Search results for: acid lactid bacteria
4299 Fatty Acid Composition of Muscle Lipids of Cyprinus carpio L. Living in Different Dam Lake, Turkey
Authors: O. B. Citil, V. Sariyel, M. Akoz
Abstract:
In this study, total fatty acid composition of muscle lipids of Cyprinus carpio L. living in Suğla Dam Lake, Altinapa Dam Lake, Eğirdir Lake and Burdur Lake were determined using GC. During this study, for the summer season of July was taken from each region of the land and they were stored in deep-freeze set to -20 degrees until the analysis date. At the end of the analyses, 30 different fatty acids were found in the composition of Cyprinus carpio L. which lives in different lakes. Cyprinus carpio Suğla Dam Lake of polyunsaturated fatty acids (PUFAs), were higher than other lakes. Cyprinus carpio L. was the highest in the major SFA palmitic acid. Polyunsaturated fatty acids (PUFA) of carp, the most abundant fish species in all lakes, were found to be higher than those of saturated fatty acids (SFA) in all lakes. Palmitic acid was the major SFA in all lakes. Oleic acid was identified as the major MUFA. Docosahexaenoic acid (DHA) was the most abundant in all lakes. ω3 fatty acid composition was higher than the percentage of the percentage ω6 fatty acids in all lake. ω3/ω6 rates of Cyprinus carpio L. Suğla Dam Lake, Altinapa Dam Lake, Eğirdir Lake and Burdur Lake, 2.12, 1.19, 2.15, 2.87, and 2.82, respectively. Docosahexaenoic acid (DHA) was the major PUFA in Eğirdir and Burdur lakes, whereas linoleic acid (LA) was the major PUFA in Altinapa and Suğla Dam Lakes. It was shown that the fatty acid composition in the muscle of carp was significantly influenced by different lakes.Keywords: Cyprinus carpio L., fatty acid, composition, gas chromatography
Procedia PDF Downloads 5704298 The Effect of Gibberellic Acid on Gamma-Aminobutyric Acid (GABA) Metabolism in Phaseolus Vulgaris L. Plant Exposed to Drought and Salt Stresses
Authors: Fazilet Özlem Çekiç, Seyda Yılmaz
Abstract:
Salinity and drought are important environmental problems in the world and have negative effects on plant metabolism. Gamma-aminobutyric acid (GABA), four-carbon non-protein amino acid, is a significant component of the free amino acid pool. GABA is widely distributed in prokaryotic and eukaryotic organisms. Environmental stress factors increase GABA accumulation in plants. Our aim was to evaluate the effect of gibberellic acid (GA) on GABA metabolism system during drought and salt stress factors in Phaseolus vulgaris L. plants. GABA, Glutamate dehydrogenase (GDH) activity, chlorophyll, and lipid peroxidation (MDA) analyses were determined. According to our results we can suggest that GA play a role in GABA metabolism during salt and drought stresses in bean plants. Also GABA shunt is an important metabolic pathway and key signaling allowing to adapt to drought and salt stresses.Keywords: gibberellic acid, GABA, Phaseolus vulgaris L., salinity, drought
Procedia PDF Downloads 4234297 Bioremediation of Polychlorinated Biphenyl (PCBS) Contaminated Soils: A Case Study from Rietvlei Farm at Borehole No. 11, Limpopo Province, South Africa
Authors: D. Sengani, N. Potgieter, P. E. L. Mojapelo
Abstract:
Three bacteria species which comprise of Gram negative and Gram positive microorganisms were isolated and identified on the basis of morpho-cultural study, catalase tests, oxidase tests and biochemical characteristics were found belonging to different genera including Burkholderia cepacia, Pasteurella pneumotropica and Enterococcus faecalis. The main objective of this study was to isolate and identify PCB degrading bacteria from PCB contaminated soils and test them for their degradation ability of PCBs in natural habitat conditions. The results indicated an overall decrease of PCB concentration level with the gradient average ranging from 1.5 to 1.8 respectively. Enterococcus faecalis removed as much as 32% of PCBs in the contaminated soil samples. Whereas Pasteurella pneumotropica could remove 24% of PCBs, Burkholderia cepacia 21% of PCBs and the mixed culture removed 23%. Data showed that the three bacterial strains could tolerate high concentration of PCBs. The results provided the evidence that naturally occurring bacteria in soil contaminated with PCBs have the potential to degrade PCBs. Statistical analysis showed that there was a significant positive correlation between bacteria growth and treatment with a coefficient of (r) =0.1459 and p value < 0.001.Keywords: bacteria, bioaccumulation, biodegradation, bioremediation, polychlorinated biphenyls
Procedia PDF Downloads 2404296 Recovery of Helicobacter Pylori from Stagnant and Moving Water Biofilms
Authors: Maryam Zafar, Sajida Rasheed, Imran Hashmi
Abstract:
Water as an environmental reservoir is reported to act as a habitat and transmission route to microaerophilic bacteria such as Heliobacter pylori. It has been studied that in biofilms are the predominant dwellings for the bacteria to grow in water and protective reservoir for numerous pathogens by protecting them against harsh conditions, such as shear stress, low carbon concentration and less than optimal temperature. In this study, influence of these and many other parameters was studied on H. pylori in stagnant and moving water biofilms both in surface and underground aquatic reservoirs. H. pylori were recovered from pipe of different materials such as Polyvinyl Chloride, Polypropylene and Galvanized iron pipe cross sections from an urban water distribution network. Biofilm swabbed from inner cross section was examined by molecular biology methods coupled with gene sequencing and H. pylori 16S rRNA peptide nucleic acid probe showing positive results for H. pylori presence. Studies showed that pipe material affect growth of biofilm which in turn provide additional survival mechanism for pathogens like H. pylori causing public health concerns.Keywords: biofilm, gene sequencing, heliobacter pylori, pipe materials
Procedia PDF Downloads 3594295 Bioproduction of L(+)-Lactic Acid and Purification by Ion Exchange Mechanism
Authors: Zelal Polat, Şebnem Harsa, Semra Ülkü
Abstract:
Lactic acid exists in nature optically in two forms, L(+), D(-)-lactic acid, and has been used in food, leather, textile, pharmaceutical and cosmetic industries. Moreover, L(+)-lactic acid constitutes the raw material for the production of poly-L-lactic acid which is used in biomedical applications. Microbially produced lactic acid was aimed to be recovered from the fermentation media efficiently and economically. Among the various downstream operations, ion exchange chromatography is highly selective and yields a low cost product recovery within a short period of time. In this project, Lactobacillus casei NRRL B-441 was used for the production of L(+)-lactic acid from whey by fermentation at pH 5.5 and 37°C that took 12 hours. The product concentration was 50 g/l with 100% L(+)-lactic acid content. Next, the suitable resin was selected due to its high sorption capacity with rapid equilibrium behavior. Dowex marathon WBA, weakly basic anion exchanger in OH form reached the equilibrium in 15 minutes. The batch adsorption experiments were done approximately at pH 7.0 and 30°C and sampling was continued for 20 hours. Furthermore, the effect of temperature and pH was investigated and their influence was found to be unimportant. All the adsorption/desorption experiments were applied to both model lactic acid and biomass free fermentation broth. The ion exchange equilibria of lactic acid and L(+)-lactic acid in fermentation broth on Dowex marathon WBA was explained by Langmuir isotherm. The maximum exchange capacity (qm) for model lactic acid was 0.25 g La/g wet resin and for fermentation broth 0.04 g La/g wet resin. The equilibrium loading and exchange efficiency of L(+)-lactic acid in fermentation broth were reduced as a result of competition by other ionic species. The competing ions inhibit the binding of L(+)-lactic acid to the free sites of ion exchanger. Moreover, column operations were applied to recover adsorbed lactic acid from the ion exchanger. 2.0 M HCl was the suitable eluting agent to recover the bound L(+)-lactic acid with a flowrate of 1 ml/min at ambient temperature. About 95% of bound L(+)-lactic acid was recovered from Dowex marathon WBA. The equilibrium was reached within 15 minutes. The aim of this project was to investigate the purification of L(+)-lactic acid with ion exchange method from fermentation broth. The additional goals were to investigate the end product purity, to obtain new data on the adsorption/desorption behaviours of lactic acid and applicability of the system in industrial usage.Keywords: fermentation, ion exchange, lactic acid, purification, whey
Procedia PDF Downloads 5024294 In vivo Evaluation of LAB Probiotic Potential with the Zebrafish Animal Model
Authors: Iñaki Iturria, Pasquale Russo, Montserrat Nacher-Vázquez, Giuseppe Spano, Paloma López, Miguel Angel Pardo
Abstract:
Introduction: It is known that some Lactic Acid Bacteria (LAB) present an interesting probiotic effect. Probiotic bacteria stimulate host resistance to microbial pathogens and thereby aid in immune response, and modulate the host's immune responses to antigens with a potential to down-regulate hypersensitivity reactions. Therefore, probiotic therapy is valuable against intestinal infections and may be beneficial in the treatment of Inflammatory Bowel Disease (IBD). Several in vitro tests are available to evaluate the probiotic potential of a LAB strain. However, an in vivo model is required to understand the interaction between the host immune system and the bacteria. During the last few years, zebrafish (Danio rerio) has gained interest as a promising vertebrate model in this field. This organism has been extensively used to study the interaction between the host and the microbiota, as well as the host immune response under several microbial infections. In this work, we report on the use of the zebrafish model to investigate in vivo the colonizing ability and the immunomodulatory effect of probiotic LAB. Methods: Lactobacillus strains belonging to different LAB species were fluorescently tagged and used to colonize germ-free zebrafish larvae gastrointestinal tract (GIT). Some of the strains had a well-documented probiotic effect (L. acidophilus LA5); while others presented an exopolysaccharide (EPS) producing phenotype, thus allowing evaluating the influence of EPS in the colonization and immunomodulatory effect. Bacteria colonization was monitored for 72 h by direct observation in real time using fluorescent microscopy. CFU count per larva was also evaluated at different times. The immunomodulatory effect was assessed analysing the differential expression of several innate immune system genes (MyD88, NF-κB, Tlr4, Il1β and Il10) by qRT- PCR. The anti-inflammatory effect was evaluated using a chemical enterocolitis zebrafish model. The protective effect against a pathogen was also studied. To that end, a challenge test was developed using a fluorescently tagged pathogen (Vibrio anguillarum-GFP+). The progression of the infection was monitored up to 3 days using a fluorescent stereomicroscope. Mortality rates and CFU counts were also registered. Results and conclusions: Larvae exposed to EPS-producing bacteria showed a higher fluorescence and CFU count than those colonized with no-EPS phenotype LAB. In the same way, qRT-PCR results revealed an immunomodulatory effect on the host after the administration of the strains with probiotic activity. A downregulation of proinflammatory cytoquines as well as other cellular mediators of inflammation was observed. The anti-inflammatory effect was found to be particularly marked following exposure to LA% strain, as well as EPS producing strains. Furthermore, the challenge test revealed a protective effect of probiotic administration. As a matter of fact, larvae fed with probiotics showed a decrease in the mortality rate ranging from 20 to 35%. Discussion: In this work, we developed a promising model, based on the use of gnotobiotic zebrafish coupled with a bacterial fluorescent tagging in order to evaluate the probiotic potential of different LAB strains. We have successfully used this system to monitor in real time the colonization and persistence of exogenous LAB within the gut of zebrafish larvae, to evaluate their immunomodulatory effect and for in vivo competition assays. This approach could bring further insights into the complex microbial-host interactions at intestinal level.Keywords: gnotobiotic, immune system, lactic acid bacteria, probiotics, zebrafish
Procedia PDF Downloads 3284293 Effective Photodegradation of Tetracycline by a Heteropoly Acid/Graphene Oxide Nanocomposite Based on Uio-66
Authors: Anasheh Maridiroosi, Ali Reza Mahjoub, Hanieh Fakhri
Abstract:
Heteropoly acid nanoparticles anchored on graphene oxide based on UiO-66 were synthesized via in-situ growth hydrothermal method and tested for photodegradation of a tetracycline as critical pollutant. Results showed that presence of graphene oxide and UiO-66 with high specific surface area, great electron mobility and various functional groups make an excellent support for heteropoly acid and improve photocatalytic efficiency up to 95% for tetracycline. Furthermore, total organic carbon (TOC) analysis verified 79% mineralization of this pollutant under optimum condition.Keywords: heteropoly acid, graphene oxide, MOF, tetracycline
Procedia PDF Downloads 1334292 Anticataract Activity of Betulinic Acid in Chick Embryo Lens Model
Authors: Surendra Bodakhe
Abstract:
In this investigation, anticataract activity was determined using cataract formation in developing chick embryo by hydrocortisone. Lenses were evaluated firstly for the extent of opacity and secondly, for lens glutathione (GSH) levels. Betulinic acid was isolated from the chloroform fraction of the crude ethanolic extract of Bauhinia variegata bark (SBE). Fourteen days old Australorp fertilized eggs were divided into different groups of six eggs each. After 24 hrs incubation in a humidified incubator (37οC), at 15 days of age; hydrocortisone (0.25µM/0.2ml/egg) was administered to the chorioallantoic membrane of chick embryos through a small hole in the egg shell on the air sack. Ascorbic acid (standard) or Betulinic acid (test) were administered at 3, 10 and 20 hr after hydrocortisone administration at a specified dose. The puncture was sealed with a cellophane tape and eggs were incubated for 48 hrs in a humidified incubator at 37οC. After 48 hrs, the lenses were isolated for the determination of the extent of opacity and Glutathione level. The betulinic acid prevented the opacification of the chick embryo lenses induced by hydrocortisone. The betulinic acid also prevented the decline of GSH content caused by hydrocortisone. The results indicate that betulinic acid protect the cataract formation in chick embryo lenses induced by hydrocortisone.Keywords: betulinic acid, cataract, cloudiness, ovine
Procedia PDF Downloads 3434291 Identification and Characterisation of Oil Sludge Degrading Bacteria Isolated from Compost
Authors: O. Ubani, H. I. Atagana, M. S. Thantsha, R. Adeleke
Abstract:
The oil sludge components (polycyclic aromatic hydrocarbons, PAHs) have been found to be cytotoxic, mutagenic and potentially carcinogenic and microorganisms such as bacteria and fungi can degrade the oil sludge to less toxic compounds such as carbon dioxide, water and salts. In the present study, we isolated different bacteria with PAH-degrading potentials from the co-composting of oil sludge and different animal manure. These bacteria were isolated on the mineral base medium and mineral salt agar plates as a growth control. A total of 31 morphologically distinct isolates were carefully selected from 5 different compost treatments for identification using polymerase chain reaction (PCR) of the 16S rDNA gene with specific primers (16S-P1 PCR and 16S-P2 PCR). The amplicons were sequenced and sequences were compared with the known nucleotides from the gene bank database. The phylogenetical analyses of the isolates showed that they belong to 3 different clades namely Firmicutes, Proteobacteria and Actinobacteria. These bacteria identified were closely related to genera Bacillus, Arthrobacter, Staphylococcus, Brevibacterium, Variovorax, Paenibacillus, Ralstonia and Geobacillus species. The results showed that Bacillus species were more dominant in all treated compost piles. Based on their characteristics these bacterial isolates have high potential to utilise PAHs of different molecular weights as carbon and energy sources. These identified bacteria are of special significance in their capacity to emulsify the PAHs and their ability to utilize them. Thus, they could be potentially useful for bioremediation of oil sludge and composting processes.Keywords: bioaugmentation, biodegradation, bioremediation, composting, oil sludge, PAHs, animal manures
Procedia PDF Downloads 2534290 Unification of Lactic Acid Bacteria and Aloe Vera for Healthy Gut
Authors: Pavitra Sharma, Anuradha Singh, Nupur Mathur
Abstract:
There exist more than 100 trillion bacteria in the digestive system of human-beings. Such bacteria are referred to as gut microbiota. Gut microbiota comprises around 75% of our immune system. The bacteria that comprise the gut microbiota are unique to every individual and their composition keeps changing with time owing to factors such as the host’s age, diet, genes, environment, and external medication. Of these factors, the variable easiest to control is one’s diet. By modulating one’s diet, one can ensure an optimal composition of the gut microbiota yielding several health benefits. Prebiotics and probiotics are two compounds that have been considered as viable options to modulate the host’s diet. Prebiotics are basically plant products that support the growth of good bacteria in the host’s gut. Examples include garden asparagus, aloe vera etc. Probiotics are living microorganisms that exist in our intestines and play an integral role in promoting digestive health and supporting our immune system in general. Examples include yogurt, kimchi, kombucha etc. In the context of modulating the host’s diet, the key attribute of prebiotics is that they support the growth of probiotics. By developing the right combination of prebiotics and probiotics, food products or supplements can be created to enhance the host’s health. An effective combination of prebiotics and probiotics that yields health benefits to the host is referred to as synbiotics. Synbiotics comprise of an optimal proportion of prebiotics and probiotics, their application benefits the host’s health more than the application of prebiotics and probiotics used in isolation. When applied to food supplements, synbiotics preserve the beneficial probiotic bacteria during storage period and during the bacteria’s passage through the intestinal tract. When applied to the gastrointestinal tract, the composition of the synbiotics assumes paramount importance. Reason being that for synbiotics to be effective in the gastrointestinal tract, the chosen probiotic must be able to survive in the stomach’s acidic environment and manifest tolerance towards bile and pancreatic secretions. Further, not every prebiotic stimulates the growth of a particular probiotic. The prebiotic chosen should be one that not only maintains 2 balance in the host’s digestive system, but also provides the required nutrition to probiotics. Hence in each application of synbiotics, the prebiotic-probiotic combination needs to be carefully selected. Once the combination is finalized, the exact proportion of prebiotics and probiotics to be used needs to be considered. When determining this proportion, only that amount of a prebiotic should be used that activates metabolism of the required number of probiotics. It was observed that while probiotics are active is both the small and large intestine, the effect of prebiotics is observed primarily in the large intestine. Hence in the host’s small intestine, synbiotics are likely to have the maximum efficacy. In small intestine, prebiotics not only assist in the growth of probiotics, but they also enable probiotics to exhibit a higher tolerance to pH levels, oxygenation, and intestinal temperatureKeywords: microbiota, probiotics, prebiotics, synbiotics
Procedia PDF Downloads 1354289 Evaluating Acid Buffering Capacity of Sewage Sludge Barrier for Inhibiting Remobilization of Heavy Metals in Tailing Impoundment
Authors: Huyuan Zhang, Yi Chen
Abstract:
Compacted sewage sludge has been proved to be feasible as a barrier material for tailing impoundment because of its low permeability and retardation of heavy metals. The long-term penetration of acid mine drainage, however, would acidify the barrier system and result in remobilization of previously immobilized heavy metal pollutants. In this study, the effect of decreasing pH on the mobility of three typical heavy metals (Zn, Pb, and Cu) is investigated by acid titration test on sewage sludge under various conditions. The remobilization of heavy metals is discussed based on the acid buffering capacity of sewage sludge-leachate system. Test results indicate that heavy metals are dramatically released out when pH is decreased below 6.2, and their amounts take the order of Zn > Cu > Pb. The acid buffering capacity of sewage sludge decreases with the solid-liquid ratio but increases with the anaerobic incubation time, and it is mainly governed by dissolution of contained carbonate and organics. These results reveal that the sewage sludge possesses enough acid buffering capacity to consume protons within the acid mine drainage. Thus, this study suggests that an explosive remobilization of heavy metals is not expected in a long-term perspective.Keywords: acid buffering capacity, barrier, heavy metals, remobilization, sewage sludge
Procedia PDF Downloads 3204288 Theoretical Study of the Mechanism of the Oxidation of Linoleic Acid by 1O2
Authors: Rayenne Djemil
Abstract:
The mechanism of oxidation reaction of linoleic acid C18: 2 (9 cis12) by singlet oxygen 1O2 were theoretically investigated via using quantum chemical methods. We explored the four reaction pathways at PM3, Hartree-Fock HF and, B3LYP functional associated with the base 6-31G (d) level. The results are in favor of the first and the last reaction ways. The transition states were found by QST3 method. Thus the pathways between the transition state structures and their corresponding minima have been identified by the IRC calculations. The thermodynamic study showed that the four ways of oxidation of linoleic acid are spontaneous, exothermic and, the enthalpy values confirm that conjugate hydroperoxydes are the most favorable products.Keywords: echanism, quantum mechanics, oxidation, linoleic acid H
Procedia PDF Downloads 4464287 The Thermochemical Conversion of Lactic Acid in Subcritical and Supercritical Water
Authors: Shyh-Ming Chern, Hung-Chi Tu
Abstract:
One way to utilize biomass is to thermochemically convert it into gases and chemicals. For conversion of biomass, glucose is a particularly popular model compound for cellulose, or more generally for biomass. The present study takes a different approach by employing lactic acid as the model compound for cellulose. Since lactic acid and glucose have identical elemental composition, they are expected to produce similar results as they go through the conversion process. In the current study, lactic acid was thermochemically converted to assess its reactivity and reaction mechanism in subcritical and supercritical water, by using a 16-ml autoclave reactor. The major operating parameters investigated include: The reaction temperature, from 673 to 873 K, the reaction pressure, 10 and 25 MPa, the dosage of oxidizing agent, 0 and 0.5 chemical oxygen demand, and the concentration of lactic acid in the feed, 0.5 and 1.0 M. Gaseous products from the conversion were generally found to be comparable to those derived from the conversion of glucose.Keywords: lactic acid, subcritical water, supercritical water, thermochemical conversion
Procedia PDF Downloads 3184286 Bacteriological Screening and Antibiotic – Heavy Metal Resistance Profile of the Bacteria Isolated from Some Amphibian and Reptile Species of the Biga Stream in Turkey
Authors: Nurcihan Hacioglu, Cigdem Gul, Murat Tosunoglu
Abstract:
In this article, the antibiogram and heavy metal resistance profile of the bacteria isolated from total 34 studied animals (Pelophylax ridibundus = 12, Mauremys rivulata = 14, Natrix natrix = 8) captured around the Biga Stream, are described. There was no database information on antibiogram and heavy metal resistance profile of bacteria from these area’s amphibians and reptiles. In this study, a total of 200 bacteria were successfully isolated from cloaca and oral samples of the aquatic amphibians and reptiles as well as from the water sample. According to Jaccard’s similarity index, the degree of similarity in the bacterial flora was quite high among the amphibian and reptile species under examination, whereas it was different from the bacterial diversity in the water sample. The most frequent isolates were A. hydrophila (31.5%), B. pseudomallei (8.5%), and C. freundii (7%). The total numbers of bacteria obtained were as follows: 45 in P. ridibundus, 45 in N. natrix 30 in M. rivulata, and 80 in the water sample. The result showed that cefmetazole was the most effective antibiotic to control the bacteria isolated in this study and that approximately 93.33% of the bacterial isolates were sensitive to this antibiotic. The Multiple Antibiotic Resistances (MAR) index indicated that P. ridibundus (0.95) > N. natrix (0.89) > M. rivulata (0.39). Furthermore, all the tested heavy metals (Pb+2, Cu+2, Cr+3, and Mn+2) inhibit the growth of the bacterial isolates at different rates. Therefore, it indicated that the water source of the animals was contaminated with both antibiotic residues and heavy metals.Keywords: bacteriological quality, amphibian, reptile, antibiotic, heavy metal resistance
Procedia PDF Downloads 3864285 Chloroform-Formic Acid Solvent Systems for Nanofibrous Polycaprolactone Webs
Authors: I. Yalcin Enis, J. Vojtech, T. Gok Sadikoglu
Abstract:
In this study, polycaprolactone (PCL) was dissolved in chloroform: ethanol solvent system at a concentration of 18 w/v %. 1, 2, 4, and 6 droplets of formic acid were added to the prepared 10ml PCL-chloroform:ethanol solutions separately. Fibrous webs were produced by electrospinning technique. Morphology of the webs was investigated by using scanning electron microscopy (SEM) whereas fiber diameters were measured by Image J Software System. The effect of formic acid addition to the mostly used chloroform solvent on fiber morphology was examined.Keywords: chloroform, electrospinning, formic acid polycaprolactone, fiber
Procedia PDF Downloads 2764284 Poly(Lactic Acid) Based Flexible Films
Authors: Fathilahbinti Ali, Jamarosliza Jamaluddin, Arun Kumar Upadhyay
Abstract:
Poly(lactic acid) (PLA) is a biodegradable polymer which has good mechanical properties, however, its brittleness limits its usage especially in packaging materials. Therefore, in this work, PLA based polyurethane films were prepared by synthesizing with different types of isocyanates; methylene diisocyanate (MDI) and hexamethylene diisocyanates (HDI). For this purpose, PLA based polyurethane must have good strength and flexibility. Therefore, polycaprolactone which has better flexibility were prepared with PLA. An effective way to endow polylactic acid with toughness is through chain-extension reaction of the polylactic acid pre-polymer with polycaprolactone used as chain extender. Polyurethane prepared from MDI showed brittle behaviour, while, polyurethane prepared from HDI showed flexibility at same concentrations.Keywords: biodegradable polymer, flexible, poly(lactic acid), polyurethane
Procedia PDF Downloads 3524283 Molecular Evolutionary Relationships Between O-Antigens of Enteric Bacteria
Authors: Yuriy A. Knirel
Abstract:
Enteric bacteria Escherichia coli is the predominant facultative anaerobe of the colonic flora, and some specific serotypes are associated with enteritis, hemorrhagic colitis, and hemolytic uremic syndrome. Shigella spp. are human pathogens that cause diarrhea and bacillary dysentery (shigellosis). They are in effect E. coli with a specific mode of pathogenicity. Strains of Salmonella enterica are responsible for a food-borne infection (salmonellosis), and specific serotypes cause typhoid fever and paratyphoid fever. All these bacteria are closely related in respect to structure and genetics of the lipopolysaccharide, including the O-polysaccharide part (O‑antigen). Being exposed to the bacterial cell surface, the O antigen is subject to intense selection by the host immune system and bacteriophages giving rise to diverse O‑antigen forms and providing the basis for typing of bacteria. The O-antigen forms of many bacteria are unique, but some are structurally and genetically related to others. The sequenced O-antigen gene clusters between conserved galF and gnd genes were analyzed taking into account the O-antigen structures established by us and others for all S. enterica and Shigella and most E. coli O-serogroups. Multiple genetic mechanisms of diversification of the O-antigen forms, such as lateral gene transfer and mutations, were elucidated and are summarized in the present paper. They include acquisition or inactivation of genes for sugar synthesis or transfer or recombination of O-antigen gene clusters or their parts. The data obtained contribute to our understanding of the origins of the O‑antigen diversity, shed light on molecular evolutionary relationships between the O-antigens of enteric bacteria, and open a way for studies of the role of gene polymorphism in pathogenicity.Keywords: enteric bacteria, O-antigen gene cluster, polysaccharide biosynthesis, polysaccharide structure
Procedia PDF Downloads 1424282 Algal/Bacterial Membrane Bioreactor for Bioremediation of Chemical Industrial Wastewater Containing 1,4 Dioxane
Authors: Ahmed Tawfik
Abstract:
Oxidation of 1,4 dioxane produces metabolites by-products involving glycolaldehyde and acids that have geno- and cytotoxicity impact on microbial degradation. Thereby, the incorporation of algae with bacteria in the treatment system would eliminate and overcome the accumulation of metabolites that are utilized as a carbon source for the build-up of biomass. Therefore, the aim of the present study is to assess the potential of algae/bacteria-based membrane bioreactor (AB-MBR) for biodegradation of 1,4 dioxane-rich wastewater at a high imposed loading rate. Three identical reactors, i.e., AB-MBR1, AB-MBR2, and AB-MBR3, were operated in parallel at 1,4 dioxane loading rates of 641.7, 320.9, and 160.4 mg/L. d., and HRTs of 6.0, 12 and 24 h. respectively. The AB-MBR1 achieved 1,4 dioxane removal rate of 263.7 mg/L.d., where the residual value in the treated effluent amounted to 94.4±22.9 mg/L. Reducing the 1,4 dioxane loading rate (LR) to 320.9 mg/L.d in the AB-MBR2 maximized the removal rate efficiency of 265.9 mg/L.d., with a removal efficiency of 82.8±3.2%. The minimum value of 1,4 dioxane of 17.3±1.8 mg/L in the treated effluent of AB-MBR3 was obtained at an HRT of 24.0 h and loading rate of 160.4 mg/L.d. The mechanism of 1,4 dioxane degradation in AB-MBR was a combination of volatilization (8.03±0.6%), UV oxidation (14.1±0.9%), microbial biodegradation (49.1±3.9%) and absorption/uptake and assimilation by algae (28.8±2.%). Further, the Thioclava, Afipia, and Mycobacterium genera oxidized and produced the required enzymes for hydrolysis and cleavage of the dioxane ring into 2-hydroxy-1,4 dioxane. Moreover, the fungi, i.e., Basidiomycota and Cryptomycota, played a big role in the degradation of the 1,4 dioxane into 2-hydroxy-1,4 dioxane. Xanthobacter and Mesorhizobium were involved in the metabolism process by secreting alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and glycolate oxidase. Bacteria and fungi produced dehydrogenase (DH) for the transformation of 2-hydroxy-1,4 dioxane into 2-hydroxy-ethoxyacetaldehyde. The latter is converted into Ethylene glycol by Aldehyde hydrogenase (ALDH). Ethylene glycol is oxidized into acids using Alcohol hydrogenase (ADH). The Diatomea, Chlorophyta, and Streptophyta utilize the metabolites for biomass assimilation and produce the required oxygen for further oxidation of the dioxane and its metabolites by-products of bacteria and fungi. The major portion of metabolites (ethylene glycol, glycolic acid, and oxalic acid were removed due to uptake and absorption by algae (43±4.3%), followed by adsorption (18.4±0.9%). The volatilization and UV oxidation contribution for the degradation of metabolites were 8.7±0.7% and 12.3±0.8%, respectively. The capabilities of genera Defluviimonas, Thioclava, Luteolibacter, and Afipia. The genera of Defluviimonas, Thioclava, Luteolibacter, and Mycobacterium were grown under a high 1,4 dioxane LR of 641.7 mg/L.d. The Chlorophyta (4.1-43.6%), Streptophyta (2.5-21.7%), and Diatomea (0.8-1.4%) phyla were dominant for degradation of 1,4 dioxane. The results of this study strongly demonstrated that the bioremediation and bioaugmentation process can safely remove 1,4 dioxane from industrial wastewater while minimizing environmental concerns and reducing economic costs.Keywords: wastewater, membrane bioreactor, bacterial community, algal community
Procedia PDF Downloads 434281 Microalgae Bacteria Granules, an Alternative Technology to the Conventional Wastewater Treatment: Structural and Metabolic Characterization
Authors: M. Nita-Lazar, E. Manea, C. Bumbac, A. Banciu, C. Stoica
Abstract:
The population and economic growth have generated a significant new number of pollutant compounds which have to be degraded before reaching the environment. The wastewater treatment plants (WWTPs) have been the last barrier between the domestic and/or industrial wastewaters and the environment. At present, the conventional WWTPs have very high operational costs, most of them linked to the aeration process (60-65% from total energy costs related to wastewater treatment). In addition, they have had a low efficiency in pollutants removal such as pharmaceutical and other resilient anthropogenic compounds. In our study, we have been focused on new wastewater treatment strategies to enhance the efficiency of pollutants removal and decrease the wastewater treatment operational costs. The usage of mixed microalgae-bacteria granules technology generated high efficiency and low costs by a better harvesting and less expensive aeration. The intertrophic relationships between microalgae and bacteria have been characterized by the structure of the population community to their metabolic relationships. The results, obtained by microscopic studies, showed well-organized and stratified microalgae-bacteria granules where bacteria have been enveloped in the microalgal structures. Moreover, their population community structure has been modulated as well as their nitrification, denitrification processes (analysis based on qPCR genes expression) by the type of the pollutant compounds and amounts. In conclusion, the understanding and modulation of intertrophic relationships between microalgae and bacteria could be an economical and technological viable alternative to the conventional wastewater treatment. Acknowledgements: This research was supported by grant PN-III-P4-ID-PCE-2016-0865 from the Romanian National Authority for Scientific Research and Innovation CNCS/CCCDI-UEFISCDI.Keywords: activated sludge, bacteria, granules, microalgae
Procedia PDF Downloads 1234280 The Effects of Nanoemulsions Based on Commercial Oils: Sunflower, Canola, Corn, Olive, Soybean, and Hazelnut Oils for the Quality of Farmed Sea Bass at 2±2°C
Authors: Yesim Ozogul, Mustafa Durmuş, Fatih Ozogul, Esmeray Kuley Boğa, Yılmaz Uçar, Hatice Yazgan
Abstract:
The effects of oil-in-water nanoemulsions on the sensory, chemical (total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA), peroxide value (PV) and free fatty acids (FFA), and microbiological qualities (total viable count (TVC), total psychrophilic bacteria, and total Enterbactericaea bacteria) of sea bream fillets stored at 2 ± 2°C were investigated. Physical properties of emulsions (viscosity, the particle size of droplet, thermodynamic stability, refractive index and surface tension) were determined. The results showed that the use of nanoemulsion extended the shelf life of fish 2 days when compared with the control. Treatment with nanoemulsions significantly (p<0.05) decreased the values of biochemical parameters during storage period. Bacterial growth was inhibited by the use of nanoemulsions. Based on the results, it can be concluded that nanoemulsions based on commercial oils extended the shelf life and improved the quality of sea bass fillets during storage period.Keywords: lipid oxidation, nanoemulsion, sea bass, quality parameters
Procedia PDF Downloads 4794279 Application of Chemical Tests for the Inhibition of Scaling From Hamma Hard Waters
Authors: Samira Ghizellaoui, Manel Boumagoura
Abstract:
Calcium carbonate precipitation is a widespread problem, especially in hard water systems. The main water supply that supplies the city of Constantine with drinking water is underground water called Hamma water. This water has a very high hardness of around 590 mg/L CaCO₃. This leads to the formation of scale, consisting mainly of calcium carbonate, which can be responsible for the clogging of valves and the deterioration of equipment (water heaters, washing machines and encrustations in the pipes). Plant extracts used as scale inhibitors have attracted the attention of several researchers. In recent years, green inhibitors have attracted great interest because they are biodegradable, non-toxic and do not affect the environment. The aim of our work is to evaluate the effectiveness of a chemical antiscale treatment in the presence of three green inhibitors: gallicacid; quercetin; alginate, and three mixtures: (gallic acid-quercetin); (quercetin-alginate); (gallic acid-alginate). The results show that the inhibitory effect is manifested from an addition of 1mg/L of gallic acid, 10 mg/L of quercetin, 0.2 mg/L of alginate, 0.4mg/L of (gallic acid-quercetin), 2mg/L of (quercetin-alginate) and 0.4 mg/L of (gallic acid-alginate). On the other hand, 100 mg/L (Drinking water standard) of Ca2+is reached for partial softening at 4 mg/L of gallic acid, 40 mg/L of quercetin, 0.6mg/L of alginate, 4mg/L of (gallic acid-quercetin), 10mg/L of (quercetin-alginate) and 1.6 mg/L of (gallic acid-alginate).Keywords: water, scaling, calcium carbonate, green inhibitor
Procedia PDF Downloads 684278 Experimental Assessment of Artificial Flavors Production
Authors: M. Unis, S. Turky, A. Elalem, A. Meshrghi
Abstract:
The Esterification kinetics of acetic acid with isopropnol in the presence of sulfuric acid as a homogenous catalyst was studied with isothermal batch experiments at 60,70 and 80°C and at a different molar ratio of isopropnol to acetic acid. Investigation of kinetics of the reaction indicated that the low of molar ratio is favored for esterification reaction, this is due to the reaction is catalyzed by acid. The maximum conversion, approximately 60.6% was obtained at 80°C for molar ratio of 1:3 acid : alcohol. It was found that increasing temperature of the reaction, increases the rate constant and conversion at a certain mole ratio, that is due to the esterification is exothermic. The homogenous reaction has been described with simple power-law model. The chemical equilibrium combustion calculated from the kinetic model in agreement with the measured chemical equilibrium.Keywords: artificial flavors, esterification, chemical equilibria, isothermal
Procedia PDF Downloads 3344277 Inhibitory Impacts of Fulvic Acid-Coated Iron Oxide Nano Particles on the Amyloid Fibril Aggregations
Authors: Dalia Jomehpour, Sara Sheikhlary, Esmaeil Heydari, Mohammad Hossien Majles Ara
Abstract:
In this study, we report fulvic acid-coated iron oxide nanoparticles of 10.7 ± 2.7 nm size, which serve to inhibit amyloid fibrillation formation. Although the effect of fulvic acid on tau fibrils was investigated, to our best knowledge, its inhibitory impacts on amyloid aggregation formation have been assessed neither in-vitro nor in-vivo. On the other hand, iron oxide nanoparticles exhibit anti-amyloid activity on their own. This study investigates the inhibitory effect of fulvic acid coated iron oxide nanoparticles on amyloid aggregations formed from the commonly used in-vitro model, lysozyme from chicken egg white. FESEM, XRD, and FTIR characterization confirmed that fulvic acid was coated onto the surface of the nanoparticles. The inhibitory effects of the fulvic acid coated iron oxide nanoparticles were verified by Thioflavin T assay, circular dichroism (CD), and FESEM analysis. Furthermore, the toxicity of the nanoparticles on the neuroblastoma SH-SY5Y human cell line was assessed through an MTT assay. Our results indicate that fulvic acid coated iron oxide nanoparticles can efficiently inhibit the formation of amyloid aggregations while exhibiting negligible in-vitro toxicity; thus, they can be used as anti-amyloid agents in the development of the potential drug for neurodegenerative diseases.Keywords: Alzheimer’s disease, fulvic acid coated iron oxide nanoparticles, fulvic acid, amyloid inhibitor, polyphenols
Procedia PDF Downloads 1124276 A FR Fire-Off with Polysilicic Acid for Pes/Co Blends
Authors: Raziye Atakan, Ebru Celebi, Gulay Ozcan, Neda Soydan, A. Sezai Sarac
Abstract:
In this study, a novel polymeric flame retardant chemical with phosphorous-nitrogen synergism was synthesized by polyvinyl alcohol (PVA), hydrophilic polyester resin (PR), phosphoric acid and dicyandiamide (DCDA). Polyester/Cotton (Pes/Co) blend fabrics were treated via pad-dry-cure process with this synthesized chemical. PVA (PR)-P-DCDA has shown that it is an effective flame retardant on the fabrics. In order to improve durable flame retardancy for cotton part of the blend, polysilicic acid and citric acid monohydrate auxiliaries were added in FR finishing bath at different concentrations. Flammability and characteristic properties of the sample were tested according to relevant ISO standard and procedures. To do so, ISO 6940 vertical flammability test, TGA, DTA, LOI and FTIR analysis have been performed. The obtained results showed that this new finishing formulation is a good char-forming agent for the PES/CO blends and polysilicic acid could be used for cellulosic blends with PVA (PR)-P-DCDA.Keywords: flame retardancy, flammability, Pes/Co blends, polysilicic acid
Procedia PDF Downloads 4154275 Esterification Reaction of Stearic Acid with Methanol Over Surface Functionalised PAN Fibrous Solid Acid Catalyst
Authors: Rawaz A. Ahmed, Katherine Huddersman
Abstract:
High-lipid Fats, Oils and Grease (FOGs) from wastewater are underutilized despite their potential for conversion into valuable fuels; this work describes a surface-functionalized fibrous Polyacrylonitrile (PAN) mesh as a novel heterogeneous acid catalyst for the conversion of free fatty acids (FFAs), via a catalytic esterification process into biodiesel. The esterification of stearic acid (SA) with methanol was studied over an acidified PAN solid acid catalyst. Disappearance of the carboxylic acid (C=O) peak of the stearic acid at 1696 cm-1 in the FT-IR spectrum with the associated appearance of the ester (C=O) peak at 1739 cm-1 confirmed the production of the methyl stearate. This was further supported by 1H NMR spectra with the appearance of the ester (-CH₂OCOR) at 3.60-3.70 ppm. Quantitate analysis by GC-FID showed the catalyst has excellent activity with >95 % yield of methyl stearate (MS) at 90 ◦C after 3 h and a molar ratio of methanol to SA of 35:1. To date, to our best knowledge, there is no research in the literature on the esterification reaction for biodiesel production using a modified PAN mesh as a catalyst. It is noteworthy that this acidified PAN mesh catalyst showed comparable activity to conventional Brönsted acids, namely H₂SO₄ and p-TSA, as well as exhibiting higher activity than various other heterogeneous catalysts such as zeolites, ion-exchange resins and acid clay.Keywords: fats oil and greases (FOGs), free fatty acid, esterification reaction, methyl ester, PAN
Procedia PDF Downloads 2424274 Bacteriocin-Antibiotic Synergetic Consortia: Augmenting Antimicrobial Activity and Expanding the Inhibition Spectrum of Vancomycin Resistant and Methicillin Resistant Staphylococcus aureus
Authors: Asma Bashir, Neha Farid, Kashif Ali, Kiran Fatima
Abstract:
Background: Bacteriocins are a subclass of antimicrobial peptides that are becoming extremely important in treatments. It is possible to utilise bacteriocins in place of or in addition to traditional antibiotics. It is possible to treat a variety of infections, including Vancomycin-Resistant Staphylococcus aureus (VRSA) and Methicillin-Resistant Staphylococcus aureus (MRSA), using the targeted spectrum of activity of these microorganisms. Method: This study aimed to examine the efficiency of antibiotics and bacteriocin against VRSA and MRSA. The effects of bacteriocins, such as enterocin KAE01, enterocin KAE03, enterocin KAE05, and enterocin KAE06 isolated from Enterococcus faecium strains, alone and in combination with vancomycin and methicillin antibiotics were examined. The selection technique utilized the minimum inhibitory concentrations (MICs) against Gram-positive indicator strain ATCC 6538 Methicillin-Resistant Staphylococcus aureus (MRSA) and indicator strain KSA 02 Vancomycin-Resistant Staphylococcus aureus (VRSA). Results: We report the isolation and identification of enterocins KAE01, KAE03, KAE05, and KAE06 from food isolates of Enterococcus faecium (KAE01, KAE03, KAE05, and KAE06). After isolating the protein, it was partially purified with ammonium sulphate precipitation and purified with fast protein liquid chromatography (FPLC) procedures. Combinations of enterocin KAE01, 1 citric acid, 1 lactic acid, and microcin J25, 1 reuterin, 1 citric acid, and microcin J25, 1 reuterin, 1 lactic acid shown synergistic benefits (FIC index = 0.5) against Vancomycin-Resistant Staphylococcus aureus (VRSA). In addition, a moderately synergistic (FIC index = 0.75) interaction was seen between pediocin PA-1, 1 citric acid, 1 lactic acid, and reuterin 1 citric acid, 1 lactic acid against L. ivanovii HPB28. In the presence of acids, nisin Z exhibited a modestly synergistic effect (FIC index = 0.625-0.75); however, it exhibited additive effects (FIC index = 1) when combined with reuterin or pediocin PA-1 against L. ivanovii HPB28. The efficacy of synergistic consortiums against Gram-positive bacteria was examined. Conclusion: Combining antimicrobials with various modes of action boosted efficacy and expanded the spectrum of inhibition, particularly against multidrug-resistant pathogens, according to our research.Keywords: Enterococcus faecium, bacteriocin, antimicrobial resistance, antagonistic activity, vancomycin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus aureus
Procedia PDF Downloads 1484273 Engineering Escherichia coli for Production of Short Chain Fatty Acid by Exploiting Fatty Acid Metabolic Pathway
Authors: Kamran Jawed, Anu Jose Mattam, Zia Fatma, Saima Wajid, Malik Z. Abdin, Syed Shams Yazdani
Abstract:
Worldwide demand of natural and sustainable fuels and chemicals have encouraged researchers to develop microbial platform for synthesis of short chain fatty acids as they are useful precursors to replace petroleum-based fuels and chemicals. In this study, we evaluated the role of fatty acid synthesis and β-oxidation cycle of Escherichia coli to produce butyric acid, a 4-carbon short chain fatty acid, with the help of three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron. We found that E. coli strain transformed with gene for TesBT and grown in presence of 8 g/L glucose produced maximum butyric acid titer at 1.46 g/L, followed by that of TesBF at 0.85 g/L and TesAT at 0.12 g/L, indicating that these thioesterases were efficiently converting short chain fatty acyl-ACP intermediate of fatty acid synthesis pathway into the corresponding acid. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. Deletion of genes for fatty acyl-CoA synthetase and acyl-CoA dehydrogenase, which are involved in initiating the fatty acid degradation cycle, and overexpression of FadR, which is a dual transcriptional regulator and exerts negative control over fatty acid degradation pathway, reduced up to 30% of butyric acid titer. This observation suggested that β-oxidation pathway is working synergistically with fatty acid synthesis pathway in production of butyric acid. Moreover, accelerating the fatty acid elongation cycle by overexpressing acetyl-CoA carboxyltransferase (Acc) and 3-hydroxy-acyl-ACP dehydratase (FabZ) or by deleting FabR, the transcription suppressor of elongation, did not improve the butyric acid titer, rather favored the long chain fatty acid production. Finally, a balance between cell growth and butyric acid production was achieved with the use of phosphorous limited growth medium and 14.3 g/L butyric acid, and 17.5 g/L total free fatty acids (FFAs) titer was achieved during fed-batch cultivation. We have engineered an E. coli strain which utilizes the intermediate of both fatty acid synthesis and degradation pathway, i.e. butyryl-ACP and -CoA, to produce butyric acid from glucose. The strategy used in this study resulted in highest reported titers of butyric acid and FFAs in engineered E. coli.Keywords: butenoic acid, butyric acid, Escherichia coli, fed-batch fermentation, short chain fatty acids, thioesterase
Procedia PDF Downloads 3714272 Evaluating Antimicrobial Activity of Selenium Nanoparticles Against Food-Borne Bacteria
Authors: Qunying Yuan, Manjula Bomma, Adrian Rhoden, Zhigang Xiao
Abstract:
Selenium is an essential micronutrient for all mammals and plays an important role in maintaining human physiological functions. The potential applications of selenium as food supplements, cancer-prevention, antimicrobial and anti-inflammatory agents have been investigated in biomedicine and food sciences. Nanoscale of selenium is of particular interest due to its better biocompatibility, higher bioavailability, lower toxicity, more homogeneous distribution, and presumptive controlled release of substances. The objective of this study is to explore whether selenium nanoparticle (SeNP) has the potential to be used as a food preservative to reduce food spoilage. SeNPs were synthesized through ascorbic acid reduction of sodium selenite using the bovine serum albumin (BSA) as capping and stabilizing agent. The chemically synthesized SeNPs had a spherical conformation and a size of 22.8 ± 4.7 nm. FTIR analysis confirmed that the nanoparticles were covered with BSA. We further tested the antimicrobial activity of these SeNPs against common food-borne bacteria. Colony forming unit assay showed that SeNPs exhibited good inhibition on the growth of Listeria Monocytogens (ATCC15313), Staphylococcus epidermidis (ATCC 700583) starting at 0.5µg/mL, but only a moderate inhibitory effect on the growth of Staphylococcus aureus (ATCC12600) and Vibrio alginolyticus (ATCC 33787) at a concentration higher than 10µg/mL and 2.5µg/mL, respectively. There was a mild effect against the growth Salmonella enterica (ATCC19585) when the concentration reached 15µg/mL. No inhibition was observed in the growth of Enterococcus faecalis (ATCC 19433). Surprisingly, SeNPs appeared to promote the growth of Vibrio parahaemolyticus (ATCC43996) and Salmonella enterica (ATCC49284) at 30 µg/mL and above. Our preliminary data suggested that the chemically synthesized SeNPs may be able to inhibit some food-borne bacteria, and SeNP as a food preservative should be used with caution. We will explore the mechanisms of the inhibitory action of chemically synthesized SeNPs on bacterial growth and whether the SeNPs are able to inhibit the development of biofilm and antibiotic resistance.Keywords: antimicrobial, food-borne bacteria, nanoparticles, selenium
Procedia PDF Downloads 934271 Effects of Microbiological and Physicochemical Processes on the Quality of Complementary Foods Based on Maize (Zea mays) Fortification with Bambara Groundnut (Vigna subterranea)
Authors: T. I. Mbata, M. J. Ikenebomeh
Abstract:
Background: The study was aim at formulating a complementary foods based on maize and bambara groundnut with a view of reducing malnutrition in low income families. Protein-energy malnutrition is a major health challenge attributed to the inappropriate complementary feeding practices, low nutritional quality of traditional complementary foods and high cost of quality protein-based complementary foods. Methods: The blends 70% maize, 30% bambara groundnut were evaluated for proximate analyses, minerals, amino acids profile, and antinutritional factors, using proprietary formula (‘Nutrend’) as standard. Antinutritional factors, amino acids, microbiological properties and sensory attributes were determined using standard methods. Results; For Protein, the results were 15.0% for roasted bambara groundnut maize germinated flour (RBMGF), 13.80% for cooked bambara groundnut maize germinated flour (CBMGF), 15.18% for soaked bambara groundnut maize germinated flour (SBMGF); values for maize flour and nutrend had 10.4% and 23.21% respectively. With respect to energy value, RBMGF, CBMGF, SBMGF, maize flour and nutrend had 494.9, 327.58, 356.49, 366.8 and 467.2 kcal respectively. The percentages of total essential amino acids in the composition of the blends were 36.9%, 40.7% and 38.9% for CBMGF, SBMGF and RBMGF, respectively, non-essential amino acids contents were 63.1%, 59.3% and 61.1% for CBMGF, SBMGF and RBMGF respectively. The mineral content, that is, calcium, potassium, magnesium and sodium, of formulated samples were higher than those obtained for maize flour and Nutrend. The antinutrient composition of RBMGF and CBMGF were lower than of SBMGF. The rats fed with the control diet exhibited better growth performance such as feed intake (1527 g) and body weight gain (93.8 g). For the microbial status, microflora gradually changed from gram negative enteric bacteria, molds, lactic acid bacteria and yeast to be dominated by gram positive lactic acid bacteria (LAB) and yeasts. Yeasts and LAB growth counts in the complementary food varied between 4.44 and 7.36 log cfu/ml. LAB number increased from 5.40 to 7.36 log cfu/ml during fermentation. Yeasts increased from 4.44 to 5.60 log cfu/ml. Organoleptic evaluation revealed that the foods were well accepted. Conclusion: Based on the findings the application of bambara groundnut fortification to traditional foods can promote the nutritional quality of African maize - based traditional foods with acceptable rheological and cooking qualities.Keywords: bambara groundnut, maize, fortification, complementary food
Procedia PDF Downloads 3584270 Prediction of the Solubility of Benzoic Acid in Supercritical CO2 Using the PC-SAFT EoS
Authors: Hamidreza Bagheri, Alireza Shariati
Abstract:
There are many difficulties in the purification of raw components and products. However, researchers are seeking better ways for purification. One of the recent methods is extraction using supercritical fluids. In this study, the phase equilibria of benzoic acid-supercritical carbon dioxide system were investigated. Regarding the phase equilibria of this system, the modeling of solid-supercritical fluid behavior was performed using the Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) and Peng-Robinson equations of state (PR EoS). For this purpose, five PC-SAFT EoS parameters for pure benzoic acid were obtained using its experimental vapor pressure. Benzoic acid has association sites and the behavior of the benzoic acid-supercritical fluid system was well-predicted using both equations of state, while the binary interaction parameter values for PR EoS were negative. Genetic algorithm, which is one of the most accurate global optimization algorithms, was also used to optimize the pure benzoic acid parameters and the binary interaction parameters. The AAD% value for the PC-SAFT EoS, were 0.22 for the carbon dioxide-benzoic acid system.Keywords: supercritical fluids, solubility, solid, PC-SAFT EoS, genetic algorithm
Procedia PDF Downloads 521