Search results for: adsorption and regeneration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1417

Search results for: adsorption and regeneration

1177 Adsorption of Malachite Green Dye onto Industrial Waste Materials: Full Factorial Design

Authors: Semra Çoruh, Yusuf Tibet

Abstract:

Dyes are widely used in industries such as textiles, paper, paints, leather, rubber, plastics, cosmetics, food, and drug etc, to color their products. Due to their chemical structures, dyes are resistant to fading on exposure to light, water and many chemicals and, therefore, are difficult to be decolorized once released into the aquatic environment. Many of the organic dyes are hazardous and may affect aquatic life and even the food chain. This study deals with the adsorption of malachite green dye onto fly ash and red mud. The effects of experimental factors (adsorbent dosage, initial concentration, pH and temperature) on the adsorption process were examined by using 24 full factorial design. The results were statistically analyzed by using the student’s t-test, analysis of variance (ANOVA) and an F-test to define important experimental factors and their levels. A regression model that considers the significant main and interaction effects was suggested. The results showed that initial dye concentration an pH is the most significant factor that affects the removal of malachite green.

Keywords: malachite green, adsorption, red mud, fly ash, full factorial design

Procedia PDF Downloads 473
1176 Application of Bioreactors in Regenerative Dentistry: Literature Review

Authors: Neeraj Malhotra

Abstract:

Background: Bioreactors in tissue engineering are used as devices that apply mechanical means to influence biological processes. They are commonly employed for stem cell culturing, growth and expansion as well as in 3D tissue culture. Contemporarily there use is well established and is tested extensively in the medical sciences, for tissue-regeneration and tissue engineering of organs like bone, cartilage, blood vessels, skin grafts, cardiac muscle etc. Methodology: Literature search, both electronic and hand search, was done using the following MeSH and keywords: bioreactors, bioreactors and dentistry, bioreactors & dental tissue engineering, bioreactors and regenerative dentistry. Articles published only in English language were included for review. Results: Bioreactors like, spinner flask-, rotating wall-, flow perfusion-, and micro-bioreactors and in-vivo bioreactor have been employed and tested for the regeneration of dental and like-tissues. These include gingival tissue, periodontal ligament, alveolar bone, mucosa, cementum and blood vessels. Based on their working dynamics they can be customized in future for regeneration of pulp tissue and whole tooth regeneration. Apart from this, they have been successfully used in testing the clinical efficacy and biological safety of dental biomaterials. Conclusion: Bioreactors have potential use in testing dental biomaterials and tissue engineering approaches aimed at regenerative dentistry.

Keywords: bioreactors, biological process, mechanical stimulation, regenerative dentistry, stem cells

Procedia PDF Downloads 207
1175 Magnetic Biomaterials for Removing Organic Pollutants from Wastewater

Authors: L. Obeid, A. Bee, D. Talbot, S. Abramson, M. Welschbillig

Abstract:

The adsorption process is one of the most efficient methods to remove pollutants from wastewater provided that suitable adsorbents are used. In order to produce environmentally safe adsorbents, natural polymers have received increasing attention in recent years. Thus, alginate and chitosane are extensively used as inexpensive, non-toxic and efficient biosorbents. Alginate is an anionic polysaccharide extracted from brown seaweeds. Chitosan is an amino-polysaccharide; this cationic polymer is obtained by deacetylation of chitin the major constituent of crustaceans. Furthermore, it has been shown that the encapsulation of magnetic materials in alginate and chitosan beads facilitates their recovery from wastewater after the adsorption step, by the use of an external magnetic field gradient, obtained with a magnet or an electromagnet. In the present work, we have studied the adsorption affinity of magnetic alginate beads and magnetic chitosan beads (called magsorbents) for methyl orange (MO) (an anionic dye), methylene blue (MB) (a cationic dye) and p-nitrophenol (PNP) (a hydrophobic pollutant). The effect of different parameters (pH solution, contact time, pollutant initial concentration…) on the adsorption of pollutant on the magnetic beads was investigated. The adsorption of anionic and cationic pollutants is mainly due to electrostatic interactions. Consequently methyl orange is highly adsorbed by chitosan beads in acidic medium and methylene blue by alginate beads in basic medium. In the case of a hydrophobic pollutant, which is weakly adsorbed, we have shown that the adsorption is enhanced by adding a surfactant. Cetylpyridinium chloride (CPC), a cationic surfactant, was used to increase the adsorption of PNP by magnetic alginate beads. Adsorption of CPC by alginate beads occurs through two mechanisms: (i) electrostatic attractions between cationic head groups of CPC and negative carboxylate functions of alginate; (ii) interaction between the hydrocarbon chains of CPC. The hydrophobic pollutant is adsolubilized within the surface aggregated structures of surfactant. Figure c shows that PNP can reach up to 95% of adsorption in presence of CPC. At highest CPC concentrations, desorption occurs due to the formation of micelles in the solution. Our magsorbents appear to efficiently remove ionic and hydrophobic pollutants and we hope that this fundamental research will be helpful for the future development of magnetically assisted processes in water treatment plants.

Keywords: adsorption, alginate, chitosan, magsorbent, magnetic, organic pollutant

Procedia PDF Downloads 255
1174 A Cheap Mesoporous Silica from Fly Ash as an Adsorbent for Sulfate in Water

Authors: Ximena Castillo, Jaime Pizarro

Abstract:

This research describes the development of a very cheap mesoporous silica material similar to hexagonal mesoporous silica (HMS) and using a silicate extract as precursor. This precursor is obtained from cheap fly ash by an easy calcination process at 850 °C and a green extraction with water. The obtained mesoporous fly ash material had a surface area of 282 m2 g-1 and a pore size of 5.7 nm. It was functionalized with ethylene diamino moieties via the well-known SAMMS method, followed by a DRIFT analysis that clearly showed the successful functionalization. An excellent adsorbent was obtained for the adsorption of sulfate anions by the solid’s modification with copper forming a copper-ethylenediamine complex. The adsorption of sulfates was studied in a batch system ( experimental conditions: pH=8.0; 5 min). The kinetics data were adjusted according to a pseudo-second order model with a high coefficient of linear regression at different initial concentrations. The adsorption isotherm that best fitted the experimental data was the Freundlich model. The maximum sulfate adsorption capacity of this very cheap fly ash based adsorbent was 146.1 mg g-1, 3 times greater than the values reported in literature and commercial adsorbent materials.

Keywords: fly ash, mesoporous materials, SAMMS, sulfate

Procedia PDF Downloads 173
1173 Investigation of Modified Microporous Materials for Environmental Depollution

Authors: Souhila Bendenia, Chahrazed Bendenia, Hanaa Merad-Dib, Sarra Merabet, Samia Moulebhar, Sid Ahmed Khantar

Abstract:

Today, environmental pollution is a major concernworldwide, threateninghumanhealth. Various techniques have been used, includingdegradation, filtration, advancedoxidationprocesses, ion exchange, membrane processes, and adsorption. The latter is one of the mostsuitablemethods, usinghighly efficient materials. In this study, NaX zeolite was modified with Cu or Ni at various rates. Following ion exchange, the samples were characterized by XRD, BET and SEM/EDX. After characterization, the exchanged zeolites were used for adsorption of various pollutants as CO2. Different thermodynamic parameters were studied such as Qst. XRD results show that the most intense peaks characteristic of 13X persist after the exchange reaction for all samples. The SEM images of our samples have uniform and regular crystal shapes. The results show that ion exhange with Cu or Ni affect the textural properties of X zeolites and prove that the exchange zeolites can be used as an adsorbent for depollution.

Keywords: X zeolites (NaX), ion exchange, characterization, adsorption

Procedia PDF Downloads 84
1172 Removal of Basic Yellow 28 Dye from Aqueous Solutions Using Plastic Wastes

Authors: Nadjib Dahdouh, Samira Amokrane, Elhadj Mekatel, Djamel Nibou

Abstract:

The removal of Basic Yellow 28 (BY28) from aqueous solutions by plastic wastes PMMA was investigated. The characteristics of plastic wastes PMMA were determined by SEM, FTIR and chemical composition analysis. The effects of solution pH, initial Basic Yellow 28 (BY28) concentration C, solid/liquid ratio R, and temperature T were studied in batch experiments. The Freundlich and the Langmuir models have been applied to the adsorption process, and it was found that the equilibrium followed well Langmuir adsorption isotherm. A comparison of kinetic models applied to the adsorption of BY28 on the PMMA was evaluated for the pseudo-first-order and the pseudo-second-order kinetic models. It was found that used models were correlated with the experimental data. Intraparticle diffusion model was also used in these experiments. The thermodynamic parameters namely the enthalpy ∆H°, entropy ∆S° and free energy ∆G° of adsorption of BY28 on PMMA were determined. From the obtained results, the negative values of Gibbs free energy ∆G° indicated the spontaneity of the adsorption of BY28 by PMMA. The negative values of ∆H° revealed the exothermic nature of the process and the negative values of ∆S° suggest the stability of BY28 on the surface of SW PMMA.

Keywords: removal, Waste PMMA, BY28 dye, equilibrium, kinetic study, thermodynamic study

Procedia PDF Downloads 151
1171 Residential High-Rises and Meaningful Places: Missing Actions in the Isle of Dogs Regeneration

Authors: Elena Kalcheva, Ahmad Taki, Yuri Hadi

Abstract:

Urban regeneration often includes residential high-rises as a way of optimum use of land. However, high-rises are in many cases connected to placelessness, this is not due to some intrinsic characteristic of the typology, but more to a failure to provide meaningful places in connection to them. The reason to study the Isle of the Dogs regeneration is the successful process that led to vibrant area with strong identity and social sustainability. Therefore, the purpose of this research is to identify the gaps into the sound strategy for the development of the area and in its implementation which will make the place more sustainable. The paper addresses four research questions: are the residential high-rises supporting a proper physical form; is there deployed properly scaled mix of land uses and functions in connection with residential high-rises; are there possible quality activities in quality places near the residential high-rises; and is there a strong sense of place created with the residential high-rise buildings and their surroundings. The methodology relies on observational survey of the researched area together with structured questions, to evaluate the external qualities of the residential high-rises and their surroundings. Visual information can help identify the mistakes and the omissions of the provided project examples. It can provide insight on how can be improved imageability, legibility and human scale. In this connection, the paper argues that although the quality of the architecture of the high-rises is superb, there is a failure to create meaningful, high quality public realm in connection with them. As such, it does not function as well as the designers intended to do: the functional quality of the public realm is quite low. The implications of the study suggest that actions need to take place in order to improve and foster further regeneration of the area.

Keywords: high-rises, isle of the dogs, public realm, regeneration

Procedia PDF Downloads 279
1170 Adsorbent Removal of Oil Spills Using Bentonite Clay

Authors: Saad Mohamed Elsaid Abdelrahman

Abstract:

The adsorption method is one of the best modern techniques used in removing pollutants, especially organic hydrocarbon compounds, from polluted water. Through this research, bentonite clay can be used to remove organic hydrocarbon compounds, such as heptane and octane, resulting from oil spills in seawater. Bentonite clay can be obtained from the Kholayaz area, located north of Jeddah, at a distance of 80 km. Chemical analysis shows that bentonite clay consists of a mixture of silica, alumina and oxides of some elements. Bentonite clay can be activated in order to raise its adsorption efficiency and to make it suitable for removing pollutants using an ionic organic solvent. It is necessary to study some of the factors that could be in the efficiency of bentonite clay in removing oily organic compounds, such as the time of contact of the clay with heptane and octane solutions, pH and temperature, in order to reach the highest adsorption capacity of bentonite clay. The temperature can be a few degrees Celsius higher. The adsorption capacity of the clay decreases when the temperature is raised more than 4°C to reach its lowest value at the temperature of 50°C. The results show that the friction time of 30 minutes and the pH of 6.8 is the best conditions to obtain the highest adsorption capacity of the clay, 467 mg in the case of heptane and 385 mg in the case of octane compound. Experiments conducted on bentonite clay were encouraging to select it to remove heavy molecular weight pollutants such as petroleum compounds under study.

Keywords: adsorbent, bentonite clay, oil spills, removal

Procedia PDF Downloads 86
1169 Indirect Regeneration and Somatic Embryogenesis from Leaf and Stem Explants of Crassula ovata 42-45 (Mill.) Druce: An Ornamental Medicinal Plant

Authors: A. B. A. Ahmed, D. I. Amar, R. M. Taha

Abstract:

This research aims to investigate callus induction, somatic embryogenesis and indirect plant regeneration of Crassula ovata (Mill.) Druce – the famous ornamental plant. Experiment no.1: Callus induction was obtained from leaf and stem explants on Murashige and Skoog (MS) medium supplemented with various plant growth regulators (PGRs). Effects of different PGRs, plant regeneration and subsequent plantlet conversion were also assessed. Indirect plant regeneration was achieved from the callus of stem explants by the addition of 1.5 mg/L Kinetin (KN) alone. Best shoot induction was achieved (6.5 shoots/per explant) after 60 days. For successful rooting, regenerated plantlets were sub-cultured on the same MS media supplemented with 1.5 mg/L KN alone. The rooted plantlets were acclimatized and the survival rate was 90%. Experiment no.2: Results revealed that 0.5 mg/L 2,4-D alone and in combination with 1.0 mg/L 6-Benzyladenine (BA) gave 89.8% callus from the stem explants as compared to leaf explants. Callus proliferation and somatic embryo formation were also evaluated by ‘Double Staining Method’ and different stages of somatic embryogenesis were revealed by scanning electron microscope. Full Strength MS medium produced the highest number (49.6%) of cotyledonary stage somatic embryos (SEs). Mature cotyledonary stage SEs developed into plantlets after 12 weeks of culture. Well-rooted plantlets were successfully acclimatized at the survival rate of 85%. Indirectly regenerated plants did not show any detectable variation in morphological and growth characteristics when compared with the donor plant.

Keywords: callus induction, indirect plant regeneration, double staining, somatic embryogenesis, Crassula ovata

Procedia PDF Downloads 381
1168 Comparison of β-Cell Regenerative Potentials of Selected Sri Lankan Medicinal Plant Extracts in Alloxan-Induced Diabetic Rats

Authors: A. P. Attanayake, K. A. P. W. Jayatilaka, L. K. B. Mudduwa, C. Pathirana

Abstract:

Triggering of β-cell regeneration is a recognized therapeutic strategy for the treatment of type 1 diabetes mellitus. One such approach to foster restoration and regeneration of β-cells is from exogenous natural extracts. The aim of the present study was to investigate and compare the β-cell regenerative potentials of the extracts of Spondias pinnata (Linn. f.) Kurz, Coccinia grandis (L.) Voigt and Gmelina arborea Roxb. in alloxan induced diabetic rats. Wistar rats were divided in to six groups (n=6); healthy untreated rats, alloxan induced diabetic untreated rats (150 mg/kg, ip), diabetic rats receiving the extracts of S. pinnata (1.0 g/kg), C. grandis (0.75 g/kg), G. arobrea (1.00 g/kg) and diabetic rats receiving glibenclamide (0.5 mg/kg) for 30 days. The assessment of selected biochemical parameters, histopathology and immunohistochemistry in the pancreatic tissue were done on the 30th day. The reduction in the percentage of HbA1C was in the decreasing order of C. grandis (35%), G. arborea (31%) and S. pinnata (29%) in alloxan induced diabetic rats (p< 0.05). The concentration of serum fructosamine, insulin and C-peptide were decreased significantly in a decreasing order of C. grandis (30%, 72%, 51%), G. arborea (25%, 44%, 44%) and S. pinnata (27%, 34%, 24%) in alloxan induced diabetic rats (p < 0.05). The extent of β-cell regeneration was in the decreasing order of C. grandis, G. arborea, S. pinnata reflected through the increased percentage of insulin secreting β-cells in alloxan induced diabetic rats. The extract of C. grandis produced the highest degree of β-cell regeneration demonstrated through an increase in the number of islets and percentage of the insulin secreting β-cells (75%) in the pancreas of diabetic rats (p < 0.05). Further the C. grandis extract produced a significant increase in mean profile diameter in small (118%), average (10%), and large (13%) islets as compared with diabetic control rats respectively. However, statistically significant increase in the islet profile diameter was shown only in average (2%) and large (5%) islets in the G. arborea extract treated rats and large islets (5%) in S. pinnata extract treated diabetic rats (p < 0.05). The β-cell regeneration potency was in the decreasing order of C. grandis (0.75 g/kg), G. arborea (1.00 g/kg) and S. pinnata (1.00 g/kg) in alloxan induced diabetic rats. The three plant extracts may be useful as natural agents of triggering the β-cell regeneration in the management of type 1 diabetes mellitus.

Keywords: alloxan-induced diabetic rats, β-cell regeneration, histopathology, immunohistochemistry

Procedia PDF Downloads 240
1167 Development of 3D Printed, Conductive, Biodegradable Nerve Conduits for Neural Regeneration

Authors: Wei-Chia Huang, Jane Wang

Abstract:

Damage to nerves is considered one of the most irreversible injuries. The regeneration of nerves has always been an important topic in regenerative medicine. In general, damage to human tissue will naturally repair overtime. However, when the nerves are damaged, healed flesh wound cannot guarantee full restoration to its original function, as truncated nerves are often irreversible. Therefore, the development of treatment methods to successfully guide and accelerate the regeneration of nerves has been highly sought after. In order to induce nerve tissue growth, nerve conduits are commonly used to help reconnect broken nerve bundles to provide protection to the location of the fracture while guiding the growth of the nerve bundles. To prevent the protected tissue from becoming necrotic and to ensure the growth rate, the conduits used are often modified with microstructures or blended with neuron growth factors that may facilitate nerve regeneration. Electrical stimulation is another attempted treatment for medical rehabilitation. With appropriate range of voltages and stimulation frequencies, it has been demonstrated to promote cell proliferation and migration. Biodegradability are critical for medical devices like nerve conduits, while conductive polymers pose great potential toward the differentiation and growth of nerve cells. In this work, biodegradability and conductivity were combined into a novel biodegradable, photocurable, conductive polymer composite materials by embedding conductive nanoparticles in poly(glycerol sebacate) acrylate (PGSA) and 3D-printed into nerve conduits. Rat pheochromocytoma cells and rat neuronal Schwann cells were chosen for the in vitro tests of the conduits and had demonstrate selective growth upon culture in the conductive conduits with built-in microchannels and electrical stimulation.

Keywords: biodegradable polymer, 3d printing, neural regeneration, electrical stimulation

Procedia PDF Downloads 103
1166 An Experience on Urban Regeneration: A Case Study of Isfahan, Iran

Authors: Sedigheh Kalantari, Yaping Huang

Abstract:

The historic area of cities has experienced different phases of transformation. The beginning of the twentieth century, modernism, and modern development changed the integrated pattern of change and the historic urban quarter were regarded as subject comprehensive redevelopment. In this respect, historic area of Iranian cities have not been safe from these changes and affected by widespread evolutions; in particular after Islamic Revolution eras (1978) cities have traveled through an evolution in conservation and development policies and practices. Moreover, moving toward a specific approach and specific attention paid to the regeneration of the historical urban centers in Iran has started since the 1990s. This reveals the great importance attached to the historical centers of cities. This paper is an approach to examine an experience on urban regeneration in Iran through a case study. The study relies on multiple source of evidence. The use of multiple sources of evidence can help substantially improve the validity and reliability of the research. The empirical core of this research, therefore, rests in the process of urban revitalization of the old square in Isfahan. Isfahan is one of the oldest city of Persia. The historic area of city encompasses a large number of valuable buildings and monuments. One of the cultural and historical region of Isfahan is Atiq Square (Old Square). It has been the backbone node of the city that in course of time has being ignored more and more and transformed negatively. The complex had suffered from insufficiencies especially with respect to social and spatial aspects. Therefore, reorganization of that complex as the main and most important urban center of Isfahan became an inevitable issue; So this paper except from reminding the value of such historic-cultural heritage and review of its transformation, focused on an experience of urban revitalization project in this heritage site. The outcome of this research shows that situated in different socio-economic political and historical contexts and in face of different urban regeneration issues, Iran have displayed significant differences in the way of urban regeneration.

Keywords: historic area, Iran, urban regeneration, revitalization

Procedia PDF Downloads 256
1165 A Framework for Railway Passenger Station Site Selection Using Transit-Oriented Development and Urban Regeneration Approaches

Authors: M. Taghavi Zavareh, H. Saremi

Abstract:

Railway transportation is one of the types of transportation systems which, due to the advantages such as the ability to transport a large number of passengers, environmental protection, low energy consumption, and contribution to tourism, has importance. The existence of suitable and accessible stations is one of the requirements that leads to better performance and plays a significant role in the economic, social, political, and cultural development of urban areas. This paper aims to propose a framework for locating railway passenger stations. This research used descriptive-analytical methods and library tools to answer which definitions and theoretical approaches are suitable for the location of railway passenger stations. The results showed that theoretical approaches such as Transit-Oriented Development and Urban Regeneration are of the utmost importance theoretical bases in the field of research. Moreover, we studied three stations in Iran to find out about real trends and criteria in this research. This study also proposed four major criteria including accessibility, development, rail related and economics, and environmental harmony. Ultimately with an emphasis on the proposed criteria, the study concludes that the combination of Transit-Oriented Development and Urban Regeneration is the most suitable framework to locate railway passenger stations.

Keywords: railway passenger station, railway station, site selection, transit-oriented development, urban regeneration

Procedia PDF Downloads 267
1164 Synthesis and Applications of Biosorbent from Barley Husk for Adsorption of Heavy Metals and Bacteria from Water

Authors: Sudarshan Kalsulkar, Sunil S. Bhagwat

Abstract:

Biosorption is a physiochemical process that occurs naturally in certain biomass which allows it to passively concentrate and bind contaminants onto its cellular structure. Activated carbons (AC) are one such efficient biosorbents made by utilizing lignocellulosic materials from agricultural waste. Steam activated carbon (AC) was synthesized from Barley husk. Its synthesis parameters of time and temperature were optimized. Its physico-chemical properties like density, surface area, pore volume, Methylene blue and Iodine values were characterized. BET surface area was found to be 42 m²/g. Batch Adsorption tests were carried out to determine the maximum adsorption capacity (qmax) for various metal ions. Cd+2 48.74 mg/g, Pb+2 19.28 mg/g, Hg+2 39.1mg/g were the respective qmax values. pH and time were optimized for adsorption of each ion. Column Adsorptions were carried for each to obtain breakthrough data. Microbial adsorption was carried using E. coli K12 strain. 78% reduction in cell count was observed at operating conditions. Thus the synthesized Barley husk AC can be an economically feasible replacement for commercially available AC prepared from the costlier coconut shells. Breweries and malting industries where barley husk is a primary waste generated on a large scale can be a good source for bulk raw material.

Keywords: activated carbon, Barley husk, biosorption, decontamination, heavy metal removal, water treatment

Procedia PDF Downloads 413
1163 The Exploration on the Mode of Renovation and Reconstruction of Old Factory Buildings for Cultural and Creative Industrial Parks

Authors: Yu Pan, Jing Wu, Lingwan Shen

Abstract:

Since the reform and opening, China's cities have developed rapidly, and the industrial structure has been constantly adjusted and optimized. A large number of industrial plants have lost their production functions and become idle buildings. The renovation projects for the old factory buildings are important parts of the urban renewal, and most of them are the cultural and creative industrial park projects. In this paper, a statistical analysis of renovation projects of the representative cultural and creative industrial parks in recent years was conducted. According to the user's spatial experience satisfaction survey, the physical and spatial factors affecting the space regeneration of the old factory were concluded. Thus the relationship between space regeneration and material, structure, internal and external space design has been derived. Finally, we summarized the general spatial processing model in which the contradiction between ‘new’ and ‘old’ can be grafted and transformed.

Keywords: renovation of factory buildings, urban renewal, the cultural and creative industrial park, space regeneration, reconstruction mode

Procedia PDF Downloads 146
1162 Boosting Profits and Enhancement of Environment through Adsorption of Methane during Upstream Processes

Authors: Sudipt Agarwal, Siddharth Verma, S. M. Iqbal, Hitik Kalra

Abstract:

Natural gas as a fuel has created wonders, but on the contrary, the ill-effects of methane have been a great worry for professionals. The largest source of methane emission is the oil and gas industry among all industries. Methane depletes groundwater and being a greenhouse gas has devastating effects on the atmosphere too. Methane remains for a decade or two in the atmosphere and later breaks into carbon dioxide and thus damages it immensely, as it warms up the atmosphere 72 times more than carbon dioxide in those two decades and keeps on harming after breaking into carbon dioxide afterward. The property of a fluid to adhere to the surface of a solid, better known as adsorption, can be a great boon to minimize the hindrance caused by methane. Adsorption of methane during upstream processes can save the groundwater and atmospheric depletion around the site which can be hugely lucrative to earn profits which are reduced due to environmental degradation leading to project cancellation. The paper would deal with reasons why casing and cementing are not able to prevent leakage and would suggest methods to adsorb methane during upstream processes with mathematical explanation using volumetric analysis of adsorption of methane on the surface of activated carbon doped with copper oxides (which increases the absorption by 54%). The paper would explain in detail (through a cost estimation) how the proposed idea can be hugely beneficial not only to environment but also to the profits earned.

Keywords: adsorption, casing, cementing, cost estimation, volumetric analysis

Procedia PDF Downloads 188
1161 Metabolic Syndrome and Its Effects on Cartilage Degeneration vs Regeneration: A Pilot Study Using Osteoarthritis Biomarkers

Authors: Neena Kanojia, R. K. Kanojia

Abstract:

Background: Osteoarthritis OA of the knee is one of the leading causes of disability characterized by degeneration of hyaline cartilage combined with reparative processes. Its strong association with metabolic syndrome is postulated to be due to both mechanical and biochemical factors. Our study aims to study differential effect of metabolic risk factors on cartilage degeneration and regeneration at biomarker level. Design: After screening 281 patients presenting with knee pain, 41 patients who met the selection criteria were included and were divided into metabolic MetS OA and non-metabolic Non-MetS OA phenotypes using National Cholesterol Education Programme-Adult Treatment Panel-III NCEP ATP III criteria for metabolic syndrome. Serum Cartilage Oligomeric Matrix Protein COMP and Procollagen type IIA N terminal Propeptide PIIANP levels were used as tools to assess cartilage degeneration and regeneration, respectively. Results: 22 among 41 patients 53.66% had metabolic syndrome. Covariates like age, gender, Kellgren Lawrence KL grades were comparable in both groups. MetS OA group showed significant increase in serum COMP levels (p 0.03 with no significant effect on serum PIIANP levels (p 0.46. Hypertriglyceridemia showed independent association with both cartilage anabolism (p 0.03 and catabolism (p 0.03. Conclusion: Metabolic syndrome, though has no effect on cartilage regeneration tends to shift cartilage homeostasis towards degeneration with hypertriglyceridemia showing significant independent effect on cartilage metabolism.

Keywords: metabolic, syndrome, cartilage, degernation

Procedia PDF Downloads 63
1160 Electromagnetic Tuned Mass Damper Approach for Regenerative Suspension

Authors: S. Kopylov, C. Z. Bo

Abstract:

This study is aimed at exploring the possibility of energy recovery through the suppression of vibrations. The article describes design of electromagnetic dynamic damper. The magnetic part of the device performs the function of a tuned mass damper, thereby providing both energy regeneration and damping properties to the protected mass. According to the theory of tuned mass damper, equations of mathematical models were obtained. Then, under given properties of current system, amplitude frequency response was investigated. Therefore, main ideas and methods for further research were defined.

Keywords: electromagnetic damper, oscillations with two degrees of freedom, regeneration systems, tuned mass damper

Procedia PDF Downloads 206
1159 Selective Guest Accommodation in Zn(II) Bimetallic: Organic Coordination Frameworks

Authors: Bukunola K. Oguntade, Gareth M. Watkins

Abstract:

The synthesis and characterization of metal-organic frameworks (MOFs) is an area of coordination chemistry which has grown rapidly in recent years. Worldwide there has been growing concerns about future energy supplies, and its environmental impacts. A good number of MOFs have been tested for the adsorption of small molecules in the vapour phase. An important issue for potential applications of MOFs for gas adsorption and storage materials is the stability of their structure upon sorption. Therefore, study on the thermal stability of MOFs upon adsorption is important. The incorporation of two or more transition metals in a coordination polymer is a current challenge for designed synthesis. This work focused on the synthesis, characterization and small molecule adsorption properties of three microporous (one zinc monometal and two bimetallics) complexes involving Cu(II), Zn(II) and 1,2,4,5-benzenetetracarboxylic acid using the ambient precipitation and solvothermal method. The complexes were characterized by elemental analysis, Infrared spectroscopy, Scanning Electron microscopy, Thermogravimetry analysis and X-ray Powder diffraction. The N2-adsorption Isotherm showed the complexes to be of TYPE III in reference to IUPAC classification, with very small pores only capable for small molecule sorption. All the synthesized compounds were observed to contain water as guest. Investigations of their inclusion properties for small molecules in the vapour phase showed water and methanol as the only possible inclusion candidates with 10.25H2O in the monometal complex [Zn4(H2B4C)2.5(OH)3(H2O)]·10H2O but not reusable after a complete structural collapse. The ambient precipitation bimetallic; [(CuZnB4C(H2O)2]·5H2O, was found to be reusable and recoverable from structure collapse after adsorption of 5.75H2O. In addition, Solvo-[CuZnB4C(H2O)2.5]·2H2O obtained from solvothermal method show two cycles of rehydration with 1.75H2O and 0.75MeOH inclusion while structure remains unaltered upon dehydration and adsorption.

Keywords: adsorption, characterization, copper, metal -organic frameworks, zinc

Procedia PDF Downloads 131
1158 Molecular Simulation of NO, NH3 Adsorption in MFI and H-ZSM5

Authors: Z. Jamalzadeh, A. Niaei, H. Erfannia, S. G. Hosseini, A. S. Razmgir

Abstract:

Due to developing the industries, the emission of pollutants such as NOx, SOx, and CO2 are rapidly increased. Generally, NOx is attributed to the mono nitrogen oxides of NO and NO2 that is one of the most important atmospheric contaminants. Hence, controlling the emission of nitrogen oxides is urgent environmentally. Selective Catalytic Reduction of NOx is one of the most common techniques for NOx removal in which Zeolites have wide application due to their high performance. In zeolitic processes, the catalytic reaction occurs mostly in the pores. Therefore, investigation the adsorption phenomena of the molecules in order to gain an insight and understand the catalytic cycle is of important. Hence, in current study, molecular simulations is applied for studying the adsorption phenomena in nanocatalysts applied for SCR of NOx process. The effect of cation addition to the support in the catalysts’ behavior through adsorption step was explored by Mont Carlo (MC). Simulation time of 1 Ns accompanying 1 fs time step, COMPASS27 Force Field and the cut off radios of 12.5 Ȧ was applied for performed runs. It was observed that the adsorption capacity increases in the presence of cations. The sorption isotherms demonstrated the behavior of type I isotherm categories and sorption capacity diminished with increase in temperature whereas an increase was observed at high pressures. Besides, NO sorption showed higher sorption capacity than NH3 in H–ZSM5. In this respect, the Energy distributions signified that the molecules could adsorb in just one sorption site at the catalyst and the sorption energy of NO was stronger than the NH3 in H-ZSM5. Furthermore, the isosteric heat of sorption data showed nearly same values for the molecules; however, it indicated stronger interactions of NO molecules with H-ZSM5 Zeolite compared to the isosteric heat of NH3 which was low in value.

Keywords: Monte Carlo simulation, adsorption, NOx, ZSM5

Procedia PDF Downloads 376
1157 Removal of Metal Ions (II) Using a Synthetic Bis(2-Pyridylmethyl)Amino-Chloroacetyl Chloride- Ethylenediamine-Grafted Graphene Oxide Sheets

Authors: Laroussi Chaabane, Emmanuel Beyou, Amel El Ghali, Mohammed Hassen V. Baouab

Abstract:

The functionalization of graphene oxide sheets by ethylenediamine (EDA) was accomplished followed by the grafting of bis(2-pyridylmethyl)amino group (BPED) onto the activated graphene oxide sheets in the presence of chloroacetylchloride (CAC) produced the martial [(Go-EDA-CAC)-BPED]. The physic-chemical properties of [(Go-EDA-CAC)-BPED] composites were investigated by Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPs), Scanning electron microscopy (SEM) and Thermogravimetric analysis (TGA). Moreover, [(Go-EDA-CAC)-BPED] was used for removing M(II) (where M=Cu, Ni and Co) ions from aqueous solutions using a batch process. The effect of pH, contact time and temperature were investigated. More importantly, the [(Go-EDA-CAC)-BPED] adsorbent exhibited remarkable performance in capturing heavy metal ions from water. The maximum adsorption capacity values of Cu(II), Ni(II) and Co(II) on the [(GO-EDA-CAC)-BPED] at the pH of 7 is 3.05 mmol.g⁻¹, 3.25 mmol.g⁻¹ and 3.05 mmol.g⁻¹ respectively. To examine the underlying mechanism of the adsorption process, pseudo-first, pseudo-second-order, and intraparticle diffusion models were fitted to experimental kinetic data. Results showed that the pseudo-second-order equation was appropriate to describe the three metal ions adsorption by [(Go-EDA-CAC)-BPED]. Adsorption data were further analyzed by the Langmuir, Freundlich, and Jossensadsorption approaches. Additionally, the adsorption properties of the [(Go-EDA-CAC)-BPED], their reusability (more than 10 cycles) and durability in the aqueous solutions open the path to removal of metal ions (Cu(II), Ni(II) and Co(II) from water solution. Based on the results obtained, we conclude that [(Go-EDA-CAC)-BPED] can be an effective and potential adsorbent for removing metal ions from an aqueous solution.

Keywords: graphene oxide, bis(2-pyridylmethyl)amino, adsorption kinetics, isotherms

Procedia PDF Downloads 133
1156 Natural Regeneration Assessment of a Double Bunrt Mediterranean Coniferous Forest: A Pilot Study from West Peloponnisos, Greece

Authors: Dionisios Panagiotaras, Ioannis P. Kokkoris, Dionysios Koulougliotis, Dimitra Lekka, Alexandra Skalioti

Abstract:

In the summer of 2021, Greece was affected by devastating forest fires in various regions of the country, resulting in human losses, destruction or degradation of the natural environment, infrastructure, livestock and cultivations. The present study concerns a pilot assessment of natural vegetation regeneration in the second, in terms of area, fire-affected region for 2021, at Ancient Olympia area, located in West Peloponnisos (Ilia Prefecture), Greece. A standardised field sampling protocol for assessing natural regeneration was implemented at selected sites where the forest fire had occurred previously (in 2007), and the vegetation (Pinus halepensis forest) had regenerated naturally. The results of the study indicate the loss of the established natural regeneration of Pinus halepensis forest, as well as of the tree-layer in total. Post-fire succession species are recorded to the shrub and the herb layer, with a varying cover. Present findings correspond to the results of field work and analysis one year after the fire, which will form the basis for further research and conclusions on taking action for restoration schemes in areas that have been affected by fire more than once within a 20-year period.

Keywords: forest, pinus halepensis, ancient olympia, post fire vegetation

Procedia PDF Downloads 92
1155 Iron Removal from Aqueous Solutions by Fabricated Calcite Ooids

Authors: Al-Sayed A. Bakr, W. A. Makled

Abstract:

The precipitated low magnesium calcite ooids in assembled softening unit from natural Mediterranean seawater samples were used as adsorbent media in a comparative study with granular activated carbon media in a two separated single-media filtration vessels (operating in parallel) for removal of iron from aqueous solutions. In each vessel, the maximum bed capacity, which required to be filled, was 13.2 l and the bed filled in the vessels of ooids and GAC were 8.6, and 6.6 l, respectively. The operating conditions applied to the semi-pilot filtration unit were constant pH (7.5), different temperatures (293, 303 and 313 k), different flow rates (20, 30, 40, 50 and 60 l/min), different initial Fe(II) concentrations (15–105 mg/ l) and the calculated adsorbent masses were 34.1 and 123 g/l for GAC and calcite ooids, respectively. At higher temperature (313 k) and higher flow rate (60 l/min), the maximum adsorption capacities for ferrous ions by GAC and calcite ooids filters were 3.87 and 1.29 mg/g and at lower flow rate (20 l/min), the maximum adsorption capacities were 2.21 and 3.95 mg/g, respectively. From the experimental data, Freundlich and Langmuir adsorption isotherms were used to verify the adsorption performance. Therefore, the calcite ooids could act as new highly effective materials in iron removal from aqueous solutions.

Keywords: water treatment, calcite ooids, activated carbon, Fe(II) removal, filtration

Procedia PDF Downloads 149
1154 Cr (VI) Adsorption on Ce0.25Zr0.75O2.nH2O-Kinetics and Thermodynamics

Authors: Carlos Alberto Rivera-corredor, Angie Dayana Vargas-Ceballos, Edison Gilpavas, Izabela Dobrosz-Gómez, Miguel Ángel Gómez-García

Abstract:

Hexavalent chromium, Cr (VI) is present in the effluents from different industries such as electroplating, mining, leather tanning, etc. This compound is of great academic and industrial concern because of its toxic and carcinogenic behavior. Its dumping to both environmental and public health for animals and humans causes serious problems in water sources. The amount of Cr (VI) in industrial wastewaters ranges from 0.5 to 270,000 mgL-1. According to the Colombian standard for water quality (NTC-813-2010), the maximum allowed concentration for the Cr (VI) in drinking water is 0.05 mg L-1. To comply with this limit, it is essential that industries treat their effluent to reduce the Cr (VI) to acceptable levels. Numerous methods have been reported for the treatment removing metal ions from aqueous solutions such as: reduction, ion exchange, electrodialysis, etc. Adsorption has become a promising method for the purification of metal ions in water, since its application corresponds with an economic and efficient technology. The absorbent selection and the kinetic and thermodynamic study of the adsorption conditions are key to the development of a suitable adsorption technology. The Ce0.25Zr0.75O2.nH2O presents higher adsorption capacity between a series of hydrated mixed oxides Ce1-xZrxO2 (x = 0, 0.25, 0.5, 0.75, 1). This work presents the kinetic and thermodynamic study of Cr (VI) adsorption on Ce0.25Zr0.75O2.nH2O. Experiments were performed under the following experimental conditions: initial Cr (VI) concentration = 25, 50 and 100 mgL-1, pH = 2, adsorbent charge = 4 gL-1, stirring time = 60 min, temperature=20, 28 and 40 °C. The Cr (VI) concentration was spectrophotometrically estimated by the method of difenilcarbazide with monitoring the absorbance at 540 nm. The Cr (VI) adsorption over hydrated Ce0.25Zr0.75O2.nH2O models was analyzed using pseudo-first and pseudo-second order kinetics. The Langmuir and Freundlich models were used to model the experimental data. The convergence between the experimental values and those predicted by the model, is expressed as a linear regression correlation coefficient (R2) and was employed as the model selection criterion. The adsorption process followed the pseudo-second order kinetic model and obeyed the Langmuir isotherm model. The thermodynamic parameters were calculated as: ΔH°=9.04 kJmol-1,ΔS°=0.03 kJmol-1 K-1, ΔG°=-0.35 kJmol-1 and indicated the endothermic and spontaneous nature of the adsorption process, governed by physisorption interactions.

Keywords: adsorption, hexavalent chromium, kinetics, thermodynamics

Procedia PDF Downloads 298
1153 The Role of Disturbed Dry Afromontane Forest of Ethiopia for Biodiversity Conservation and Carbon Storage

Authors: Mindaye Teshome, Nesibu Yahya, Carlos Moreira Miquelino Eleto Torres, Pedro Manuel Villaa, Mehari Alebachew

Abstract:

Arbagugu forest is one of the remnant dry Afromontane forests under severe anthropogenic disturbances in central Ethiopia. Despite this fact, up-to-date information is lacking about the status of the forest and its role in climate change mitigation. In this study, we evaluated the woody species composition, structure, biomass, and carbon stock in this forest. We employed a systematic random sampling design and established fifty-three sample plots (20 × 100 m) to collect the vegetation data. A total of 37 woody species belonging to 25 families were recorded. The density of seedlings, saplings, and matured trees were 1174, 101, and 84 stems ha-1, respectively. The total basal area of trees with DBH (diameter at breast height) ≥ 2 cm was 21.3 m2 ha-1. The characteristic trees of dry Afromontane Forest such as Podocarpus falcatus, Juniperus procera, and Olea europaea subsp. cuspidata exhibited a fair regeneration status. On the contrary, the least abundant species Lepidotrichilia volkensii, Canthium oligocarpum, Dovyalis verrucosa, Calpurnia aurea, and Maesa lanceolata exhibited good regeneration status. Some tree species such as Polyscias fulva, Schefflera abyssinica, Erythrina brucei, and Apodytes dimidiata lack regeneration. The total carbon stored in the forest ranged between 6.3 Mg C ha-1 and 835.6 Mg C ha-1. This value is equivalent to 639.6 Mg C ha-1. The forest had a very low number of woody species composition and diversity. The regeneration study also revealed that a significant number of tree species had unsatisfactory regeneration status. Besides, the forest had a lower carbon stock density compared with other dry Afromontane forests. This implies the urgent need for forest conservation and restoration activities by the local government, conservation practitioners, and other concerned bodies to maintain the forest and sustain the various ecosystem goods and services provided by the Arbagugu forest.

Keywords: aboveground biomass, forest regeneration, climate change, biodiversity conservation, restoration

Procedia PDF Downloads 108
1152 Effects of the Coagulation Bath and Reduction Process on SO2 Adsorption Capacity of Graphene Oxide Fiber

Authors: Özge Alptoğa, Nuray Uçar, Nilgün Karatepe Yavuz, Ayşen Önen

Abstract:

Sulfur dioxide (SO2) is a very toxic air pollutant gas and it causes the greenhouse effect, photochemical smog, and acid rain, which threaten human health severely. Thus, the capture of SO2 gas is very important for the environment. Graphene which is two-dimensional material has excellent mechanical, chemical, thermal properties, and many application areas such as energy storage devices, gas adsorption, sensing devices, and optical electronics. Further, graphene oxide (GO) is examined as a good adsorbent because of its important features such as functional groups (epoxy, carboxyl and hydroxyl) on the surface and layered structure. The SO2 adsorption properties of the fibers are usually investigated on carbon fibers. In this study, potential adsorption capacity of GO fibers was researched. GO dispersion was first obtained with Hummers’ method from graphite, and then GO fibers were obtained via wet spinning process. These fibers were converted into a disc shape, dried, and then subjected to SO2 gas adsorption test. The SO2 gas adsorption capacity of GO fiber discs was investigated in the fields of utilization of different coagulation baths and reduction by hydrazine hydrate. As coagulation baths, single and triple baths were used. In single bath, only ethanol and CaCl2 (calcium chloride) salt were added. In triple bath, each bath has a different concentration of water/ethanol and CaCl2 salt, and the disc obtained from triple bath has been called as reference disk. The fibers which were produced with single bath were flexible and rough, and the analyses show that they had higher SO2 adsorption capacity than triple bath fibers (reference disk). However, the reduction process did not increase the adsorption capacity, because the SEM images showed that the layers and uniform structure in the fiber form were damaged, and reduction decreased the functional groups which SO2 will be attached. Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) analyzes were performed on the fibers and discs, and the effects on the results were interpreted. In the future applications of the study, it is aimed that subjects such as pH and additives will be examined.

Keywords: coagulation bath, graphene oxide fiber, reduction, SO2 gas adsorption

Procedia PDF Downloads 359
1151 Synthesis of High-Pressure Performance Adsorbent from Coconut Shells Polyetheretherketone for Methane Adsorption

Authors: Umar Hayatu Sidik

Abstract:

Application of liquid base petroleum fuel (petrol and diesel) for transportation fuel causes emissions of greenhouse gases (GHGs), while natural gas (NG) reduces the emissions of greenhouse gases (GHGs). At present, compression and liquefaction are the most matured technology used for transportation system. For transportation use, compression requires high pressure (200–300 bar) while liquefaction is impractical. A relatively low pressure of 30-40 bar is achievable by adsorbed natural gas (ANG) to store nearly compressed natural gas (CNG). In this study, adsorbents for high-pressure adsorption of methane (CH4) was prepared from coconut shells and polyetheretherketone (PEEK) using potassium hydroxide (KOH) and microwave-assisted activation. Design expert software version 7.1.6 was used for optimization and prediction of preparation conditions of the adsorbents for CH₄ adsorption. Effects of microwave power, activation time and quantity of PEEK on the adsorbents performance toward CH₄ adsorption was investigated. The adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric (TG) and derivative thermogravimetric (DTG) and scanning electron microscopy (SEM). The ideal CH4 adsorption capacities of adsorbents were determined using volumetric method at pressures of 5, 17, and 35 bar at an ambient temperature and 5 oC respectively. Isotherm and kinetics models were used to validate the experimental results. The optimum preparation conditions were found to be 15 wt% amount of PEEK, 3 minutes activation time and 300 W microwave power. The highest CH4 uptake of 9.7045 mmol CH4 adsorbed/g adsorbent was recorded by M33P15 (300 W of microwave power, 3 min activation time and 15 wt% amount of PEEK) among the sorbents at an ambient temperature and 35 bar. The CH4 equilibrium data is well correlated with Sips, Toth, Freundlich and Langmuir. Isotherms revealed that the Sips isotherm has the best fit, while the kinetics studies revealed that the pseudo-second-order kinetic model best describes the adsorption process. In all scenarios studied, a decrease in temperature led to an increase in adsorption of both gases. The adsorbent (M33P15) maintained its stability even after seven adsorption/desorption cycles. The findings revealed the potential of coconut shell-PEEK as CH₄ adsorbents.

Keywords: adsorption, desorption, activated carbon, coconut shells, polyetheretherketone

Procedia PDF Downloads 66
1150 The Potential of Shifting Urban Village to Public Housing through Sharing Economy: Case Study of Shenzhen

Authors: Xinrui Gao

Abstract:

This research aims to explore the potential of shifting urban villages to public housing in China. In common practice, the central and local governments established two divided systems of urban redevelopment and public housing, including aims, design ideas, policy, headquarters, and branch offices. In most cases, the urban regeneration and public housing projects satisfy only the selected part of the society who can afford it (urban regeneration) or meet the requirements (public housing), which fail to cover the housing demand. However, there are many similarities between these two types of housing under the background of a shared economy, especially in target groups, affordable prices, and efficient use of spaces. Shenzhen always takes the lead in China’s urban regeneration and housing reformation. There are some top-down approaches to transforming housing in the urban village into public housing at present. These new approaches will provide a good chance to evaluate existing practices and explore the future development path of urban villages; while at the same time it could positively influence the housing problem in China.

Keywords: urban village, public housing, sharing economy, urban redevelopment

Procedia PDF Downloads 121
1149 Comparison Methyl Orange and Malachite Green Dyes Removal by GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH as Adsorbents

Authors: Omid Moradi, Mostafa Rajabi

Abstract:

Graphene oxide (GO), reduced graphene oxide (rGO), multi-walled carbon nanotubes MWCNT), multi-walled carbon nanotube functionalized carboxyl (MWCNT-COOH), and multi-walled carbon nanotube functionalized thiol (MWCNT-SH) were used as efficient adsorbents for the rapid removal two dyes methyl orange (MO) and malachite green (MG) from the aqueous phase. The impact of several influential parameters such as initial dye concentrations, contact time, temperature, and initial solution pH was well studied and optimized. The optimize time for adsorption process of methyl orange dye on GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were determined at 100, 100, 60, 25, and 60 min, respectively and The optimize time for adsorption process of malachite green dye on GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were determined at 100, 100, 60, 15, and 60 min, respectively. The maximum removal efficiency for methyl orange dye by GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were occurred at optimized pH 3, 3, 6, 2, and 6 of aqueous solutions, respectively and for malachite green dye were occurred at optimized pH 3, 3, 6, 9, and 6 of aqueous solutions, respectively. The effect of temperature showed that adsorption process of malachite green dye on GO, rGO, MWCNT, and MWCNT-SH surfaces were endothermic and for adsorption process of methyl orange dye on GO, rGO, MWCNT, and MWCNT-SH surfaces were endothermic but while adsorption of methyl orange and malachite green dyes on MWCNT-COOH surface were exothermic.On increasing the initial concentration of methyl orange dye adsorption capacity on GO surface was decreased and on rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were increased and with increasing the initial concentration of malachite green dye on GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were increased.

Keywords: adsorption, graphene oxide, reduced graphene oxide, multi-walled carbon nanotubes, methyl orange, malachite green, removal

Procedia PDF Downloads 379
1148 Determination of Chemical and Adsorption Kinetics: An Investigation of a Petrochemical Wastewater Treatment Utilizing GAC

Authors: Leila Vafajoo, Feria Ghanaat, Alireza Mohmadi Kartalaei, Amin Ghalebi

Abstract:

Petrochemical industries are playing an important role in producing wastewaters. Nowadays different methods are employed to treat these materials. The goal of the present research was to reduce the COD of a petrochemical wastewater via adsorption technique using a commercial granular activated carbon (GAC) as adsorbent. In the current study, parameters of kinetic models as well as; adsorption isotherms were determined through utilizing the Langmuir and Freundlich isotherms. The key parameters of KL= 0.0009 and qm= 33.33 for the former and nf=0.5 and Kf= 0.000004 for the latter isotherms resulted. Moreover, a correlation coefficient of above 90% for both cases proved logical use of such isotherms. On the other hand, pseudo-first and -second order kinetics equations were implemented. These resulted in coefficients of k1=0.005 and qe=2018 as well as; K2=0.009 and qe=1250; respectively. In addition, obtaining the correlation coefficients of 0.94 and 0.68 for these 1st and 2nd order kinetics; respectively indicated advantageous use of the former model. Furthermore, a significant experimental reduction of the petrochemical wastewater COD revealed that, using GAC for the process undertaken was an efficient mean of treatment. Ultimately, the current investigation paved down the road for predicting the system’s behavior on industrial scale.

Keywords: petrochemical wastewater, adsorption, granular activated carbon, equilibrium isotherm, kinetic model

Procedia PDF Downloads 360