Search results for: ANN regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3220

Search results for: ANN regression

670 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 124
669 Rate of Force Development, Net Impulse and Modified Reactive Strength as Predictors of Volleyball Spike Jump Height among Young Elite Players

Authors: Javad Sarvestan, Zdenek Svoboda

Abstract:

Force-time (F-T) curvature characteristics are globally referenced as the main indicators of athletic jump performance. Nevertheless, to the best of authors’ knowledge, no investigation tried to deeply study the relationship between F-T curve variables and real-game jump performance among elite volleyball players. To this end, this study was designated to investigate the association between F-T curve variables, including movement timings, force, velocity, power, rate of force development (RFD), modified reactive strength index (RSImod), and net impulse with spike jump height during real-game circumstances. Twelve young elite volleyball players performed 3 countermovement jump (CMJ) and 3 spike jump in real-game circumstances with 1-minute rest intervals to prevent fatigue. Shapiro-Wilk statistical test illustrated the normality of data distribution, and Pearson’s product correlation test portrayed a significant correlation between CMJ height and peak RFD (0.85), average RFD (r=0.81), RSImod (r=0.88) and concentric net impulse (r=0.98), and also significant correlation between spike jump height and peak RFD (0.73), average RFD (r=0.80), RSImod (r=0.62) and concentric net impulse (r=0.71). Multiple regression analysis also reported that these factors have a strong contribution in predicting of CMJ (98%) and spike jump (77%) heights. Outcomes of this study confirm that the RFD, concentric net impulse, and RSImod values could precisely monitor and track the volleyball attackers’ explosive strength, muscular stretch-shortening cycle function efficiency, and ultimate spike jump height. To this effect, volleyball coaches and trainers are advised to have an in-depth focus on their athletes’ progression or the impacts of strength trainings by observing and chasing the F-T curve variables such as RFD, net impulse, and RSImod.

Keywords: net impulse, reactive strength index, rate of force development, stretch-shortening cycle

Procedia PDF Downloads 134
668 Development of Interaction Diagram for Eccentrically Loaded Reinforced Concrete Sandwich Walls with Different Design Parameters

Authors: May Haggag, Ezzat Fahmy, Mohamed Abdel-Mooty, Sherif Safar

Abstract:

Sandwich sections have a very complex nature due to variability of behavior of different materials within the section. Cracking, crushing and yielding capacity of constituent materials enforces high complexity of the section. Furthermore, slippage between the different layers adds to the section complex behavior. Conventional methods implemented in current industrial guidelines do not account for the above complexities. Thus, a throughout study is needed to understand the true behavior of the sandwich panels thus, increase the ability to use them effectively and efficiently. The purpose of this paper is to conduct numerical investigation using ANSYS software for the structural behavior of sandwich wall section under eccentric loading. Sandwich walls studied herein are composed of two RC faces, a foam core and linking shear connectors. Faces are modeled using solid elements and reinforcement together with connectors are modeled using link elements. The analysis conducted herein is nonlinear static analysis incorporating material nonlinearity, crashing and crushing of concrete and yielding of steel. The model is validated by comparing it to test results in literature. After validation, the model is used to establish extensive parametric analysis to investigate the effect of three key parameters on the axial force bending moment interaction diagram of the walls. These parameters are the concrete compressive strength, face thickness and number of shear connectors. Furthermore, the results of the parametric study are used to predict a coefficient that links the interaction diagram of a solid wall to that of a sandwich wall. The equation is predicted using the parametric study data and regression analysis. The predicted α was used to construct the interaction diagram of the investigated wall and the results were compared with ANSYS results and showed good agreement.

Keywords: sandwich walls, interaction diagrams, numerical modeling, eccentricity, reinforced concrete

Procedia PDF Downloads 401
667 Job Satisfaction and Associated factors of Urban Health Extension Professionals in Addis Ababa City, Ethiopia

Authors: Metkel Gebremedhin, Biruk Kebede, Guash Abay

Abstract:

Job satisfaction largely determines the productivity and efficiency of human resources for health. There is scanty evidence on factors influencing the job satisfaction of health extension professionals (HEPs) in Addis Ababa. The objective of this study was to determine the level of and factors influencing job satisfaction among extension health workers in Addis Ababa city. This was a cross-sectional study conducted in Addis Ababa, Ethiopia. Among all public health centers found in the Addis Ababa city administration health bureau that would be included in the study, a multistage sampling technique was employed. Then we selected the study health centers randomly and urban health extension professionals from the selected health centers. In-depth interview data collection methods were carried out for a comprehensive understanding of factors affecting job satisfaction among Health extension professionals (HEPs) in Addis Ababa. HEPs working in Addis Ababa areas are the primary study population. Multivariate logistic regression with 95% CI at P ≤ 0.05 was used to assess associated factors to job satisfaction. The overall satisfaction rate was 10.7% only, while 89.3%% were dissatisfied with their jobs. The findings revealed that variables such as marital status, staff relations, community support, supervision, and rewards have a significant influence on the level of job satisfaction. For those who were not satisfied, the working environment, job description, low salary, poor leadership and training opportunities were the major causes. Other factors influencing the level of satisfaction were lack of medical equipment, lack of transport facilities, lack of training opportunities, and poor support from woreda experts. Our study documented a very low level of overall satisfaction among health extension professionals in Addis Ababa city public health centers. Considering the factors responsible for this state of affairs, urgent and concrete strategies must be developed to address the concerns of extension health professionals as they represent a sensitive domain of the health system of Addis Ababa city. Improving the overall work environment, review of job descriptions and better salaries might bring about a positive change.

Keywords: job satisfaction, extension health professionals, Addis Ababa

Procedia PDF Downloads 76
666 A Study on the Relationships among Teacher Empowerment, Professional Commitment and School Effectiveness

Authors: S. C. Lin, W. F. Hung, W. W. Cheng

Abstract:

Teacher empowerment was regarded as investing teachers with the right to participate in the determination of school goals and policies and to exercise professional judgment about what and how to teach. Professional commitment was considered as a person’s belief in and acceptance of the values of his or her chosen occupation or line of work, and a willingness to maintain membership in that occupation. An effective school has been defined as one in which students’ progress further than might be expected from consideration of its intake. An effective school thus adds extra value to its students' outcomes, in comparison with other schools serving similar intakes. A number of literature from various countries explored that teacher empowerment and professional commitment significantly influenced school effectiveness. However, there lacked more empirical studies to examine the relationships among them. Hence, this study was to explore the relationships among teacher empowerment, professional commitment and school effectiveness in junior high schools in Taiwan. Samples were seven hundred and five junior high school teachers selected from Taichung City, Changhua County and Nantou County. Questionnaire was applied to collect data. Data were analyzed by using descriptive statistics, t-test, one-way ANOVA, Pearson’s product-moment correlation, and multiple regression analysis. The findings of this study were as follows: First, the overall performances of teachers’ perceptions of teacher empowerment, teacher professional commitment and school effectiveness were above average. Second, the teachers’ perceptions of teacher empowerment were significant different in gender, designated duty, and school size. Third, the teachers’ perceptions of teacher professional commitment were significant different in gender, designated duty, and school size. Fourth, the teachers’ perceptions of school effectiveness were significant different in designated duty. Fifth, teacher empowerment was mid-positively correlation by teacher professional commitment. Sixth, there was mid-positively correlation between teacher empowerment and school effectiveness. Seventh, there was mid-positively correlation between teacher professional commitment and school effectiveness. Eighth, Teacher empowerment and professional commitment could significantly predict school effectiveness. Based on the findings of this study, the study proposed some suggestions for educational authorities, schools, teachers, and future studies as well.

Keywords: junior high school teacher, teacher empowerment, teacher professional commitment, school effectiveness

Procedia PDF Downloads 460
665 Improving the Logistic System to Secure Effective Food Fish Supply Chain in Indonesia

Authors: Atikah Nurhayati, Asep A. Handaka

Abstract:

Indonesia is a world’s major fish producer which can feed not only its citizens but also the people of the world. Currently, the total annual production is 11 tons and expected to double by the year of 2050. Given the potential, fishery has been an important part of the national food security system in Indonesia. Despite such a potential, a big challenge is facing the Indonesians in making fish the reliable source for their food, more specifically source of protein intake. The long geographic distance between the fish production centers and the consumer concentrations has prevented effective supply chain from producers to consumers and therefore demands a good logistic system. This paper is based on our research, which aimed at analyzing the fish supply chain and is to suggest relevant improvement to the chain. The research was conducted in the Year of 2016 in selected locations of Java Island, where intensive transaction on fishery commodities occur. Data used in this research comprises secondary data of time series reports on production and distribution and primary data regarding distribution aspects which were collected through interviews with purposively selected 100 respondents representing fishers, traders and processors. The data were analyzed following the supply chain management framework and processed following logistic regression and validity tests. The main findings of the research are as follows. Firstly, it was found that improperly managed connectivity and logistic chain is the main cause for insecurity of availability and affordability for the consumers. Secondly, lack of quality of most local processed products is a major obstacle for improving affordability and connectivity. The paper concluded with a number of recommended strategies to tackle the problem. These include rationalization of the length of the existing supply chain, intensification of processing activities, and improvement of distribution infrastructure and facilities.

Keywords: fishery, food security, logistic, supply chain

Procedia PDF Downloads 239
664 Experimental Studies on Stress Strain Behavior of Expanded Polystyrene Beads-Sand Mixture

Authors: K. N. Ashna

Abstract:

Lightweight fills are a viable alternative where weak soils such as soft clay, peat, and loose silt are encountered. Materials such as Expanded Polystyrene (EPS) geo-foam, plastics, tire wastes, rubber wastes have been used along with soil in order to obtain a lightweight fill. Out of these, Expanded Polystyrene (EPS) geo-foam has gained wide popularity in civil engineering over the past years due to its wide variety of applications. It is extremely lightweight, durable and is available in various densities to meet the strength requirements. It can be used as backfill behind retaining walls to reduce lateral load, as a fill over soft clay or weak soils to prevent the excessive settlements and to reduce seismic forces. Geo-foam is available in block form as well as beads form. In this project Expanded Polystyrene (EPS) beads of various diameters and varying densities were mixed along with sand to study their lightweight as well as strength properties. Four types of EPS beads were used 1mm, 2mm, 3-7 mm and a mix of 1-7 mm. In this project, EPS beads were varied at .25%, .5%, .75% and 1% by weight of sand. A water content of 10% by weight of sand was added to prevent segregation of the mixture. Unconsolidated Unconfined (UU) tri-axial test was conducted at 100kPa, 200 kPa and 300 kPa and angle of internal friction, and cohesion was obtained. Unit weight of the mix was obtained for a relative density of 65%. The results showed that by increasing the EPS content by weight, maximum deviator stress, unit weight, angle of internal friction and initial elastic modulus decreased. An optimum EPS bead content was arrived at by considering the strength as well as the unit weight. The stress-strain behaviour of the mix was found to be dependent on type of bead, bead content and density of the beads. Finally, regression equations were developed to predict the initial elastic modulus of the mix.

Keywords: expanded polystyrene beads, geofoam, lightweight fills, stress-strain behavior, triaxial test

Procedia PDF Downloads 262
663 Residential Satisfaction and Public Perception of Socialized Housing Projects in Davao City, Philippines

Authors: Micah Amor P. Yares

Abstract:

Aside from the provision of adequate housing, the Philippine government faces the challenge of ensuring that the housing units provided conform to the Filipino’s ambition to self as manifested by owning a small house on a big lot. The study aimed to explore the levels of satisfaction of end-users and the public perception towards socialized housing in Davao City, Philippines. The residential satisfaction survey includes three types of respondents, which are end-users of single-detached, duplex and rowhouse socialized housing units. Respondents were asked to rate their level of satisfaction and perception to the following housing components: Dwelling Unit; Public Facilities; Social Environment; Neighborhood Facilities; Management Systems; and Acquisition and Financing. The data were subjected to Exploratory Factor Analysis to determine if variables can be grouped together, and Confirmatory Factor Analysis to measure if the model fits the construct. In determining which component affects the level of perception and satisfaction, a Multiple Linear Regression Analysis was employed. Lastly, an Individual Samples T-Test was performed to compare the levels of satisfaction and perception among respondents. Results revealed that residents of socialized housing were highly satisfied with their living conditions despite concerns on management systems, public and neighborhood facilities. Residents' satisfaction is primarily influenced by the Social Environment, Acquisition and Financing, and the Dwelling Unit. However, a significant difference in residential satisfaction level was observed among different types of housing with rowhouse residents recording the lowest satisfaction level compared to single-detached and duplex units. Moreover, the general public perceived Socialized housing as moderately satisfactory having the same determinant as the end-users aside from the Public Facilities. This study recommends revisiting the current Socialized Housing policies by considering the feedback from the end-users based on their lived experience and the public according to their perception.

Keywords: public perception, residential satisfaction, rowhouse, socialized housing

Procedia PDF Downloads 233
662 The Impact of Perspective Taking and Gender Differences on the Encouragement of Social Competence for the Next Generation: The Evidence From Chinese Parents

Authors: Yi Huang

Abstract:

Background: For the development of children, it is important for parents to encourage children not only on academic competence but also on children’s social competence. In the western cultural context, parents emphasize more heavily on female children’s social-behavioral development. However, whether the conclusion is correct in eastern culture and whether the parent’s gender affects such an emphasis remains unclear. And, more valuably, from the perspective of intervention, except for the nature factors - child’s gender and parent’s gender, it is also worth to probe whether the improvable factors, such as parent’s perspective taking, influence parent’s emphasis on child’s social competence. Aim: This study was aimed to investigate the impact of parent’s gender, child’s gender, and parent’s perspective-taking on parent’s attitudes of encouragement of the child’s social competence under the Chinese cultural context. Method: 461 Chinese parents whose children were in the first year of middle school during the research time participated in this study. Among all participants, there were 155 fathers and 306 mothers. The research adopted the self-report of perspective-taking, which is the sub-scale of the Interpersonal Reactivity Index and the self-report of the encouragement on a child’s social communication, which is the sub-scale of the Chinese version of The Children Rearing Practice Report. In this study, 291 parents reported regarding male children, and 170 parents reported regarding female children. Results: Contrary to the traditional western theory, which usually suggests parent puts more attention on social development and competence to girl the instead of the boy, in the Chinese context, parent emphasizes social competence more on the male child. Analogically, in China, compared to mother, father underscores the child’s social competence more heavily. By constructing the hierarchical regression model, the result indicated that after controlling the variables of the gender of child and the gender of parent, parent’s perspective-taking still explains for the variance of parent’s encouragement on child’s social competence, which means, parent’s perspective-taking predicts parent’s encouragement on child’s social competence after excluding the impact of the gender of parent and child. Conclusion: For Chinese parents, the ability of perspective-taking is beneficial to enhance their awareness of encouraging children’s social competence.

Keywords: parent; child, gender differences, perspective-taking, social development

Procedia PDF Downloads 135
661 Family Management, Relations Risk and Protective Factors for Adolescent Substance Abuse in South Africa

Authors: Beatrice Wamuyu Muchiri, Monika M. L. Dos Santos

Abstract:

An increasingly recognised prevention approach for substance use entails reduction in risk factors and enhancement of promotive or protective factors in individuals and the environment surrounding them during their growth and development. However, in order to enhance the effectiveness of this approach, continuous study of risk aspects targeting different cultures, social groups and mixture of society has been recommended. This study evaluated the impact of potential risk and protective factors associated with family management and relations on adolescent substance abuse in South Africa. Exploratory analysis and cumulative odds ordinal logistic regression modelling was performed on the data while controlling for demographic and socio-economic characteristics on adolescent substance use. The most intensely used substances were tobacco, cannabis, cocaine, heroin and alcohol in decreasing order of use intensity. The specific protective or risk impact of family management or relations factors varied from substance to substance. Risk factors associated with demographic and socio-economic factors included being male, younger age, being in lower education grades, coloured ethnicity, adolescents from divorced parents and unemployed or fully employed mothers. Significant family relations risk and protective factors against substance use were classified as either family functioning and conflict or family bonding and support. Several family management factors, categorised as parental monitoring, discipline, behavioural control and rewards, demonstrated either risk or protective effect on adolescent substance use. Some factors had either interactive risk or protective impact on substance use or lost significance when analysed jointly with other factors such as controlled variables. Interaction amongst risk or protective factors as well as the type of substance should be considered when further considering interventions based on these risk or protective factors. Studies in other geographical regions, institutions and with better gender balance are recommended to improve upon the representativeness of the results. Several other considerations to be made when formulating interventions, the shortcomings of this study and possible improvements as well as future studies are also suggested.

Keywords: risk factors, protective factors, substance use, adolescents

Procedia PDF Downloads 202
660 The Impact of Adopting Cross Breed Dairy Cows on Households’ Income and Food Security in the Case of Dejen Woreda, Amhara Region, Ethiopia

Authors: Misganaw Chere Siferih

Abstract:

This study assessed the impact of crossbreed dairy cows on household income and food security. The study area is found in Dejen Woreda, East Gojam Zone, and Amhara region of Ethiopia. Random sampling technique was used to obtain a sample of 80 crossbreed dairy cow owners and 176 indigenous dairy cow owners. The study employed food consumption score analytical framework to measure food security status of the household. No Statistical significant mean difference is found between crossbreed owners and indigenous owners. Logistic regression was employed to investigate crossbreed dairy cow adoption determinants , the result indicates that gender, education, labor number, land size cultivated, dairy cooperatives membership, net income and food security status of the household are statistically significant independent variables, which explained the binary dependent variable, crossbreed dairy cow adoption. Propensity score matching (PSM) was employed to analyze the impact of crossbreed dairy cow owners on farmers’ income and food security. The average net income of crossbreed dairy cow owners was found to be significantly higher than indigenous dairy cow owners. Estimates of average treatment effect of the treated (ATT) indicated that crossbreed dairy cow is able to impact households’ net income by 42%, 38.5%, 30.8% and 44.5% higher in kernel, radius, nearest neighborhood and stratification matching algorithms respectively as compared to indigenous dairy cow owners. However, estimates of average treatment of the treated (ATT) suggest that being an owner of crossbreed dairy cow is not able to affect food security significantly. Thus, crossbreed dairy cow enables farmers to increase income but not their food security in the study area. Finally, the study recommended establishing dairy cooperatives and advice farmers to become a member of them, attention to promoting the impact of crossbreed dairy cows and promotion of nutrition focus projects.

Keywords: crossbreed dairy cow, net income, food security, propensity score matching

Procedia PDF Downloads 64
659 Magnitude of Meconium Stained Amniotic Fluid and Associated Factors among Women Who Gave Birth in North Shoa Zone Hospital’s Amhara Region Ethiopia 2022

Authors: Mitiku Tefera

Abstract:

Background: Meconium-stained amniotic fluid is one of the primary causes of birth asphyxia. Each year, over five million neonatal deaths occur worldwide due to meconium-stained amniotic fluid, with 90% of these deaths due to birth asphyxia. In Ethiopia meconium-stained amniotic fluid is under investigated, specifically in North Shoa Zone Amhara region Ethiopia. Objective: The aim of this study was to assess the magnitude of meconium-stained amniotic fluid and associated factors among women who gave birth in the North Shoa Zone Hospital’s Amhara Region, Ethiopia, in 2022. Methods: An institutional-based, cross-sectional study was conducted among 628 women who gave birth at North Shoa Zone Hospitals, Amhara, Ethiopia. The study was conducted from 08/June-08/August 2022. Two-stage cluster sampling was used to recruit study participants. The data was collected by using a structured interview-administered questionnaire and chart review. The collected data was entered into Epi-Data Version 4.6 and exported to SPSS Version 25. Logistics regression was employed, and a p-value <0.05 was considered significant. Result: The magnitude of meconium-stained amniotic fluid was 30.3%. Women presented with normal hematocrit level 83% less likely develop meconium-stained amniotic fluid. Women had mid-upper arm circumference value was less than 22.9cm(AOR=1.9; 95% CI;1.18-3.20), obstructed labor(AOR=3.6; 95% CI;1.48-8.83), prolonged labor ≥ 15hr (AOR=7.5; 95% CI ;7.68-13.3), the premature rapture of the membrane (AOR=1.7; 95% CI; 3.22-7.40), fetal tachycardia(AOR=6.2; 95% CI; 2.41-16.3) and Bradycardia (AOR=3.1; 95% CI;1.93-5.28) were significant association with meconium stained amniotic fluid. Conclusion: The magnitude of meconium-stained amniotic fluid, which was high. In this study, MUAC value <22.9 cm, obstructed and prolonged labor, PROM, bradycardia, and tachycardia were factors associated with meconium-stained amniotic fluid. A follow-up study and pooled similar articles will be mentioned for better evidence, enhancing intrapartum services and strengthening early detection of meconium-stained amniotic fluid for the health of the mother and baby.

Keywords: women, meconium-staned amniotic fluid, magnitude, Ethiopia

Procedia PDF Downloads 127
658 A Moving Target: Causative Factors for Geographic Variation in a Handed Flower

Authors: Celeste De Kock, Bruce Anderson, Corneile Minnaar

Abstract:

Geographic variation in the floral morphology of a flower species has often been assumed to result from co-variation in the availability of regionally-specific functional pollinator types, giving rise to plant ecotypes that are adapted to the morphology of the main pollinator types in that area. Wachendorfia paniculata is a geographically variable enantiostylous (handed) flower with preliminary observations suggesting that differences in pollinator community composition might be driving differences in the degree of herkogamy (spatial separation of the stigma and anthers on the same flower) across its geographic range. This study aimed to determine if pollinator-related variables such as visitation rate and pollinator type could explain differences in floral morphology seen in different populations. To assess pollinator community compositions, pollinator visitation rates, and the degree of herkogamy and flower size, flowers from 13 populations were observed and measured across the Western Cape, South Africa. Multiple regression analyses indicated that pollinator-related variables had no significant effect on the degree of herkogamy between sites. However, the degree of herkogamy was strongly negatively associated with the time of measurement. It remains possible that pollinators have had an effect on the development of herkogamy throughout the evolutionary timeline of different W. paniculata populations, but not necessarily to the fine-scale degree, as was predicted for this study. Annual fluctuations in pollinator community composition, paired with recent disturbances such as urbanization and the overabundance of artificially introduced honeybee hives, might also result in the signal of pollinator adaptation getting lost. Surprisingly, differences in herkogamy between populations could largely be explained by the time of day at which flowers were measured, suggesting a significant narrowing of the distance between reproductive parts throughout the day. We propose that this floral movement could possibly be an adaptation to ensure pollination if pollinator visitation to a flower was not sufficient earlier in the day, and will be explored in subsequent studies.

Keywords: enantiostyly, floral movement, geographic variation, ecotypes

Procedia PDF Downloads 277
657 Facies Analysis and Depositional Environment of Late Cretaceous (Cenomanian) Lidam Formation, South East Sirt Basin, Libya

Authors: Miloud M. Abugares

Abstract:

This study concentrates on the facies analysis, cyclicity and depositional environment of the Upper Cretaceous (Cenomanian) carbonate ramp deposits of the Lidam Formation. Core description, petrographic analysis data from five wells in Hamid and 3V areas in the SE Sirt Basin, Libya were studied in detail. The Lidam Formation is one of the main oil producing carbonate reservoirs in Southeast Sirt Basin and this study represents one of the key detailed studies of this Formation. In this study, ten main facies have been identified. These facies are; Chicken-Wire Anhydrite Facies, Fine Replacive Dolomite Facies, Bioclastic Sandstone Facies, Laminated Shale Facies, Stromatolitic Laminated Mudstone Facies, Ostracod Bioturbated Wackestone Facies, Bioturbated Mollusc Packstone Facies, Foraminifera Bioclastic Packstone/Grainstone Facies Peloidal Ooidal Packstone/Grainstone Facies and Squamariacean/Coralline Algae Bindstone Facies. These deposits are inferred to have formed in supratidal sabkha, intertidal, semi-open restricted shallow lagoon and higher energy shallow shoal environments. The overall depositional setting is interpreted as have been deposited in inner carbonate ramp deposits. The best reservoir quality is encountered in Peloidal- Ooidal Packstone/Grainstone facies, these facies represents storm - dominated shoal to back shoal deposits and constitute the inner part of carbonate ramp deposits. The succession shows a conspicuous hierarchical cyclicity. Porous shoal and backshoal deposits form during maximum transgression system and early regression hemi-cycle of the Lidam Fm. However; oil producing from shoal and backshoal deposits which only occur in the upper intervals 15 - 20 feet, which forms the large scale transgressive cycle of the Upper Lidam Formation.

Keywords: Lidam Fm. Sirt Basin, Wackestone Facies, petrographic, intertidal

Procedia PDF Downloads 514
656 Indigenous Adaptation Strategies for Climate Change: Small Farmers’ Options for Sustainable Crop Farming in South-Western Nigeria

Authors: Emmanuel Olasope Bamigboye, Ismail Oladeji Oladosu

Abstract:

Local people of south-western Nigeria like in other climes, continue to be confronted with the vagaries of changing environments. Through the modification of existing practice and shifting resource base, their strategies for coping with change have enabled them to successfully negotiate the shifts in climate change and the environment. This article analyses indigenous adaptation strategies for climate change with a view to enhancing sustainable crop farming in south –western Nigeria. Multi-stage sampling procedure was used to select 340 respondents from the two major ecological zones (Forest and Derived Savannah) for good geographical spread. The article draws on mixed methods of qualitative research, literature review, field observations, informal interview and multinomial logit regression to capture choice probabilities across the various options of climate change adaptation options among arable crop farmers. The study revealed that most 85.0% of the arable crop farmers were males. It also showed that the use of local climate change adaptation strategies had no relationship with the educational level of the respondents as 77.3% had educational experiences at varying levels. Furthermore, the findings showed that seven local adaptation strategies were commonly utilized by arable crop farmers. Nonetheless, crop diversification, consultation with rainmakers and involvement in non-agricultural ventures were prioritized in the order of 1-3, respectively. Also, multinomial logit analysis result showed that at p ≤ 0.05 level of significance, household size (P<0.08), sex (p<0.06), access to loan(p<0.16), age(p<0.07), educational level (P<0.17) and functional extension contact (P<0.28) were all important in explaining the indigenous climate change adaptation utilized by the arable crops farmers in south-western Nigeria. The study concluded that all the identified local adaptation strategies need to be integrated into the development process for sustainable climate change adaptation.

Keywords: crop diversification, climate change, adaptation option, sustainable, small farmers

Procedia PDF Downloads 296
655 Biosurfactants Production by Bacillus Strain from an Environmental Sample in Egypt

Authors: Mervat Kassem, Nourhan Fanaki, F. Dabbous, Hamida Abou-Shleib, Y. R. Abdel-Fattah

Abstract:

With increasing environmental awareness and emphasis on a sustainable society in harmony with the global environment, biosurfactants are gaining prominence and have already taken over for a number of important industrial uses. They are produced by living organisms, for examples Pseudomonas aeruginosa which produces rhamnolipids, Candida (formerly Torulopsis) bombicola, which produces high yields of sophorolipids from vegetable oils and sugars and Bacillus subtilis which produces a lipopeptide called surfactin. The main goal of this work was to optimize biosurfactants production by an environmental Gram positive isolate for large scale production with maximum yield and low cost. After molecular characterization, phylogenetic tree was constructed where it was found to be B. subtilis, which close matches to B. subtilis subsp. subtilis strain CICC 10260. For optimizing its biosurfactants production, sequential statistical design using Plackett-Burman and response surface methodology, was applied where 11 variables were screened. When analyzing the regression coefficients for the 11 variables, pH, glucose, glycerol, yeast extract, ammonium chloride and ammonium nitrate were found to have a positive effect on the biosurfactants production. Ammonium nitrate, pH and glucose were further studied as significant independent variables for Box-Behnken design and their optimal levels were estimated and were found to be 7.328 pH value, 3 g% glucose and 0.21g % ammonium nitrate yielding high biosurfactants concentration that reduced the surface tension of the culture medium from 72 to 18.16 mN/m. Next, kinetics of cell growth and biosurfactants production by the tested B. subtilis isolate, in bioreactor was compared with that of shake flask where the maximum growth and specific growth (µ) in the bioreactor was higher by about 25 and 53%, respectively, than in shake flask experiment, while the biosurfactants production kinetics was almost the same in both shake flask and bioreactor experiments.

Keywords: biosurfactants, B. subtilis, molecular identification, phylogenetic trees, Plackett-Burman design, Box-Behnken design, 16S rRNA

Procedia PDF Downloads 408
654 Walking the Tightrope: Balancing Project Governance, Complexity, and Servant Leadership for Megaproject Success

Authors: Muhammad Shoaib Iqbal, Shih Ping Ho

Abstract:

Megaprojects are large-scale, complex ventures with significant financial investments, numerous stakeholders, and extended timelines, requiring meticulous management for successful completion. This study explores the interplay between project governance, project complexity, and servant leadership and their combined effects on project success, specifically within the context of Pakistani megaprojects. The primary objectives are to examine the direct impact of project governance on project success, understand the negative influence of project complexity, assess the positive role of servant leadership, explore the moderating effect of servant leadership on the relationship between governance and success, and investigate how servant leadership mitigates the adverse effects of complexity. Using a quantitative approach, survey data were collected from project managers and team members involved in Pakistani megaprojects. Using a Comprehensive empirical model, 257 Valid responses were analyzed. Multiple regression analysis tested the hypothesized relationships and interaction effects using PLS-SEM. Findings reveal that project governance significantly enhances project success, emphasizing the need for robust governance structures. Conversely, project complexity negatively impacts success, highlighting the challenges of managing complex projects. Servant leadership significantly boosts project success by prioritizing team support and empowerment. Although the interaction between governance and servant leadership is not significant, suggesting no significant change in project success, servant leadership significantly mitigates the negative effects of project complexity, enhancing team resilience and adaptability. These results underscore the necessity for a balanced approach integrating strong governance with flexible, supportive leadership. The study offers valuable insights for practitioners, recommending adaptive governance frameworks and promoting servant leadership to improve the management and success rates of megaprojects. This research contributes to the broader understanding of effective project management practices in complex environments.

Keywords: project governance, project complexity, servant leadership, project success, megaprojects, Pakistan

Procedia PDF Downloads 33
653 Public Preferences and Willingness to Pay for Social Health Insurance in Iran: A Discrete Choice Experiment

Authors: Mohammad Ranjbar, Mohammad Bazyar, Blake Angell, Thomas Lung, Yibeltal Assefa

Abstract:

Background: Current health insurance programs in Iran suffer from low enrolment and are not sufficient to attain the country to universal health coverage (UHC). We hypothesize that improving the enrollment rate and moving towards a more sustainable UHC can be achieved by improving the benefits package and providing new incentives. The objective of this study is to assess public preferences and willingness to pay (WTP) for social health insurance (SHI) in Iran. Methods: A discrete choice experiment (DCE) was conducted in 2021, using a self-administered questionnaire on 500 participants to estimate WTP and determine individual preferences for the SHI in Yazd, Iran. Respondents were presented with an eight-choice set and asked to select their preferred one. In each choice set, scenarios were described by eight attributes with varying levels. The conditional logit regression model was used to analyze the participants' preferences. Willingness to pay for each attribute was also calculated. Results: Most included attributes were significant predictors of the choice of a health insurance package. The maximum coverage of hospitalization costs in the private sector, ancillary services such as glasses, canes, etc., as well as coverage for hospitalization costs in the public sector and drug costs, were the most important determining factors for this choice. Coverage of preventive dental care did not significantly influence respondent choices. Estimating WTP showed that individuals are willing to pay more for higher financial protection, particularly against private sector costs; the WTP to increase the coverage of hospitalization costs in the private sector from 50% to 90% is estimated at 362,068 IR, Rials per month. Conclusion: This study identifies the key factors that the population value with regard to health insurance and the tradeoffs they are willing to make between them. Hospitalization, drugs, and ancillary services were the most important determining factors for their choice. The data suggest that additional resources coming into the Iranian health system might best be prioritized to cover hospitalization and drug costs and those associated with ancillary services.

Keywords: social health insurance, preferences, discrete choice experiment, willingness to pay

Procedia PDF Downloads 87
652 New Challenges to the Conservation and Management of the Endangered Persian Follow Deer (Dama dama mesopotamica) in Ashk Island of Lake Uromiyeh National Park, Iran

Authors: Morteza Naderi

Abstract:

The Persian fallow deer was considered as a globally extinct species until 1956 when a small population was rediscovered from Dez Wildlife Refuge and Karkheh Wildlife Refuge in southwestern parts of Iran. After long species rehabilitation process, the species was transplanted to Dasht-e-Naz Wildlife Refuge in northern Iran, and from where, follow deer was introduced to the different selected habitats such as Ashk Island in Lake Uromiyeh National Park. During 12 years, (from 1978 to 1989) 58 individuals (25 males and 33 females) were transferred to Ask Island. The main threat to the established population was related to the freshwater shortage and existing just one single trough such as high mortality rate of adult males during rutting season, snake biting and dilutional hyponatremia. Desiccation of Lake Uromiyeh in recent years raised new challenges to the conservation process, as about 80 individuals, nearly one third of the population were died in 2011. Connection of Island to the mainland caused predators’ accessibility (such as wolf and Jackal) to the Ask Island and higher mortality because of follow deer attraction to the surrounding mainland farms. Conservation team faced such new challenges that may cause introduction plan to be probably failed. Investigations about habitat affinities and carrying capacity are the main basic researches in the management and conservation of the species. Logistic regression analysis showed that the presence of the different fresh water resources as well as Allium akaka and Pistacia atlantica are the main environmental variables affect Follow deer habitat selection. Habitat carrying capacity analysis both in summer and winter seasons indicated that Ashk Island can support 240±30 of Persian follow deer.

Keywords: carrying capacity, follow deer, lake Uromiyeh, microhabitat affinities, population oscillation, predation, sex ratio

Procedia PDF Downloads 325
651 Unsupervised Learning and Similarity Comparison of Water Mass Characteristics with Gaussian Mixture Model for Visualizing Ocean Data

Authors: Jian-Heng Wu, Bor-Shen Lin

Abstract:

The temperature-salinity relationship is one of the most important characteristics used for identifying water masses in marine research. Temperature-salinity characteristics, however, may change dynamically with respect to the geographic location and is quite sensitive to the depth at the same location. When depth is taken into consideration, however, it is not easy to compare the characteristics of different water masses efficiently for a wide range of areas of the ocean. In this paper, the Gaussian mixture model was proposed to analyze the temperature-salinity-depth characteristics of water masses, based on which comparison between water masses may be conducted. Gaussian mixture model could model the distribution of a random vector and is formulated as the weighting sum for a set of multivariate normal distributions. The temperature-salinity-depth data for different locations are first used to train a set of Gaussian mixture models individually. The distance between two Gaussian mixture models can then be defined as the weighting sum of pairwise Bhattacharyya distances among the Gaussian distributions. Consequently, the distance between two water masses may be measured fast, which allows the automatic and efficient comparison of the water masses for a wide range area. The proposed approach not only can approximate the distribution of temperature, salinity, and depth directly without the prior knowledge for assuming the regression family, but may restrict the complexity by controlling the number of mixtures when the amounts of samples are unevenly distributed. In addition, it is critical for knowledge discovery in marine research to represent, manage and share the temperature-salinity-depth characteristics flexibly and responsively. The proposed approach has been applied to a real-time visualization system of ocean data, which may facilitate the comparison of water masses by aggregating the data without degrading the discriminating capabilities. This system provides an interface for querying geographic locations with similar temperature-salinity-depth characteristics interactively and for tracking specific patterns of water masses, such as the Kuroshio near Taiwan or those in the South China Sea.

Keywords: water mass, Gaussian mixture model, data visualization, system framework

Procedia PDF Downloads 142
650 Acculturation and Urban Related Identity of Turk and Kurd Internal Migrants

Authors: Melek Göregenli, Pelin Karakuş

Abstract:

This present study explored the acculturation strategies and urban related identity of Turk and Kurd internal migrants from different regions of Turkey who resettled in three big cities in the west. Besides we aimed at a comparative analysis of acculturation strategies and urban-related identity of voluntary and internally displaced Kurd migrants. Particularly we explored the role of migration type, satisfaction with migration decision, urban-related identity and several socio demographic variables as predictors of Kurds’ integration strategy preference. The sample consisted of 412 adult participants from Izmir (64 females, 86 males); Ankara (76 females, 75 males); and Istanbul (43 females, 64 males and four unreported). In terms of acculturation strategies, assimilation was found to be the most preferred acculturation attitude among Turks whereas separation was found to be most endorsed acculturation attitude among Kurds. The migrants in Izmir were found to prefer assimilation whereas the migrants in Ankara prefer separation. Concerning urban-related identity mean scores, Turks reported higher urban-related identity scores than Kurds. Furthermore the internal migrants in Izmir were found to score higher in urban-related identity than the migrants living in Istanbul and Ankara. The results of the regression analysis revealed that gender, length of residence and migration type were the significant predictors of integration preference of Kurds. Thus, whereas gender and migration type had significant negative associations; length of residence had positive significant associations with Kurds integration preference. Compared to female Kurds, male Kurds were found to be more integrated. Furthermore, voluntary Kurd migrants were more favour of integration than internally displaced Kurds. The findings supported the significant associations between acculturation strategies and urban-related identity with either group.

Keywords: acculturation, forced migration, internal displacement, internal migration, Turkey, urban-related identity

Procedia PDF Downloads 362
649 Sustainable Happiness of Thai People: Monitoring the Thai Happiness Index

Authors: Kalayanee Senasu

Abstract:

This research investigates the influences of different factors on the happiness of Thai people, including both general factors and sustainable ones. Additionally, this study also monitors Thai people’s happiness via Thai Happiness Index developed in 2017. Besides reflecting happiness level of Thai people, this index also identifies related important issues. The data were collected by both secondary related data and primary survey data collected by interviewed questionnaires. The research data were from stratified multi-stage sampling in region, province, district, and enumeration area, and simple random sampling in each enumeration area. The research data cover 20 provinces, including Bangkok and 4-5 provinces in each region of the North, Northeastern, Central, and South. There were 4,960 usable respondents who were at least 15 years old. Statistical analyses included both descriptive and inferential statistics, including hierarchical regression and one-way ANOVA. The Alkire and Foster method was adopted to develop and calculate the Thai happiness index. The results reveal that the quality of household economy plays the most important role in predicting happiness. The results also indicate that quality of family, quality of health, and effectiveness of public administration in the provincial level have positive effects on happiness at about similar levels. For the socio-economic factors, the results reveal that age, education level, and household revenue have significant effects on happiness. For computing Thai happiness index (THaI), the result reveals the 2018 THaI value is 0.556. When people are divided into four groups depending upon their degree of happiness, it is found that a total of 21.1% of population are happy, with 6.0% called deeply happy and 15.1% called extensively happy. A total of 78.9% of population are not-yet-happy, with 31.8% called narrowly happy, and 47.1% called unhappy. A group of happy population reflects the happiness index THaI valued of 0.789, which is much higher than the THaI valued of 0.494 of the not-yet-happy population. Overall Thai people have higher happiness compared to 2017 when the happiness index was 0.506.

Keywords: happiness, quality of life, sustainability, Thai Happiness Index

Procedia PDF Downloads 168
648 Assessing the Impact of Quinoa Cultivation Adopted to Produce a Secure Food Crop and Poverty Reduction by Farmers in Rural Pakistan

Authors: Ejaz Ashraf, Raheel Babar, Muhammad Yaseen, Hafiz Khurram Shurjeel, Nosheen Fatima

Abstract:

Main purpose of this study was to assess adoption level of farmers for quinoa cultivation after they had been taught through training and visit extension approach. At this time of the 21st century, population structure, climate change, food requirements and eating habits of people are changing rapidly. In this scenario, farmers must play their key role in sustainable crop development and production through adoption of new crops that may also be helpful to overcome the issue of food insecurity as well as reducing poverty in rural areas. Its cultivation in Pakistan is at the early stages and there is a need to raise awareness among farmers to grow quinoa crops. In the middle of the 2015, a training and visit extension approach was used to raise awareness and convince farmers to grow quinoa in the area. During training and visit extension program, 80 farmers were randomly selected for the training of quinoa cultivation. Later on, these farmers trained 60 more farmers living into their neighborhood. After six months, a survey was conducted with all 140 farmers to assess the impact of the training and visit program on adoption level of respondents for the quinoa crop. The survey instrument was developed with the help of literature review and other experts of the crop. Validity and reliability of the instrument were checked before complete data collection. The data were analyzed by using SPSS. Multiple regression analysis was used for interpretation of the results from the survey, which indicated that factors like information/ training, change in agronomic and plant protection practices play a key role in the adoption of quinoa cultivation by respondents. In addition, the model explains more than 50% of variation in the adoption level of respondents. It is concluded that farmers need timely information for improved knowledge of agronomic and plant protection practices to adopt cultivation of the quinoa crop in the area.

Keywords: farmers, quinoa, adoption, contact, training and visit

Procedia PDF Downloads 355
647 Evaluation of Weather Risk Insurance for Agricultural Products Using a 3-Factor Pricing Model

Authors: O. Benabdeljelil, A. Karioun, S. Amami, R. Rouger, M. Hamidine

Abstract:

A model for preventing the risks related to climate conditions in the agricultural sector is presented. It will determine the yearly optimum premium to be paid by a producer in order to reach his required turnover. The model is based on both climatic stability and 'soft' responses of usually grown species to average climate variations at the same place and inside a safety ball which can be determined from past meteorological data. This allows the use of linear regression expression for dependence of production result in terms of driving meteorological parameters, the main ones of which are daily average sunlight, rainfall and temperature. By simple best parameter fit from the expert table drawn with professionals, optimal representation of yearly production is determined from records of previous years, and yearly payback is evaluated from minimum yearly produced turnover. The model also requires accurate pricing of commodity at N+1. Therefore, a pricing model is developed using 3 state variables, namely the spot price, the difference between the mean-term and the long-term forward price, and the long-term structure of the model. The use of historical data enables to calibrate the parameters of state variables, and allows the pricing of commodity. Application to beet sugar underlines pricer precision. Indeed, the percentage of accuracy between computed result and real world is 99,5%. Optimal premium is then deduced and gives the producer a useful bound for negotiating an offer by insurance companies to effectively protect its harvest. The application to beet production in French Oise department illustrates the reliability of present model with as low as 6% difference between predicted and real data. The model can be adapted to almost any agricultural field by changing state parameters and calibrating their associated coefficients.

Keywords: agriculture, production model, optimal price, meteorological factors, 3-factor model, parameter calibration, forward price

Procedia PDF Downloads 376
646 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients

Authors: Bliss Singhal

Abstract:

Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.

Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels

Procedia PDF Downloads 83
645 Diaper Dermatitis and Pancytopenia as the Primary Manifestation in an Infant with Vitamin B12 Deficiency

Authors: Ekaterina Sánchez Romero, Emily Gabriela Aguirre Herrera, Sandra Luz Espinoza Esquerra, Jorge García Campos

Abstract:

Female, 7 months old, daughter of a mother with anemia during pregnancy, with no history of atopy in the family, since birth she presents with recurrent dermatological and gastrointestinal infections, chronically treated for recurrent diaper dermatitis. At 6 months of age, she begins with generalized pallor, hyperpigmentation in hands and feet, smooth tongue, psychomotor retardation with lack of head support, sedation, and hypoactivity. She was referred to our hospital for a fever of 38°C, severe diaper rash, and pancytopenia with HB 9.3, platelets 38000, neutrophils 0.39 MCV: 86.80 high for her age. The approach was initiated to rule out myeloproliferative syndrome, with negative immunohistochemical results of bone marrow aspirate; during her stay, she presented neurological regression, lack of sucking, and focal seizures. CT scan showed cortical atrophy. The patient was diagnosed with primary immunodeficiency due to history; gamma globulin was administered without improvement with normal results of immunoglobulins and metabolic screening. When dermatological and neurological diagnoses were ruled out as the primary cause, a nutritional factor was evaluated, and a therapeutic trial was started with the administration of vitamin B12 and zinc, presenting clinical neurological improvement and resolution of pancytopenia in 2 months. It was decided to continue outpatient management. Discussion: We present a patient with neurological, dermatological involvement, and pancytopenia, so the most common differential diagnoses in this population were ruled out. Vitamin B12 deficiency is an uncommon entity. Due to maternal and clinical history, a therapeutic trial was started resulting in an improvement. Conclusion: VitaminB12 deficiency should be considered one of the differential diagnoses in the approach to pancytopenia with megaloblastic anemia associated with dermatologic and neurologic manifestations. Early treatment can reduce irreversible damage in these patients.

Keywords: vitamin B12 deficiency, pediatrics, pancytopenia, diaper dermatitis

Procedia PDF Downloads 94
644 Revealing the Risks of Obstructive Sleep Apnea

Authors: Oyuntsetseg Sandag, Lkhagvadorj Khosbayar, Naidansuren Tsendeekhuu, Densenbal Dansran, Bandi Solongo

Abstract:

Introduction: Obstructive sleep apnea (OSA) is a common disorder affecting at least 2% to 4% of the adult population. It is estimated that nearly 80% of men and 93% of women with moderate to severe sleep apnea are undiagnosed. A number of screening questionnaires and clinical screening models have been developed to help identify patients with OSA, also it’s indeed to clinical practice. Purpose of study: Determine dependence of obstructive sleep apnea between for severe risk and risk factor. Material and Methods: A cross-sectional study included 114 patients presenting from theCentral state 3th hospital and Central state 1th hospital. Patients who had obstructive sleep apnea (OSA)selected in this study. Standard StopBang questionnaire was obtained from all patients.According to the patients’ response to the StopBang questionnaire was divided into low risk, intermediate risk, and high risk.Descriptive statistics were presented mean ± standard deviation (SD). Each questionnaire was compared on the likelihood ratio for a positive result, the likelihood ratio for a negative test result of regression. Statistical analyses were performed utilizing SPSS 16. Results: 114 patients were obtained (mean age 48 ± 16, male 57)that divided to low risk 54 (47.4%), intermediate risk 33 (28.9%), high risk 27 (23.7%). Result of risk factor showed significantly increasing that mean age (38 ± 13vs. 54 ± 14 vs. 59 ± 10, p<0.05), blood pressure (115 ± 18vs. 133 ± 19vs. 142 ± 21, p<0.05), BMI(24 IQR 22; 26 vs. 24 IQR 22; 29 vs. 28 IQR 25; 34, p<0.001), neck circumference (35 ± 3.4 vs. 38 ± 4.7 vs. 41 ± 4.4, p<0.05)were increased. Results from multiple logistic regressions showed that age is significantly independently factor for OSA (odds ratio 1.07, 95% CI 1.02-1.23, p<0.01). Predictive value of age was significantly higher factor for OSA (AUC=0.833, 95% CI 0.758-0.909, p<0.001). Our study showing that risk of OSA is beginning 47 years old (sensitivity 78.3%, specifity74.1%). Conclusions: According to most of all patients’ response had intermediate risk and high risk. Also, age, blood pressure, neck circumference and BMI were increased such as risk factor was increased for OSA. Especially age is independently factor and highest significance for OSA. Patients’ age one year is increased likelihood risk factor 1.1 times is increased.

Keywords: obstructive sleep apnea, Stop-Bang, BMI (Body Mass Index), blood pressure

Procedia PDF Downloads 309
643 Financial Markets Performance: From COVID-19 Crisis to Hopes of Recovery with the Containment Polices

Authors: Engy Eissa, Dina M. Yousri

Abstract:

COVID-19 has hit massively the world economy, financial markets and even societies’ livelihood. The infectious disease caused by the most recently discovered coronavirus was claimed responsible for a shrink in the global economy by 4.4% in 2020. Shortly after the first case in Wuhan was identified, a quick surge in the number of confirmed cases in China was evident and a vast spread worldwide is recorded with cases surpassing the 500,000 cases. Irrespective of the disease’s trajectory in each country, a call for immediate action and prompt government intervention was needed. Given that there is no one-size-fits-all approach across the world, a number of containment and adoption policies were embraced. It was starting by enforcing complete lockdown like China to even stricter policies targeted containing the spread of the virus, augmenting the efficiency of health systems, and controlling the economic outcomes arising from this crisis. Hence, this paper has three folds; first, it examines the impact of containment policies taken by governments on controlling the number of cases and deaths in the given countries. Second, to assess the ramifications of COVID-19 on financial markets measured by stock returns. Third, to study the impact of containment policies measured by the government response index, the stringency index, the containment health index, and the economic support index on financial markets performance. Using a sample of daily data covering the period 31st of January 2020 to 15th of April 2021 for the 10 most hit countries in wave one by COVID-19 namely; Brazil, India, Turkey, Russia, UK, USA, France, Germany, Spain, and Italy. The aforementioned relationships were tested using Panel VAR Regression. The preliminary results showed that the number of daily deaths had an impact on the stock returns; moreover, the health containment policies and the economic support provided by the governments had a significant effect on lowering the impact of COVID-19 on stock returns.

Keywords: COVID-19, government policies, stock returns, VAR

Procedia PDF Downloads 180
642 Digital Transformation in Education: Artificial Intelligence Awareness of Preschool Teachers

Authors: Cansu Bozer, Saadet İrem Turgut

Abstract:

Artificial intelligence (AI) has become one of the most important technologies of the digital age and is transforming many sectors, including education. The advantages offered by AI, such as automation, personalised learning, and data analytics, create new opportunities for both teachers and students in education systems. Preschool education plays a fundamental role in the cognitive, social, and emotional development of children. In this period, the foundations of children's creative thinking, problem-solving, and critical thinking skills are laid. Educational technologies, especially artificial intelligence-based applications, are thought to contribute to the development of these skills. For example, artificial intelligence-supported digital learning tools can support learning processes by offering activities that can be customised according to the individual needs of each child. However, the successful use of artificial intelligence-based applications in preschool education can be realised under the guidance of teachers who have the right knowledge about this technology. Therefore, it is of great importance to measure preschool teachers' awareness levels of artificial intelligence and to understand which variables affect this awareness. The aim of this study is to measure preschool teachers' awareness levels of artificial intelligence and to determine which factors are related to this awareness. In line with this purpose, teachers' level of knowledge about artificial intelligence, their thoughts about the role of artificial intelligence in education, and their attitudes towards artificial intelligence will be evaluated. The study will be conducted with 100 teachers working in Turkey using a descriptive survey model. In this context, ‘Artificial Intelligence Awareness Level Scale for Teachers’ developed by Ferikoğlu and Akgün (2022) will be used. The collected data will be analysed using SPSS (Statistical Package for the Social Sciences) software. Descriptive statistics (frequency, percentage, mean, standard deviation) and relationship analyses (correlation and regression analyses) will be used in data analysis. As a result of the study, the level of artificial intelligence awareness of preschool teachers will be determined, and the factors affecting this awareness will be identified. The findings obtained will contribute to the determination of studies that can be done to increase artificial intelligence awareness in preschool education.

Keywords: education, child development, artificial intelligence, preschool teachers

Procedia PDF Downloads 17
641 Use of Information and Communication Technologies in Enhancing Health Care Delivery for Human Immunodeficiency Virus Patients in Bamenda Health District

Authors: Abanda Wilfred Chick

Abstract:

Background: According to World Health Organization (WHO), the role of Information and Communication Technologies (ICT) in health sectors of developing nations has been demonstrated to have had a great improvement of fifty percent reduction in mortality and or twenty-five-fifty percent increase in productivity. The objective of this study was to assess the use of information and communication technologies in enhancing health care delivery for Human Immunodeficiency Virus (HIV) patients in Bamenda Health District. Methods: This was a descriptive-analytical cross-sectional study in which 388 participants were consecutively selected amongst health personnel and HIV patients from public and private health institutions involved in Human Immunodeficiency Virus management. Data on socio-demographic variables, the use of information and communication technologies tools, and associated challenges were collected using structured questionnaires. Descriptive statistics with a ninety-five percent confidence interval were used to summarize findings, while Cramer’s V test, logistic regression, and Chi-square test were used to measure the association between variables, Epi info version7.2, MS Excel, and SPSS version 25.0 were utilized for data entry and statistical analysis respectively. Results: Of the participants, one-quarter were health personnel, and three-quarters were HIV patients. For both groups of participants, there was a significant relationship between the use of ICT and demographic information such as level of education, marital status, and age (p<0.05). For the impediments to using ICT tools, a greater proportion identified the high cost of airtime or internet bundles, followed by an average proportion that indicated inadequate training on ICT tools; for health personnel, the majority said inadequate training on ICT tools/applications and half said unavailability of electricity. Conclusion: Not up to half of the HIV patients effectively make use of ICT tools/applications to receive health care. Of health personnel, three quarters use ICTs, and only one quarter effectively use mobile phones and one-third of computers, respectively, to render care to HIV patients.

Keywords: ICT tools, HIV patients, health personnel, health care delivery

Procedia PDF Downloads 84