Search results for: mechanical and physicochemical properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10637

Search results for: mechanical and physicochemical properties

8027 Phosphate Sludge Ceramics: Effects of Firing Cycle Parameters on Technological Properties and Ceramic Suitability

Authors: Mohamed Loutou, Mohamed Hajjaji, Mohamed Ait Babram, Mohammed Mansori, Rachid Hakkou, Claude Favotto

Abstract:

More than 26,4 million tons of phosphates are produced by the phosphates industries in Morocco (2010), generating huge amounts of sludge by flocculation during the ore beneficiation. They way are stored at the end of the process in open air ponds. Its accumulation and storage may have an impact on several scales such as ground water and human being. For this purpose, an efficient way to use it the field of the ceramic is proposed. The as received sludge and a clay-rich sediment have been studied in terms of chemical, mineralogical and micro-structural side using various analytical methods. Several formulations have been performed by mixing the sludge with the binder shaped in the form of granules. After being dried at 105 °C, the samples were heated in the range of 900-1200 °C. As well as the ceramic properties (firing shrinkage, water absorption, total porosity and compressive strength) the micro structure has been investigated using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The relations between properties and the operating factors were formulated using the design of experiments (DOE). Gehlenite was the only phase neo-formed in the sintering samples. SEM micrographs revealed the presence of nano metric stains. Based on RSM results, all factors had positive effects on Firing shrinkage, compressive strength and total porosity. However, they manifested opposite effects on density and water absorption.

Keywords: phosphate sludge, clay, ceramic properties, granule

Procedia PDF Downloads 497
8026 Synthesis, Structure and Properties of NZP/NASICON Structured Materials

Authors: E. A. Asabina, V. I. Pet'kov, P. A. Mayorov, A. V. Markin, N. N. Smirnova, A. M. Kovalskii, A. A. Usenko

Abstract:

The purpose of this work was to synthesize and investigate phase formation, structure and thermophysical properties of the phosphates M0.5+xM'xZr2–x(PO4)3 (M – Cd, Sr, Pb; M' – Mg, Co, Mn). The compounds were synthesized by sol-gel method. The results showed formation of limited solid solutions of NZP/NASICON type. The crystal structures of triple phosphates of the compositions MMg0.5Zr1.5(PO4)3 were refined by the Rietveld method using XRD data. Heat capacity (8–660 K) of the phosphates Pb0.5+xMgxZr2-x(PO4)3 (x = 0, 0.5) was measured, and reversible polymorphic transitions were found at temperatures, close to the room temperature. The results of Rietveld structure refinement showed the polymorphism caused by disordering of lead cations in the cavities of NZP/NASICON structure. Thermal expansion (298−1073 K) of the phosphates MMg0.5Zr1.5(PO4)3 was studied by XRD method, and the compounds were found to belong to middle and low-expanding materials. Thermal diffusivity (298–573 K) of the ceramic samples of phosphates slightly decreased with temperature increasing. As was demonstrated, the studied phosphates are characterized by the better thermophysical characteristics than widespread fire-resistant materials, such as zirconia and etc.

Keywords: NASICON, NZP, phosphate, structure, synthesis, thermophysical properties

Procedia PDF Downloads 133
8025 Testing Psychopathy as a Unified Theory of Crime and the Psychometric properties of the Youth Psychopathic Traits Inventory - Short Version among South African Youth

Authors: Leon Holtzhausen, Emma Campbell

Abstract:

This study aimed to explore the psychometric properties of the Youth Psychopathic Traits Inventory- short version (YPI-S) and the applicability of Psychopathy as a Unified Theory of Crime among 213 young adults in South Africa. The deviant behaviour variety scale and the YPI-S were used in this study. Results from factor analysis and reliability measures indicated the YPI-S seemed to have good psychometric properties when applied to the South African sample, however applicability of the behavioural dimension was a challenge. The results related to the association between deviant behaviours and psychopathic traits suggested that Psychopathy as a Unified Theory of Crime could be applied in the South African context. It is however important to note that future research should explore how the relevant scales could be culturally and contextually adapted for better psychometric outcomes.

Keywords: testing psychopathy, adverse childhood experiences, youth psychopathic traits inventory, young adults

Procedia PDF Downloads 59
8024 Investigating the Properties of Asphalt Concrete Containing Recycled Fillers

Authors: Hasan Taherkhani

Abstract:

Increasingly accumulation of the solid waste materials has become a major environmental problem of communities. In addition to the protection of environment, the recycling and reusing of the waste materials are financially beneficial. Waste materials can be used in highway construction. This study aimed to investigate the applicability of recycled concrete, asphalt and steel slag powder, as a replacement of the primary mineral filler in asphalt concrete has been investigated. The primary natural siliceous aggregate filler, as control, has been replaced with the secondary recycled concrete, asphalt and steel slag powders, and some engineering properties of the mixtures have been evaluated. Marshal Stability, flow, indirect tensile strength, moisture damage, static creep and volumetric properties of the mixtures have been evaluated. The results show that, the Marshal Stability of the mixtures containing recycled powders is higher than that of the control mixture. The flow of the mixtures containing recycled steel slag is lower, and that of the mixtures containing recycled asphalt and cement concrete powder is found to be higher than that of the control mixture. It is also found that the resistance against moisture damage and permanent deformation of the mixture can be improved by replacing the natural filler with the recycled powders. The volumetric properties of the mixtures are not significantly influenced by replacing the natural filler with the recycled powders.

Keywords: filler, steel slag, recycled concrete, recycled asphalt concrete, tensile strength, moisture damage, creep

Procedia PDF Downloads 266
8023 Review on Wear Behavior of Magnesium Matrix Composites

Authors: Amandeep Singh, Niraj Bala

Abstract:

In the last decades, light-weight materials such as magnesium matrix composites have become hot topic for material research due to their excellent mechanical and physical properties. However, relatively very less work has been done related to the wear behavior of these composites. Magnesium matrix composites have wide applications in automobile and aerospace sector. In this review, attempt has been done to collect the literature related to wear behavior of magnesium matrix composites fabricated through various processing techniques such as stir casting, powder metallurgy, friction stir processing etc. Effect of different reinforcements, reinforcement content, reinforcement size, wear load, sliding speed and time have been studied by different researchers in detail. Wear mechanism under different experimental condition has been reviewed in detail. The wear resistance of magnesium and its alloys can be enhanced with the addition of different reinforcements. Wear resistance can further be enhanced by increasing the percentage of added reinforcements. Increase in applied load during wear test leads to increase in wear rate of magnesium composites.

Keywords: hardness, magnesium matrix composites, reinforcement, wear

Procedia PDF Downloads 316
8022 On the Quantum Behavior of Nanoparticles: Quantum Theory and Nano-Pharmacology

Authors: Kurudzirayi Robson Musikavanhu

Abstract:

Nanophase particles exhibit quantum behavior by virtue of their small size, being particles of gamma to x-ray wavelength [atomic range]. Such particles exhibit high frequencies, high energy/photon, high penetration power, high ionization power [atomic behavior] and are stable at low energy levels as opposed to bulk phase matter [macro particles] which exhibit higher wavelength [radio wave end] properties, hence lower frequency, lower energy/photon, lower penetration power, lower ionizing power and are less stable at low temperatures. The ‘unique’ behavioral motion of Nano systems will remain a mystery as long as quantum theory remains a mystery, and for pharmacology, pharmacovigilance profiling of Nano systems becomes virtually impossible. Quantum theory is the 4 – 3 – 5 electromagnetic law of life and life motion systems on planet earth. Electromagnetic [wave-particle] properties of all particulate matter changes as mass [bulkiness] changes from one phase to the next [Nano-phase to micro-phase to milli-phase to meter-phase to kilometer phase etc.] and the subsequent electromagnetic effect of one phase particle on bulk matter [different phase] changes from one phase to another. All matter exhibit electromagnetic properties [wave-particle duality] in behavior and the lower the wavelength [and the lesser the bulkiness] the higher the gamma ray end properties exhibited and the higher the wavelength [and the greater the bulkiness], the more the radio-wave end properties are exhibited. Quantum theory is the 4 [moon] – 3[sun] – [earth] 5 law of the Electromagnetic spectrum [solar system]. 4 + 3 = 7; 4 + 3 + 5 = 12; 4 * 3 * 5 = 60; 42 + 32 = 52; 43 + 33 + 53 = 63. Quantum age is overdue.

Keywords: electromagnetic solar system, nano-material, nano pharmacology, pharmacovigilance, quantum theory

Procedia PDF Downloads 436
8021 Solvent Extraction in Ionic Liquids: Structuration and Aggregation Effects on Extraction Mechanisms

Authors: Sandrine Dourdain, Cesar Lopez, Tamir Sukhbaatar, Guilhem Arrachart, Stephane Pellet-Rostaing

Abstract:

A promising challenge in solvent extraction is to replace the conventional organic solvents, with ionic liquids (IL). Depending on the extraction systems, these new solvents show better efficiency than the conventional ones. Although some assumptions based on ions exchanges have been proposed in the literature, these properties are not predictable because the involved mechanisms are still poorly understood. It is well established that the mechanisms underlying solvent extraction processes are based not only on the molecular chelation of the extractant molecules but also on their ability to form supra-molecular aggregates due to their amphiphilic nature. It is therefore essential to evaluate how IL affects the aggregation properties of the extractant molecules. Our aim is to evaluate the influence of IL structure and polarity on solvent extraction mechanisms, by looking at the aggregation of the extractant molecules in IL. We compare extractant systems that are well characterized in common solvents and show thanks to SAXS and SANS measurements, that in the absence of IL ion exchange mechanisms, extraction properties are related to aggregation.

Keywords: solvent extraction in Ionic liquid, aggregation, Ionic liquids structure, SAXS, SANS

Procedia PDF Downloads 146
8020 Structural and Magnetic Properties of CoFe2O4:Nd3+/Dy3+/Pr3+/Gd3+ Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method and Annealing Effect

Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jaromir Havlica, Zuzana Kozakova, Jiri Masilko, Lukas Kalina, Miroslava Hajdúchová, Vojtěch Enev, Jaromir Wasserbauer

Abstract:

In this work, we investigated the structural and magnetic properties of CoFe2O4:Nd3+/Dy3+/Pr3+/Gd3+ nanoparticles synthesized by starch-assisted sol-gel combustion method. X-ray diffraction pattern confirmed the formation of cubic spinel structure of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) doped CoFe2O4 spinel ferrite nanoparticles. Raman and Fourier Transform Infrared spectroscopy study also confirmed cubic spinel structure of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles. The field emission scanning electron microscopy study revealed the effect of annealing temperature on size of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles and particles were in the range of 10-100 nm. The magnetic properties of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles were investigated by using vibrating sample magnetometer. The variation in saturation magnetization, coercivity and remanent magnetization with annealing temperature/ particle size of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles was observed. Acknowledgment: This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).

Keywords: starch, sol-gel combustion method, rare-earth ions, spinel ferrite nanoparticles, magnetic properties

Procedia PDF Downloads 341
8019 Application of Recycled Tungsten Carbide Powder for Fabrication of Iron Based Powder Metallurgy Alloy

Authors: Yukinori Taniguchi, Kazuyoshi Kurita, Kohei Mizuta, Keigo Nishitani, Ryuichi Fukuda

Abstract:

Tungsten carbide is widely used as a tool material in metal manufacturing process. Since tungsten is typical rare metal, establishment of recycle process of tungsten carbide tools and restore into cemented carbide material bring great impact to metal manufacturing industry. Recently, recycle process of tungsten carbide has been developed and established gradually. However, the demands for quality of cemented carbide tool are quite severe because hardness, toughness, anti-wear ability, heat resistance, fatigue strength and so on should be guaranteed for precision machining and tool life. Currently, it is hard to restore the recycled tungsten carbide powder entirely as raw material for new processed cemented carbide tool. In this study, to suggest positive use of recycled tungsten carbide powder, we have tried to fabricate a carbon based sintered steel which shows reinforced mechanical properties with recycled tungsten carbide powder. We have made set of newly designed sintered steels. Compression test of sintered specimen in density ratio of 0.85 (which means 15% porosity inside) has been conducted. As results, at least 1.7 times higher in nominal strength in the amount of 7.0 wt.% was shown in recycled WC powder. The strength reached to over 600 MPa for the Fe-WC-Co-Cu sintered alloy. Wear test has been conducted by using ball-on-disk type friction tester using 5 mm diameter ball with normal force of 2 N in the dry conditions. Wear amount after 1,000 m running distance shows that about 1.5 times longer life was shown in designed sintered alloy. Since results of tensile test showed that same tendency in previous testing, it is concluded that designed sintered alloy can be used for several mechanical parts with special strength and anti-wear ability in relatively low cost due to recycled tungsten carbide powder.

Keywords: tungsten carbide, recycle process, compression test, powder metallurgy, anti-wear ability

Procedia PDF Downloads 239
8018 Analysis and Treatment of Sewage Treatment Plant Wastewater of El-Karma, Oran

Authors: Larbi Hammadi, Abdellatif El Bari Tidjani

Abstract:

In order to reduce the flow of pollutants in the wastewater of the urban agglomerations of the city of Oran, a preliminary study was carried out at the El-Karma wastewater treatment plant. The primary objective of this study was to estimate the overall physicochemical pollution in the effluents of the El-Karma sewage treatment plant wastewater. It was found that the effluent of El-Karma wastewater treatment plant contains a significant amount of insoluble. Total suspended soli TSS concentrations ranged from 112 to 475 mg/l, with an average of 220.5 mg/l. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD₅) values remain within the reference range for domestic wastewater with an average value of COD < 125 and BOD₅ < 25. The COD/BOD₅ ratio of raw water entering the treatment plant is less than 2. This ratio would predict that the raw sewage from the El-Karma treatment plant is polluted by inorganic pollution strong enough.

Keywords: El-Karma wastewater, TSS concentrations, COD and BOD5, COD/BOD5 ratio, treatment

Procedia PDF Downloads 250
8017 The Permutation of Symmetric Triangular Equilateral Group in the Cryptography of Private and Public Key

Authors: Fola John Adeyeye

Abstract:

In this paper, we propose a cryptosystem private and public key base on symmetric group Pn and validates its theoretical formulation. This proposed system benefits from the algebraic properties of Pn such as noncommutative high logical, computational speed and high flexibility in selecting key which makes the discrete permutation multiplier logic (DPML) resist to attack by any algorithm such as Pohlig-Hellman. One of the advantages of this scheme is that it explore all the possible triangular symmetries. Against these properties, the only disadvantage is that the law of permutation multiplicity only allow an operation from left to right. Many other cryptosystems can be transformed into their symmetric group.

Keywords: cryptosystem, private and public key, DPML, symmetric group Pn

Procedia PDF Downloads 193
8016 Modified Surface Morphology, Structure and Enhanced Weathering Performance of Polyester-Urethane/Organoclay Nanocomposite Coatings

Authors: Gaurav Verma

Abstract:

Organoclay loaded (0-5 weight %) polyester-urethane (PU) coatings were prepared with a branched hydroxyl-bearing polyester and an aliphatic poly-isocyanate. TEM micrographs show partial exfoliation and intercalation of clay platelets in organoclay-polyester dispersions. AFM surface images reveals that the PU hard domains tend to regularise and also self-organise into spherical shapes of sizes 50 nm (0 wt %), 60 nm (2 wt %) and 190 nm (4 wt %) respectively. IR analysis shows that PU chains have increasing tendency to interact with exfoliated clay platelets through hydrogen bonding. This interaction strengthens inter-chain linkages in PU matrix and hence improves anti-ageing properties. 1000 hours of accelerated weathering was evaluated by ATR spectroscopy, while yellowing and overall discoloration was quantified by the Δb* and ΔE* values of the CIELab colour scale. Post-weathering surface properties also showed improvement as the loss of thickness and reduction in gloss in neat PU was 25% and 42%; while it was just 3.5% and 14% respectively for the 2 wt% nanocomposite coating. This work highlights the importance of modifying surface and bulk properties of PU coatings at nanoscale, which led to improved performance in accelerated weathering conditions.

Keywords: coatings, AFM, ageing, spectroscopy

Procedia PDF Downloads 443
8015 Heat Treatment on Malaysian Hardwood Timbers: The Effect of Heat Exposure at Different Levels of Temperature on Bending Strength Properties

Authors: Nur Ilya Farhana Md Noh, Zakiah Ahmad

Abstract:

Heat treatment on timbers is a process of applying heat to modify and equip the timbers with new improvised characteristics. It is environmental friendly compared to the common practice of treating timber by chemical preservatives. Malaysian hardwood timbers; Pauh Kijang and Kapur in green condition were heat treated at 150°C, 170°C, 190°C and 210°C in a specially design electronic furnace in one hour duration. The objectives were to determine the effect of heat treatment on bending strength properties of heat treated Pauh Kijang and Kapur in term of Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) and to examine the significance changes at each temperature levels applied. Untreated samples for each species were used as a control sample. The results indicated that the bending strength properties for both species of timbers were affected by the heat exposure. Both MOE and MOR values for heat treated Pauh Kijang were increased when subjected to the specified temperature levels except at 210°C. The values were dropped compared to the control sample and sample treated at 190°C. Heat treated Kapur shows the same pattern of increment on its MOE and MOR values after exposure to heat at three temperature levels used and the values dropped at 210°C. However, differ to Pauh Kijang, even though there were decrement occurred at 210°C but the value is still higher compared to the control sample. The increments of MOE and MOR values are an indicator that heat treatment had successfully improvised the bending strength properties of these two species of hardwood timber. As the good strength of Malaysian timbers used as structural material is limited in numbers and expensive, heat treating timber with low strength properties is an alternative way to overcome this issue. Heat treatment is an alternative method need to be explored and made available in Malaysia as this country is still practicing chemical preservative treatment on the timbers.

Keywords: bending strength, hardwood timber, heat treatment, modulus of elasticity (MOE), modulus of rupture (MOR)

Procedia PDF Downloads 253
8014 Analysis of Transformer by Gas and Moisture Sensor during Laboratory Time Monitoring

Authors: Miroslav Gutten, Daniel Korenciak, Milan Simko, Milan Chupac

Abstract:

Ensure the reliable and correct function of transformers is the main essence of on-line non-destructive diagnostic tool, which allows the accurately track of the status parameters. Devices for on-line diagnostics are very costly. However, there are devices, whose price is relatively low and when used correctly, they can be executed a complex diagnostics. One of these devices is sensor HYDRAN M2, which is used to detect the moisture and gas content in the insulation oil. Using the sensor HYDRAN M2 in combination with temperature, load measurement, and physicochemical analysis can be made the economically inexpensive diagnostic system, which use is not restricted to distribution transformers. This system was tested in educational laboratory environment at measured oil transformer 22/0.4 kV. From the conclusions referred in article is possible to determine, which kind of fault was occurred in the transformer and how was an impact on the temperature, evolution of gases and water content.

Keywords: transformer, diagnostics, gas and moisture sensor, monitoring

Procedia PDF Downloads 373
8013 Pilot Scale Production and Compatibility Criteria of New Self-Cleaning Materials

Authors: Jonjaua Ranogajec, Ognjen Rudic, Snezana Pasalic, Snezana Vucetic, Damir Cjepa

Abstract:

The paper involves a chain of activities from synthesis, establishment of the methodology for characterization and testing of novel protective materials through the pilot production and application on model supports. It summarizes the results regarding the development of the pilot production protocol for newly developed self-cleaning materials. The optimization of the production parameters was completed in order to improve the most important functional properties (mineralogy characteristics, particle size, self-cleaning properties and photocatalytic activity) of the newly designed nanocomposite material.

Keywords: pilot production, self-cleaning materials, compatibility, cultural heritage

Procedia PDF Downloads 383
8012 Metal Ions Cross-Linking of Epoxidized Natural Rubber

Authors: Kriengsak Damampai, Skulrat Pichaiyut, Amit Das, Charoen Nacason

Abstract:

The curing of epoxidized natural rubber (ENR) was performed by using metal ions (Ferric chloride, FeCl₃). Two different mole% of epoxide were used there are 25 mole% (ENR-25) and 50 mole% (ENR-50) epoxizied natural rubber. The main aim of this work was investigated the influence of metal ions on the coordination reaction of epoxidized natural rubber. Also, cure characteristics and mechanical properties of the rubber compounds were investigated. It was found that the ENR-50 compounds indicated superior modulus and tensile strength than the ENR-25 compounds. This was attributed to higher the cross-linking in the rubber via coordination linkages between the oxidation groups in ENR molecule and FeCl₃of metal ions. Various quantities of FeCl3 were also investigated. It is seen that the ENR-25 and 50 mole% compounds with FeCl₃ of more than 3 mmol exhibited higher modulus and tensile strength compare to the pure ENR. Furthermore, the FTIR spectra was used to confirm the cross-linked of ENR with FeCl₃.

Keywords: Epoxidized natural rubber, Ferric chloride, cross-linking, Coordination

Procedia PDF Downloads 72
8011 Synthesis and Characterization of Carboxymethyl Cellulose-Chitosan Based Composite Hydrogels for Biomedical and Non-Biomedical Applications

Authors: K. Uyanga, W. Daoud

Abstract:

Hydrogels have attracted much academic and industrial attention due to their unique properties and potential biomedical and non-biomedical applications. Limitations on extending their applications have resulted from the synthesis of hydrogels using toxic materials and complex irreproducible processing techniques. In order to promote environmental sustainability, hydrogel efficiency, and wider application, this study focused on the synthesis of composite hydrogels matrices from an edible non-toxic crosslinker-citric acid (CA) using a simple low energy processing method based on carboxymethyl cellulose (CMC) and chitosan (CSN) natural polymers. Composite hydrogels were developed by chemical crosslinking. The results demonstrated that CMC:2CSN:CA exhibited good performance properties and super-absorbency 21× its original weight. This makes it promising for biomedical applications such as chronic wound healing and regeneration, next generation skin substitute, in situ bone regeneration and cell delivery. On the other hand, CMC:CSN:CA exhibited durable well-structured internal network with minimum swelling degrees, water absorbency, excellent gel fraction, and infra-red reflectance. These properties make it a suitable composite hydrogel matrix for warming effect and controlled and efficient release of loaded materials. CMC:2CSN:CA and CMC:CSN:CA composite hydrogels developed also exhibited excellent chemical, morphological, and thermal properties.

Keywords: citric acid, fumaric acid, tartaric acid, zinc nitrate hexahydrate

Procedia PDF Downloads 131
8010 The Effect of Treated Waste-Water on Compaction and Compression of Fine Soil

Authors: M. Attom, F. Abed, M. Elemam, M. Nazal, N. ElMessalami

Abstract:

—The main objective of this paper is to study the effect of treated waste-water (TWW) on the compaction and compressibility properties of fine soil. Two types of fine soils (clayey soils) were selected for this study and classified as CH soil and Cl type of soil. Compaction and compressibility properties such as optimum water content, maximum dry unit weight, consolidation index and swell index, maximum past pressure and volume change were evaluated using both tap and treated waste water. It was found that the use of treated waste water affects all of these properties. The maximum dry unit weight increased for both soils and the optimum water content decreased as much as 13.6% for highly plastic soil. The significant effect was observed in swell index and swelling pressure of the soils. The swell indexed decreased by as much as 42% and 33% for highly plastic and low plastic soils, respectively, when TWW is used. Additionally, the swelling pressure decreased by as much as 16% for both soil types. The result of this research pointed out that the use of treated waste water has a positive effect on compaction and compression properties of clay soil and promise for potential use of this water in engineering applications. Keywords—Consolidation, proctor compaction, swell index, treated waste-water, volume change.

Keywords: consolidation, proctor compaction, swell index, treated waste-water, volume change

Procedia PDF Downloads 251
8009 Effect of Heat Treatment on the Hardness and Abrasiveness of Almandine and Pyrope Garnet for Water-Cutting of Marble

Authors: Mahmoud Rabh

Abstract:

Garnet has been used for decades as an abrasive in water jet cutting and sand blasting because of its superior physical properties. When added to use in water-cutting process of marble. A standard commercial sample of the mineral was tested in terms of the hardness and abrasiveness properties. The sample was sized to 4 fractions having the size of < 60 um, > 60 < 100 um, > 100 < 180 um > 1280 < 250 and 250 um designated the symbols, FF, MF, MC and C respectively. Each sample was separately heated in controlled conditions at temperatures up to 1000 °C at a heating rate of 10°C/min in an electrically heated chamber furnace. Soaking time at the maximum temperature was up to 6 h. Hardness and abrasiveness properties of the heat treated samples were tested to cut marble having a thickness of 25 mm. Results revealed that H/A of the natural garnet mineral increased by heating at temperatures up to 600°C and exhibited pronounced decrease with higher temperatures up to 1000 °C. Results were explained in the light of a structural irreversible dislocation (SD) of the crystals of garnet almandine Fe2+3Al2Si3O12 and pyrope Mg3Al2Si3O12. Characterization of the mineral was carried out with the help of XRD, SEM and FT-IR measurements.

Keywords: garnet abrasive, heat treatment, water jet cutting, hardness abrasiveness

Procedia PDF Downloads 326
8008 Annealing of the Contact between Graphene and Metal: Electrical and Raman Study

Authors: A. Sakavičius, A. Lukša, V. Nargelienė, V. Bukauskas, G. Astromskas, A. Šetkus

Abstract:

We investigate the influence of annealing on the properties of a contact between graphene and metal (Au and Ni), using circular transmission line model (CTLM) contact geometry. Kelvin probe force microscopy (KPFM) and Raman spectroscopy are applied for characterization of the surface and interface properties. Annealing causes a decrease of the metal-graphene contact resistance for both Ni and Au.

Keywords: Au/Graphene contacts, graphene, Kelvin force probe microscopy, NiC/Graphene contacts, Ni/Graphene contacts, Raman spectroscopy

Procedia PDF Downloads 300
8007 A Comparison of Double Sided Friction Stir Welding in Air and Underwater for 6mm S275 Steel Plate

Authors: Philip Baillie, Stuart W. Campbell, Alexander M. Galloway, Stephen R. Cater, Norman A. McPherson

Abstract:

This study compared the mechanical and microstructural properties produced during friction stir welding(FSW) of S275 structural steel in air and underwater. Post weld tests assessed the tensile strength, micro-hardness, distortion, Charpy impact toughness and fatigue performance in each case. The study showed that there was no significant difference in the strength, hardness or fatigue life of the air and underwater specimens. However, Charpy impact toughness was shown to decrease for the underwater specimens and was attributed to a lower degree of recrystallization caused by the higher rate of heat loss experienced when welding underwater. Reduced angular and longitudinal distortion was observed in the underwater welded plate compared to the plate welded in air.

Keywords: Charpy impact toughness, distortion, fatigue, friction stir welding(FSW), micro-hardness, underwater

Procedia PDF Downloads 409
8006 Effect of Milling Parameters on the Characteristics of Nanocrystalline TiAl Alloys Synthesized by Mechanical Alloying

Authors: Jinan B. Al-Dabbagh, Rozman Mohd Tahar, Mahadzir Ishak

Abstract:

TiAl alloy nano-powder was successfully produced by a mechanical alloying (MA) technique in a planetary ball mill. The influence of milling parameters, such as the milling duration, rotation speed, and balls-to-powder mass ratio, on the characteristics of the Ti50%Al powder, including the microstructure, crystallite size refinement, and phase formation, were investigated. It was found that MA of elemental Ti and Al powders promotes the formation of TiAl alloys, as Ti (Al) solid solution was formed after 5h of milling. Milling without the addition of process control agents led to a dramatic decrease in the crystallite size to 17.8 nm after 2h of milling. Higher rotation energy and a higher ball-to-powder weight ratio also accelerated the reduction in crystallite size. Subsequent heating up to 850°C resulted in the formation of a new intermetallic phase with a dominant TiAl3 phase plus minor γ-TiAl or α2-Ti3Al phase or both. A longer milling duration also exhibited a better effect on the micro-hardness of Ti50%Al powders.

Keywords: TiAl alloys, nanocrystalline materials, mechanical alloying, materials science

Procedia PDF Downloads 346
8005 Calcein Release from Liposomes Mediated by Phospholipase A₂ Activity: Effect of Cholesterol and Amphipathic Di and Tri Blocks Copolymers

Authors: Marco Soto-Arriaza, Eduardo Cena-Ahumada, Jaime Melendez-Rojel

Abstract:

Background: Liposomes have been widely used as a model of lipid bilayer to study the physicochemical properties of biological membrane, encapsulation, transport and release of different molecules. Furthermore, extensive research has focused on improving the efficiency in the transport of drugs, developing tools that improve the release of the encapsulated drug from liposomes. In this context, the enzymatic activity of PLA₂, despite having been shown to be an effective tool to promote the release of drugs from liposomes, is still an open field of research. Aim: The aim of the present study is to explore the effect of cholesterol (Cho) and amphipathic di- and tri-block copolymers, on calcein release mediated by enzymatic activity of PLA2 in Dipalmitoylphosphatidylcholine (DPPC) liposomes under physiological conditions. Methods: Different dispersions of DPPC, cholesterol, di-block POE₄₅-PCL₅₂ or tri-block PCL₁₂-POE₄₅-PCL₁₂ were prepared by the extrusion method after five freezing/thawing cycles; in Phosphate buffer 10mM pH 7.4 in presence of calcein. DPPC liposomes/Calcein were centrifuged at 15000rpm 10 min to separate free calcein. Enzymatic activity assays of PLA₂ were performed at 37°C using the TBS buffer pH 7.4. The size distribution, polydispersity, Z-potential and Calcein encapsulation of DPPC liposomes was monitored. Results: PLA₂ activity showed a slower kinetic of calcein release up to 20 mol% of cholesterol, evidencing a minimum at 10 mol% and then a maximum at 18 mol%. Regardless of the percentage of cholesterol, up to 18 mol% a one-hundred percentage release of calcein was observed. At higher cholesterol concentrations, PLA₂ showed to be inefficient or not to be involved in calcein release. In assays where copolymers were added in a concentration lower than their cmc, a similar behavior to those showed in the presence of Cho was observed, that is a slower kinetic in calcein release. In both experimental approaches, a one-hundred percentage of calcein release was observed. PLA₂ was shown to be sensitive to the 4-(4-Octadecylphenyl)-4-oxobutenoic acid inhibitor and calcium, reducing the release of calcein to 0%. Cell viability of HeLa cells decreased 7% in the presence of DPPC liposomes after 3 hours of incubation and 17% and 23% at 5 and 15 hours, respectively. Conclusion: Calcein release from DPPC liposomes, mediated by PLA₂ activity, depends on the percentage of cholesterol and the presence of copolymers. Both, cholesterol up to 20 mol% and copolymers below it cmc could be applied to the regulation of the kinetics of antitumoral drugs release without inducing cell toxicity per se.

Keywords: amphipathic copolymers, calcein release, cholesterol, DPPC liposome, phospholipase A₂

Procedia PDF Downloads 151
8004 Analytical Similarity Assessment of Bevacizumab Biosimilar Candidate MB02 Using Multiple State-of-the-Art Assays

Authors: Marie-Elise Beydon, Daniel Sacristan, Isabel Ruppen

Abstract:

MB02 (Alymsys®) is a candidate biosimilar to bevacizumab, which was developed against the reference product (RP) Avastin® sourced from both the European Union (EU) and United States (US). MB02 has been extensively characterized comparatively to Avastin® at a physicochemical and biological level using sensitive orthogonal state-of-the-art analytical methods. MB02 has been demonstrated similar to the RP with regard to its primary and higher-order structure, post- and co-translational profiles such as glycosylation, charge, and size variants. Specific focus has been put on the characterization of Fab-related activities, such as binding to VEGF A 165, which directly reflect the bevacizumab mechanism of action. Fc-related functionality was also investigated, including binding to FcRn, which is indicative of antibodies' half-life. The data generated during the analytical similarity assessment demonstrate the high analytical similarity of MB02 to its RP.

Keywords: analytical similarity, bevacizumab, biosimilar, MB02

Procedia PDF Downloads 267
8003 Electrochemical Performance of Carbon Nanotube Based Supercapacitor

Authors: Jafar Khan Kasi, Ajab Khan Kasi, Muzamil Bokhari

Abstract:

Carbon nanotube is one of the most attractive materials for the potential applications of nanotechnology due to its excellent mechanical, thermal, electrical and optical properties. In this paper we report a supercapacitor made of nickel foil electrodes, coated with multiwall carbon nanotubes (MWCNTs) thin film using electrophoretic deposition (EPD) method. Chemical vapor deposition method was used for the growth of MWCNTs and ethanol was used as a hydrocarbon source. High graphitic multiwall carbon nanotube was found at 750 C analyzing by Raman spectroscopy. We observed the electrochemical performance of supercapacitor by cyclic voltammetry. The electrodes of supercapacitor fabricated from MWCNTs exhibit considerably small equivalent series resistance (ESR), and a high specific power density. Electrophoretic deposition is an easy method in fabricating MWCNT electrodes for high performance supercapacitor.

Keywords: carbon nanotube, chemical vapor deposition, catalyst, charge, cyclic voltammetry

Procedia PDF Downloads 550
8002 Advanced Model for Calculation of the Neutral Axis Shifting and the Wall Thickness Distribution in Rotary Draw Bending Processes

Authors: B. Engel, H. Hassan

Abstract:

Rotary draw bending is a method which is being used in tube forming. In the tube bending process, the neutral axis moves towards the inner arc and the wall thickness distribution changes for tube’s cross section. Thinning takes place in the outer arc of the tube (extrados) due to the stretching of the material, whereas thickening occurs in the inner arc of the tube (intrados) due to the comparison of the material. The calculations of the wall thickness distribution, neutral axis shifting, and strain distribution have not been accurate enough, so far. The previous model (the geometrical model) describes the neutral axis shifting and wall thickness distribution. The geometrical of the tube, bending radius and bending angle are considered in the geometrical model, while the influence of the material properties of the tube forming are ignored. The advanced model is a modification of the previous model using material properties that depends on the correction factor. The correction factor is a purely empirically determined factor. The advanced model was compared with the Finite element simulation (FE simulation) using a different bending factor (Bf=bending radius/ diameter of the tube), wall thickness (Wf=diameter of the tube/ wall thickness), and material properties (strain hardening exponent). Finite element model of rotary draw bending has been performed in PAM-TUBE program (version: 2012). Results from the advanced model resemble the FE simulation and the experimental test.

Keywords: rotary draw bending, material properties, neutral axis shifting, wall thickness distribution

Procedia PDF Downloads 388
8001 Poly(Trimethylene Carbonate)/Poly(ε-Caprolactone) Phase-Separated Triblock Copolymers with Advanced Properties

Authors: Nikola Toshikj, Michel Ramonda, Sylvain Catrouillet, Jean-Jacques Robin, Sebastien Blanquer

Abstract:

Biodegradable and biocompatible block copolymers have risen as the golden materials in both medical and environmental applications. Moreover, if their architecture is of controlled manner, higher applications can be foreseen. In the meantime, organocatalytic ROP has been promoted as more rapid and immaculate route, compared to the traditional organometallic catalysis, towards efficient synthesis of block copolymer architectures. Therefore, herein we report novel organocatalytic pathway with guanidine molecules (TBD) for supported synthesis of trimethylene carbonate initiated by poly(caprolactone) as pre-polymer. Pristine PTMC-b-PCL-b-PTMC block copolymer structure, without any residual products and clear desired block proportions, was achieved under 1.5 hours at room temperature and verified by NMR spectroscopies and size-exclusion chromatography. Besides, when elaborating block copolymer films, further stability and amelioration of mechanical properties can be achieved via additional reticulation step of precedently methacrylated block copolymers. Subsequently, stimulated by the insufficient studies on the phase-separation/crystallinity relationship in these semi-crystalline block copolymer systems, their intrinsic thermal and morphology properties were investigated by differential scanning calorimetry and atomic force microscopy. Firstly, by DSC measurements, the block copolymers with χABN values superior to 20 presented two distinct glass transition temperatures, close to the ones of the respecting homopolymers, demonstrating an initial indication of a phase-separated system. In the interim, the existence of the crystalline phase was supported by the presence of melting temperature. As expected, the crystallinity driven phase-separated morphology predominated in the AFM analysis of the block copolymers. Neither crosslinking at melted state, hence creation of a dense polymer network, disturbed the crystallinity phenomena. However, the later revealed as sensible to rapid liquid nitrogen quenching directly from the melted state. Therefore, AFM analysis of liquid nitrogen quenched and crosslinked block copolymer films demonstrated a thermodynamically driven phase-separation clearly predominating over the originally crystalline one. These AFM films remained stable with their morphology unchanged even after 4 months at room temperature. However, as demonstrated by DSC analysis once rising the temperature above the melting temperature of the PCL block, neither the crosslinking nor the liquid nitrogen quenching shattered the semi-crystalline network, while the access to thermodynamical phase-separated structures was possible for temperatures under the poly (caprolactone) melting point. Precisely this coexistence of dual crosslinked/crystalline networks in the same copolymer structure allowed us to establish, for the first time, the shape-memory properties in such materials, as verified by thermomechanical analysis. Moreover, the response temperature to the material original shape depended on the block copolymer emplacement, hence PTMC or PCL as end-block. Therefore, it has been possible to reach a block copolymer with transition temperature around 40°C thus opening potential real-life medical applications. In conclusion, the initial study of phase-separation/crystallinity relationship in PTMC-b-PCL-b-PTMC block copolymers lead to the discovery of novel shape memory materials with superior properties, widely demanded in modern-life applications.

Keywords: biodegradable block copolymers, organocatalytic ROP, self-assembly, shape-memory

Procedia PDF Downloads 120
8000 Advancements in Dielectric Materials: A Comprehensive Study on Properties, Synthesis, and Applications

Authors: M. Mesrar, T. Lamcharfi, Nor-S. Echatoui, F. Abdi

Abstract:

The solid-state reaction method was used to synthesize ferroelectric systems with lead-free properties, specifically (1-x-y)(Na₀.₅Bi₀.₅)TiO₃-xBaTiO₃-y(K₀.₅ Bi₀.₅)TiO₃. To achieve a pure perovskite phase, the optimal calcination temperature was determined to be 1000°C for 4 hours. X-ray diffraction (XRD) analysis identified the presence of the morphotropic phase boundary (MPB) in the (1-x-y)NBT xBT-yKBT ceramics for specific molar compositions, namely (0.95NBT-0.05BT, 0.84NBT-0.16KBT, and 0.79NBT-0.05BT-0.16KBT). To enhance densification, the sintering temperature was set at 1100°C for 4 hours. Scanning electron microscopy (SEM) images exhibited homogeneous distribution and dense packing of the grains in the ceramics, indicating a uniform microstructure. These materials exhibited favorable characteristics, including high dielectric permittivity, low dielectric loss, and diffused phase transition behavior. The ceramics composed of 0.79NBT-0.05BT-0.16KBT exhibited the highest piezoelectric constant (d33=148 pC/N) and electromechanical coupling factor (kp = 0.292) among all compositions studied. This enhancement in piezoelectric properties can be attributed to the presence of the morphotropic phase boundary (MPB) in the material. This study presents a comprehensive approach to improving the performance of lead-free ferroelectric systems of composition 0.79(Na₀.₅Bi₀.₅)Ti O₃-0.05BaTiO₃-0.16(K₀.₅Bi₀.₅)TiO₃.

Keywords: solid-state method, (1-x-y)NBT-xBT-yKBT, morphotropic phase boundary, Raman spectroscopy, dielectric properties

Procedia PDF Downloads 43
7999 Structural and Electrical Characterization of Polypyrrole and Cobalt Aluminum Oxide Nanocomposites

Authors: Sutar Rani Ananda, M. V. Murugendrappa

Abstract:

To investigate electrical properties of conducting polypyrrole (PPy) and cobalt aluminum oxide (CAO) nanocomposites, impedance analyzer in frequency range of 100 Hz to 5 MHz is used. In this work, PPy/CAO nanocomposites were synthesized by chemical oxidation polymerization method in different weight percent of CAO in PPy. The dielectric properties and AC conductivity studies were carried out for different nanocomposites in temperature range of room temperature to 180 °C. With the increase in frequency, the dielectric constant for all the nanocomposites was observed to decrease. AC conductivity of PPy was improved by addition of CAO nanopowder.

Keywords: polypyrrole, dielectric constant, dielectric loss, AC conductivity

Procedia PDF Downloads 283
7998 Structural and Electronic Properties of the Rock-salt BaxSr1−xS Alloys

Authors: B. Bahloul, K. Babesse, A. Dkhira, Y. Bahloul, L. Amirouche

Abstract:

Structural and electronic properties of the rock-salt BaxSr1−xS are calculated using the first-principles calculations based on the density functional theory (DFT) within the generalized gradient approximation (GGA), the local density approximation (LDA) and the virtual-crystal approximation (VCA). The calculated lattice parameters at equilibrium volume for x=0 and x=1 are in good agreement with the literature data. The BaxSr1−xS alloys are found to be an indirect band gap semiconductor. Moreoever, for the composition (x) ranging between [0-1], we think that our results are well discussed and well predicted.

Keywords: semiconductor, Ab initio calculations, rocksalt, band structure, BaxSr1−xS

Procedia PDF Downloads 386