetric and fluorescence detection of nanoparticles and hybridization chain reaction amplification as an enzyme-free amplification. These new strategies eliminate the need for enzymatic reactions, chemical changes, separation processes and sophisticated equipment whereas less limit of detection with most specify are acceptable. The important features of these methods are high sensitivity and specificity to differentiate between perfectly matched, mismatched and non-complementary target microRNAs and also decent response in the real sample analysis with blood plasma. These nanobiosensors can clinically be used not only for the early detection of neuro diseases but also for every sickness related to miRNAs by direct detection of the plasma microRNAs in real clinical samples, without a need for sample preparation, RNA extraction and/or amplification.Keywords: hybridization chain reaction, microRNA, nanobiosensor, neurodegenerative diseases
Procedia PDF Downloads 1532843 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification
Authors: Megha Gupta, Nupur Prakash
Abstract:
Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network (CNN) architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification
Procedia PDF Downloads 2002842 The Lopsided Burden of Non-Communicable Diseases in India: Evidences from the Decade 2004-2014
Authors: Kajori Banerjee, Laxmi Kant Dwivedi
Abstract:
India is a part of the ongoing globalization, contemporary convergence, industrialization and technical advancement that is taking place world-wide. Some of the manifestations of this evolution is rapid demographic, socio-economic, epidemiological and health transition. There has been a considerable increase in non-communicable diseases due to change in lifestyle. This study aims to assess the direction of burden of disease and compare the pressure of infectious diseases against cardio-vascular, endocrine, metabolic and nutritional diseases. The change in prevalence in a ten-year period (2004-2014) is further decomposed to determine the net contribution of various socio-economic and demographic covariates. The present study uses the recent 71st (2014) and 60th (2004) rounds of National Sample Survey. The pressure of infectious diseases against cardio-vascular (CVD), endocrine, metabolic and nutritional (EMN) diseases during 2004-2014 is calculated by Prevalence Rates (PR), Hospitalization Rates (HR) and Case Fatality Rates (CFR). The prevalence of non-communicable diseases are further used as a dependent variable in a logit regression to find the effect of various social, economic and demographic factors on the chances of suffering from the particular disease. Multivariate decomposition technique further assists in determining the net contribution of socio-economic and demographic covariates. This paper upholds evidences of stagnation of the burden of communicable diseases (CD) and rapid increase in the burden of non-communicable diseases (NCD) uniformly for all population sub-groups in India. CFR for CVD has increased drastically in 2004-2014. Logit regression indicates the chances of suffering from CVD and EMN is significantly higher among the urban residents, older ages, females, widowed/ divorced and separated individuals. Decomposition displays ample proof that improvement in quality of life markers like education, urbanization, longevity of life has positively contributed in increasing the NCD prevalence rate. In India’s current epidemiological phase, compression theory of morbidity is in action as a significant rise in the probability of contracting the NCDs over the time period among older ages is observed. Age is found to play a vital contributor in increasing the probability of having CVD and EMN over the study decade 2004-2014 in the nationally representative sample of National Sample Survey.Keywords: cardio-vascular disease, case-fatality rate, communicable diseases, hospitalization rate, multivariate decomposition, non-communicable diseases, prevalence rate
Procedia PDF Downloads 3142841 Diagnosis of Alzheimer Diseases in Early Step Using Support Vector Machine (SVM)
Authors: Amira Ben Rabeh, Faouzi Benzarti, Hamid Amiri, Mouna Bouaziz
Abstract:
Alzheimer is a disease that affects the brain. It causes degeneration of nerve cells (neurons) and in particular cells involved in memory and intellectual functions. Early diagnosis of Alzheimer Diseases (AD) raises ethical questions, since there is, at present, no cure to offer to patients and medicines from therapeutic trials appear to slow the progression of the disease as moderate, accompanying side effects sometimes severe. In this context, analysis of medical images became, for clinical applications, an essential tool because it provides effective assistance both at diagnosis therapeutic follow-up. Computer Assisted Diagnostic systems (CAD) is one of the possible solutions to efficiently manage these images. In our work; we proposed an application to detect Alzheimer’s diseases. For detecting the disease in early stage we used the three sections: frontal to extract the Hippocampus (H), Sagittal to analysis the Corpus Callosum (CC) and axial to work with the variation features of the Cortex(C). Our method of classification is based on Support Vector Machine (SVM). The proposed system yields a 90.66% accuracy in the early diagnosis of the AD.Keywords: Alzheimer Diseases (AD), Computer Assisted Diagnostic(CAD), hippocampus, Corpus Callosum (CC), cortex, Support Vector Machine (SVM)
Procedia PDF Downloads 3852840 Phytochemical and Antibacterial Activity of Chrysanthellum indicum (Linn) Extracts
Authors: I. L. Ibrahim, A. Mann, B. M. Abdullahi
Abstract:
Infectious diseases are prevalent in developing countries and plant extracts are known to contained bioactive compounds that can be used in the management of these diseases. The entire plant of Chrysanthellum indicum (Linn) was air-dried and pulverized into fine powder and then percolated to give ethanol and aqueous extracts. These extracts were phytochemically screened for metabolites and evaluated antibacterial activity against some pathogenic organisms Klebsilla, pneumonia, Bacillus subtilis, and Pseudomonas aeruginosa using agar dilution method. It was found that crude extracts of C. indicum revealed the presence of saponins, tannins, alkaloids, steroidal nucleus, cardiac glycosides, and coumarin while flavonoids and anthraquinones were absent. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the active extract of C. indicum shows that the extract could be a potential source of antibacterial agents.Keywords: antibacterial activity, Chrysanthellum indicum, infectious diseases, phytochemical screening
Procedia PDF Downloads 5262839 Assessment of the Impact of Atmospheric Air, Drinking Water and Socio-Economic Indicators on the Primary Incidence of Children in Altai Krai
Authors: A. P. Pashkov
Abstract:
The number of environmental factors that adversely affect children's health is growing every year; their combination in each territory is different. The contribution of socio-economic factors to the health status of the younger generation is increasing. It is the child’s body that is most sensitive to changes in environmental conditions, responding to this with a deterioration in health. Over the past years, scientists have determined the influence of environmental factors and the incidence of children. Currently, there is a tendency to study regional characteristics of the interaction of a combination of environmental factors with the child's body. The aim of the work was to identify trends in the primary non-infectious morbidity of the children of the Altai Territory as a unique region that combines territories with different levels of environmental quality indicators, as well as to assess the effect of atmospheric air, drinking water and socio-economic indicators on the incidence of children in the region. An unfavorable tendency has been revealed in the region for incidence of such nosological groups as neoplasms, including malignant ones, diseases of the endocrine system, including obesity and thyroid disease, diseases of the circulatory system, digestive diseases, diseases of the genitourinary system, congenital anomalies, and respiratory diseases. Between some groups of diseases revealed a pattern of geographical distribution during mapping and a significant correlation. Some nosologies have a relationship with socio-economic indicators for an integrated assessment: circulatory system diseases, respiratory diseases (direct connection), endocrine system diseases, eating disorders, and metabolic disorders (feedback). The analysis of associations of the incidence of children with average annual concentrations of substances that pollute the air and drinking water showed the existence of reliable correlation in areas of critical and intense degree of environmental quality. This fact confirms that the population living in contaminated areas is subject to the negative influence of environmental factors, which immediately affects the health status of children. The results obtained indicate the need for a detailed assessment of the influence of environmental factors on the incidence of children in the regional aspect, the formation of a database, and the development of automated programs that can predict the incidence in each specific territory. This will increase the effectiveness, including economic of preventive measures.Keywords: incidence of children, regional features, socio-economic factors, environmental factors
Procedia PDF Downloads 1152838 Analysis of Anti-Tuberculosis Immune Response Induced in Lungs by Intranasal Immunization with Mycobacterium indicus pranii
Authors: Ananya Gupta, Sangeeta Bhaskar
Abstract:
Mycobacterium indicus pranii (MIP) is a saprophytic mycobacterium. It is a predecessor of M. avium complex (MAC). Whole genome analysis and growth kinetics studies have placed MIP in between pathogenic and non-pathogenic species. It shares significant antigenic repertoire with M. tuberculosis and have unique immunomodulatory properties. MIP provides better protection than BCG against pulmonary tuberculosis in animal models. Immunization with MIP by aerosol route provides significantly higher protection as compared to immunization by subcutaneous (s.c.) route. However, mechanism behind differential protection has not been studied. In this study, using mice model we have evaluated and compared the M.tb specific immune response in lung compartments (airway lumen / lung interstitium) as well as spleen following MIP immunization via nasal (i.n.) and s.c. route. MIP i.n. vaccination resulted in increased seeding of memory T cells (CD4+ and CD8+ T-cells) in the airway lumen. Frequency of CD4+ T cells expressing Th1 migratory marker (CXCR3) and activation marker (CD69) were also high in airway lumen of MIP i.n. group. Significantly high ex vivo secretion of cytokines- IFN-, IL-12, IL-17 and TNF- from cells of airway luminal spaces provides evidence of antigen-specific lung immune response, besides generating systemic immunity comparable to MIP s.c. group. Analysis of T cell response on per cell basis revealed that antigen specific T-cells of MIP i.n. group were functionally superior as higher percentage of these cells simultaneously secreted IFN-gamma, IL-2 and TNF-alpha cytokines as compared to MIP s.c. group. T-cells secreting more than one of the cytokines simultaneously are believed to have robust effector response and crucial for protection, compared with single cytokine secreting T-cells. Adoptive transfer of airway luminal T-cells from MIP i.n. group into trachea of naive B6 mice revealed that MIP induced CD8 T-cells play crucial role in providing long term protection. Thus the study demonstrates that MIP intranasal vaccination induces M.tb specific memory T-cells in the airway lumen that results in an early and robust recall response against M.tb infection.Keywords: airway lumen, Mycobacterium indicus pranii, Th1 migratory markers, vaccination
Procedia PDF Downloads 1882837 Pregnancy Outcomes in Women With History of COVID-19 in Alexandria, Egypt
Authors: Nermeen Elbeltagy, Helmy abd Elsatar, Sara Hassan, Mohamed Darwish
Abstract:
Introduction: with the inial appearance in Wuhan, China, in December 2019, the coronavirus disease-related respiratory infection (COVID-19) has rapidly spread among people all over the world. The WHO considered it a pandemic in March 2020. The severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks have proved that pregnant females as well as their fetuses are exposed to adverse outcomes, including high rates of intensive care unit (ICU) admission and case fatality. Physiological changes occurring during pregnancy such as the increased transverse diameter of the thoracic cage as well as the elevation of the diaphragm can expose the mother to severe infections because of her decreased tolerance for hypoxia. Furthermore, vasodilation and changes in lung capacity can cause mucosal edema and an increase in upper respiratory tract secretions. In addition, the increased susceptibility to infection is enhanced by changes in cellmediated immunity. Aim of the work: to study the effect of COVID-19 on pregnant females admitted to El-Shatby Maternity University Hospital regarding maternal antepartum, intrapartum and postpartum adverse effects on the mothers and their neonates. Method: A retrospective cohort study was done between October 2020 and October 2022. Maternal characteristics and associated health conditions of COVID-19 positive parents were investigated. Also, the severity of their conditions and me of infection (first or second or third trimester)were explored. Cases were diagnosed based on presence of symptoms suggestive of COVID-19, laboratory tests (other than PCR) and radiological findings.all cases were confirmed by positive PCR test results. Results: The most common adverse maternal outcomes were pre-term labor (11.6%) followed by premature rupture of membranes (5.7%), post-partum hemorrhage (5.4%), preeclampsia (5.0%) and placental abrupon (4.3%). One sixth of the neonates of the studied paents were admied to NICUs and 6.5% of them had respiratory distress with no neonatal deaths. The majority of neonates (85.4%) had a birth weight of 2500- 4000g (normal range). Most of the neonates (77.9%) had an APGAR score of equal or more than 7 in 5 minutes. Conclusion: the most common comorbidity that might increase the incidence of COVID-19 before pregnancy were diabetes, cardiac disorders/ chronic hypertension and chronic obstructive lung diseases (non-asthma). During pregnancy, anemia followed by gestational diabetes and pre-eclampsia/gestational hypertension were the most prevalent comorbidity. So, severity of infection can be reduced by good antenatal care.Keywords: COVID-19, pregnancy outcome, complicated pregnancy., COVID in Egypt
Procedia PDF Downloads 792836 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach
Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar
Abstract:
The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group
Procedia PDF Downloads 1162835 Behavioral and Cultural Risk Factor of Cardiovascular Disease in India: Evidence from SAGE-Study
Authors: Sunita Patel
Abstract:
Cardiovascular diseases are the leading cause of morbidity as well as mortality in India. Objective of this study is to examine CVDs prevalence and identify their behavioral and cultural risk factors with the help of SAGE-2007 data conducted on 6th states in India. Findings reveal that 18.3% of people diagnosed with CVDs in India. Higher disease occurs in an increasing rate between ages of 30-39 having OR 2.45 (CI: 1.66-3.63) and 70+ age OR 7.45 (CI: 4.82-11.49) times higher compare to 18-29 age group respectively. Wealth quintile higher CVD occurs as 3rd in 60% (CI: 1.16-2.21) and in richest 5th quintile 58% (CI: 1.13-2.21) contrast to lowest quintile. Relative risk depicted that 22.4% in moderate and 44% in vigorous activity have less chance of diseases compare to who performed no work and those who consumed alcohol. Results reveal that policy prospect should be recommended and that it would be beneficial for awareness of people and their future.Keywords: behavioral risk, cultural risk, cardio-vascular diseases, wealth quintile
Procedia PDF Downloads 4012834 Investigating the Factors Affecting Generalization of Deep Learning Models for Plant Disease Detection
Authors: Praveen S. Muthukumarana, Achala C. Aponso
Abstract:
A large percentage of global crop harvest is lost due to crop diseases. Timely identification and treatment of crop diseases is difficult in many developing nations due to insufficient trained professionals in the field of agriculture. Many crop diseases can be accurately diagnosed by visual symptoms. In the past decade, deep learning has been successfully utilized in domains such as healthcare but adoption in agriculture for plant disease detection is rare. The literature shows that models trained with popular datasets such as PlantVillage does not generalize well on real world images. This paper attempts to find out how to make plant disease identification models that generalize well with real world images.Keywords: agriculture, convolutional neural network, deep learning, plant disease classification, plant disease detection, plant disease diagnosis
Procedia PDF Downloads 146