Search results for: metal surface structure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14450

Search results for: metal surface structure

11930 The Effect of Irradiation Distance on Microhardness of Hybrid Resin Composite Polymerization Using Light-Emitting Diodes

Authors: Deli Mona, Rafika Husni

Abstract:

The aim of this research is to evaluate the effect of lighting distance on surface hardness of light composite resin. We held laboratory experimental research with post-test only group design. The samples used are 30 disc-like hybrid composite resins with the diameter is 6 mm and the thickness is 2 mm, lighted by an LED for 20 seconds. They were divided into 3 groups, and every group was consisted by 10 samples, which were 0 mm, 2 mm, and 5 mm lighting distance group. Every samples group was treated with hardness test, Vicker Hardness Test, then analyzed with one-way ANOVA test to evaluate the effect of lighting distance differences on surface hardness of light composite resin. Statistic test result shown hardness mean change of composite renin between 0 mm and 2 mm lighting distance with 0.00 significance (p<0.05), between 0 mm and 5 mm lighting distance with 0.00 significance (p<0.05), and 2 mm and 5 mm lighting distance with 0.05 significance (p<0.05). According to the result of this research, we concluded that the further lighting distance, the more surface hardness decline of hybrid composite resin.

Keywords: composite resin hybrid, tip distance, microhardness, light curing LED

Procedia PDF Downloads 331
11929 Effects of Coastal Structure Construction on Ecosystem

Authors: Afshin Jahangirzadeh, Shatirah Akib, Keyvan Kimiaei, Hossein Basser

Abstract:

Coastal defense structures were built to protect part of shore from beach erosion and flooding by sea water. Effects of coastal defense structures can be negative or positive. Some of the effects are beneficial in socioeconomic aspect, but environment matters should be given more concerns because it can bring bad consequences to the earth landscape and make the ecosystem be unbalanced. This study concerns on the negative impacts as they are dominant. Coastal structures can extremely impact the shoreline configuration. Artificial structures can influence sediment transport, split the coastal space, etc. This can result in habitats loss and lead to noise and visual disturbance of birds. There are two types of coastal defense structures, hard coastal structure and soft coastal structure. Both coastal structures have their own impacts. The impacts are induced during the construction, maintaining, and operation of the structures.

Keywords: ecosystem, environmental impact, hard coastal structures, soft coastal structures

Procedia PDF Downloads 469
11928 Non-Waste Utilization of Copper Smelting Slags for Production of Demanded Products

Authors: V. D. Povolockiy, V. E. Roshchin, Y. Kapelyushin

Abstract:

Smelting of copper matte is followed by production of a large amount of slag. This slag mostly contains silicates and can be utilized in a construction industry. In addition to silicates it also contains Fe; if the Fe content is high, the density of the silicate phases increases and such a slag cannot be used as an additive for the concrete. Furthermore, slags obtained during copper matte production contain copper, sulphur, zinc and some other elements. Fe is the element with the highest price in these slags. An extraction of Fe is possible even using the conventional methods, e.g., the addition of slag to the charge materials during production of sinter for the blast furnace smelting. However, in this case, the blast furnace hot metal would accumulate sulphur and copper which is very harmful impurity for the steelmaking. An accumulation of copper by the blast furnace hot metal is unacceptable, as copper cannot be removed during further steelmaking operations having a critical effect on the properties of steel. In present work, the technological scheme for non-waste utilization of the copper smelting slags has been suggested and experimentally confirmed. This scheme includes a solid state reduction of Fe and smelting for the separation of cast iron and slag. During solid state reduction, the zinc vapor was trapped. After the reduction and smelting operations, the cast iron containing copper was used for the production of metal balls with increased mechanical properties allowing their utilization for milling of ore minerals. Such a cast iron could also be applied in the production of special types of steel with copper. The silicate slag freed from Fe might be used as a propping agent in the oil industry, or granulated for application as an additive for concrete in a construction industry. Thereby, the suggested products for a Mini Mill plant with non-waste utilization of the copper smelting slags are cast iron grinding balls for the ore minerals, special types of steel with copper, silicate slag utilized as an additive for the concrete and propping agents for the oil industry.

Keywords: utilization of copper slag, cast iron, grinding balls, propping agents

Procedia PDF Downloads 138
11927 Photocatalytic Oxidation of Gaseous Formaldehyde Using the TiO2 Coated SF Filter

Authors: Janjira Triped, Wipada Sanongraj, Wipawee Khamwichit

Abstract:

The research work covered in this study includes the morphological structure and optical properties of TiO2-coated silk fibroin (SF) filters at 2.5% wt. TiO2/vol. PVA solution. SEM micrographs revealed the fibrous morphology of the TiO2-coated SF filters. An average diameter of the SF fiber was estimated to be approximately 10µm. Also, it was confirmed that TiO2 can be adhered more on SF filter surface at higher TiO2 dosages. The activity of semiconductor materials was studied by UV-VIS spectrophotometer method. The spectral data recorded shows the strong cut off at 390 nm. The calculated band-gap energy was about 3.19 eV. The photocatalytic activity of the filter was tested for gaseous formaldehyde removal in a modeling room with the total volume of 2.66 m3. The highest removal efficiency (54.72 ± 1.75%) was obtained at the initial formaldehyde concentration of about 5.00 ± 0.50ppm.

Keywords: photocatalytic oxidation process, formaldehyde (HCHO), silk fibroin (SF), titanium dioxide (TiO2)

Procedia PDF Downloads 456
11926 Functionally Modified Melt-Electrospun Thermoplastic Polyurethane (TPU) Mats for Wound-Dressing Applications

Authors: Christoph Hacker, Zeynep Karahaliloglu, Gunnar Seide, Emir Baki Denkbas, Thomas Gries

Abstract:

A wound dressing material is designed to facilitate wound healing and minimize scarring. An ideal wound dressing material should protect the wound from any contaminations of exogeneous microorganism. In addition, the dressing material should provide a moist environment through extraction of body fluid from the wound area. Recently, wound dressing electrospun nanofibrous membranes are produced by electrospinning from a polymer solution or a polymer melt. These materials have a great potential as dressing materials for wound healing because of superior properties such as high surface-to-volume ratio, high porosity with excellent pore interconnectivity. Melt electrospinning is an attractive tissue engineering scaffold manufacturing process which eliminated the health risk posed by organic solvents used in electrospinning process and reduced the production costs. In this study, antibacterial wound dressing materials were prepared from TPU (Elastollan 1185A) by a melt-electrospinning technique. The electrospinning parameters for an efficient melt-electrospinning process of TPU were optimized. The surface of the fibers was modified with poly(ethylene glycol) (PEG) by radio-frequency glow discharge plasma deposition method and with silver nanoparticles (nAg) to improve their wettability and antimicrobial properties. TPU melt-electrospun mats were characterized using SEM, DSC, TGA and XPS. The cell viability and proliferation on modified melt-electrospun TPU mats were evaluated using a mouse fibroblast cell line (L929). Antibacterial effects of theirs against both Staphylococcus aureus strain and Escherichia coli were investigated by disk-diffusion method. TPU was successfully processed into a porous, fibrous network of beadless fibers in the micrometer range (4.896±0.94 µm) with a voltage of 50 kV, a working distance of 6 cm, a temperature of the thermocouple and hot coil of 225–230ºC, and a flow rate of 0.1 mL/h. The antibacterial test indicated that PEG-modified nAg-loaded TPU melt-electrospun structure had excellent antibacterial effects and cell study results demonstrated that nAg-loaded TPU mats had no cytotoxic effect on the fibroblast cells. In this work, the surface of a melt-electrospun TPU mats was modified via PEG monomer and then nAg. Results showed melt-electrospun TPU mats modified with PEG and nAg have a great potential for use as an antibacterial wound dressing material and thus, requires further investigation.

Keywords: melt electrospinning, nanofiber, silver nanoparticles, wound dressing

Procedia PDF Downloads 447
11925 Engineering of Stable and Improved Electrochemical Activities of Redox Dominating Charge Storage Electrode Materials

Authors: Girish Sambhaji Gund

Abstract:

The controlled nanostructure growth and its strong coupling with the current collector are key factors to achieve good electrochemical performance of faradaic-dominant electroactive materials. We employed binder-less and additive-free hydrothermal and physical vapor doping methods for the synthesis of nickel (Ni) and cobalt (Co) based compounds nanostructures (NiO, NiCo2O4, NiCo2S4) deposited on different conductive substrates such as carbon nanotube (CNT) on stainless steel, and reduced graphene oxide (rGO) and N-doped rGO on nickel foam (NF). The size and density of Ni- and Co-based compound nanostructures are controlled through the strong coupling with carbon allotropes on stainless steel and NF substrates. This controlled nanostructure of Ni- and Co-based compounds with carbon allotropes leads to stable faradaic electrochemical reactions at the material/current collector interface and within the electrode, which is consequence of strong coupling of nanostructure with functionalized carbon surface as a buffer layer. Thus, it is believed that the results provide the synergistic approaches to stabilize electrode materials physically and chemically, and hence overall electrochemical activity of faradaic dominating battery-type electrode materials through buffer layer engineering.

Keywords: metal compounds, carbon allotropes, doping, electrochemicstry, hybrid supercapacitor

Procedia PDF Downloads 64
11924 Synthesis, Structural and Vibrational Studies of a New Lacunar Apatite: LIPB2CA2(PO4)3

Authors: A. Chari, A. El Bouari, B. Orayech, A. Faik, J. M. Igartua

Abstract:

The phosphate is a natural resource of great importance in Morocco. In order to exploit this wealth, synthesis and studies of new a material based phosphate, were carried out. The apatite structure present o lot of characteristics, One of the main characteristics is to allow large and various substitutions for both cations and anions. Beside their biological importance in hard tissue (bone and teeth), apatites have been extensively studied for their potential use as fluorescent lamp phosphors or laser host materials.The apatite have interesting possible application fields such as in medicine as materials of bone filling, coating of dental implants, agro chemicals as artificial fertilizers. The LiPb2Ca2(PO4)3 was synthesized by the solid-state method, its crystal structure was investigated by Rietveld analysis using XRPD data. This material crystallizes with a structure of lacunar apatite anion deficit. The LiPb2Ca2(PO4)3 is hexagonal apatite at room temperature, adopting the space group P63/m (ITA No. 176), Rietveld refinements showed that the site 4f is shared by three cations Ca, Pb and Li. While the 6h is occupied by the Pb and Li cations. The structure can be described as built up from the PO4 tetrahedra and the sixfold coordination cavities, which delimit hexagonal tunnels along the c-axis direction. These tunnels are linked by the cations occupying the 4 f sites. Raman and Infrared spectroscopy analyses were carried out. The observed frequencies were assigned and discussed on the basis of unit-cell group analysis and by comparison to other apatite-type materials.

Keywords: apatite, Lacunar, crystal structure, Rietveldmethod, LiPb2Ca2(PO4)3, Phase transition

Procedia PDF Downloads 386
11923 Computational Studies of the Reactivity Descriptors and the Optoelectronic Properties on the Efficiency Free-Base- and Zn-Porphyrin-Sensitized Solar Cells

Authors: Soraya Abtouche, Zeyneb Ghoualem, Syrine Daoudi, Lina Ouldmohamed, Xavier Assfeld

Abstract:

This work reports density functional theory calculations of the optimized geometries, molecular reactivity, energy gap,and thermodynamic properties of the free base (H2P) and their Zn (II) metallated (ZnP), bearing one, two, or three carboxylic acid groups using the hybrid functional B3LYP, Cam-B3lYP, wb97xd with 6-31G(d,p) basis sets. When donating groups are attached to the molecular dye, the bond lengths are slightly decreased, which is important for the easy transfer of an electron from donating to the accepting group. For all dyes, the highest occupied molecular orbital/lowest occupied molecular orbital analysis results in positive outcomes upon electron injection to the semiconductor and subsequent dye regeneration by the electrolyte. The ionization potential increases with increasing conjugation; therefore, the compound dye attached to one carboxylic acid group has the highest ionization potential. The results show higher efficiencies of those sensitized with ZnP. These results have been explained, taking into account the electronic character of the metal ion, which acts as a mediator in the injection step, and, on the other hand, considering the number of anchoring groups to which it binds to the surface of TiO2.

Keywords: DSSC, porphyrin, TD-DFT, electronic properties, donor-acceptor groups

Procedia PDF Downloads 64
11922 Surface Motion of Anisotropic Half Space Containing an Anisotropic Inclusion under SH Wave

Authors: Yuanda Ma, Zhiyong Zhang, Zailin Yang, Guanxixi Jiang

Abstract:

Anisotropy is very common in underground media, such as rock, sand, and soil. Hence, the dynamic response of anisotropy medium under elastic waves is significantly different from the isotropic one. Moreover, underground heterogeneities and structures, such as pipelines, cylinders, or tunnels, are usually made by composite materials, leading to the anisotropy of these heterogeneities and structures. Both the anisotropy of the underground medium and the heterogeneities have an effect on the surface motion of the ground. Aiming at providing theoretical references for earthquake engineering and seismology, the surface motion of anisotropic half-space with a cylindrical anisotropic inclusion embedded under the SH wave is investigated in this work. Considering the anisotropy of the underground medium, the governing equation with three elastic parameters of SH wave propagation is introduced. Then, based on the complex function method and multipolar coordinates system, the governing equation in the complex plane is obtained. With the help of a pair of transformation, the governing equation is transformed into a standard form. By means of the same methods, the governing equation of SH wave propagation in the cylindrical inclusion with another three elastic parameters is normalized as well. Subsequently, the scattering wave in the half-space and the standing wave in the inclusion is deduced. Different incident wave angle and anisotropy are considered to obtain the reflected wave. Then the unknown coefficients in scattering wave and standing wave are solved by utilizing the continuous condition at the boundary of the inclusion. Through truncating finite terms of the scattering wave and standing wave, the equation of boundary conditions can be calculated by programs. After verifying the convergence and the precision of the calculation, the validity of the calculation is verified by degrading the model of the problem as well. Some parameters which influence the surface displacement of the half-space is considered: dimensionless wave number, dimensionless depth of the inclusion, anisotropic parameters, wave number ratio, shear modulus ratio. Finally, surface displacement amplitude of the half space with different parameters is calculated and discussed.

Keywords: anisotropy, complex function method, sh wave, surface displacement amplitude

Procedia PDF Downloads 109
11921 Calculation of Pressure-Varying Langmuir and Brunauer-Emmett-Teller Isotherm Adsorption Parameters

Authors: Trevor C. Brown, David J. Miron

Abstract:

Gas-solid physical adsorption methods are central to the characterization and optimization of the effective surface area, pore size and porosity for applications such as heterogeneous catalysis, and gas separation and storage. Properties such as adsorption uptake, capacity, equilibrium constants and Gibbs free energy are dependent on the composition and structure of both the gas and the adsorbent. However, challenges remain, in accurately calculating these properties from experimental data. Gas adsorption experiments involve measuring the amounts of gas adsorbed over a range of pressures under isothermal conditions. Various constant-parameter models, such as Langmuir and Brunauer-Emmett-Teller (BET) theories are used to provide information on adsorbate and adsorbent properties from the isotherm data. These models typically do not provide accurate interpretations across the full range of pressures and temperatures. The Langmuir adsorption isotherm is a simple approximation for modelling equilibrium adsorption data and has been effective in estimating surface areas and catalytic rate laws, particularly for high surface area solids. The Langmuir isotherm assumes the systematic filling of identical adsorption sites to a monolayer coverage. The BET model is based on the Langmuir isotherm and allows for the formation of multiple layers. These additional layers do not interact with the first layer and the energetics are equal to the adsorbate as a bulk liquid. This BET method is widely used to measure the specific surface area of materials. Both Langmuir and BET models assume that the affinity of the gas for all adsorption sites are identical and so the calculated adsorbent uptake at the monolayer and equilibrium constant are independent of coverage and pressure. Accurate representations of adsorption data have been achieved by extending the Langmuir and BET models to include pressure-varying uptake capacities and equilibrium constants. These parameters are determined using a novel regression technique called flexible least squares for time-varying linear regression. For isothermal adsorption the adsorption parameters are assumed to vary slowly and smoothly with increasing pressure. The flexible least squares for pressure-varying linear regression (FLS-PVLR) approach assumes two distinct types of discrepancy terms, dynamic and measurement for all parameters in the linear equation used to simulate the data. Dynamic terms account for pressure variation in successive parameter vectors, and measurement terms account for differences between observed and theoretically predicted outcomes via linear regression. The resultant pressure-varying parameters are optimized by minimizing both dynamic and measurement residual squared errors. Validation of this methodology has been achieved by simulating adsorption data for n-butane and isobutane on activated carbon at 298 K, 323 K and 348 K and for nitrogen on mesoporous alumina at 77 K with pressure-varying Langmuir and BET adsorption parameters (equilibrium constants and uptake capacities). This modeling provides information on the adsorbent (accessible surface area and micropore volume), adsorbate (molecular areas and volumes) and thermodynamic (Gibbs free energies) variations of the adsorption sites.

Keywords: Langmuir adsorption isotherm, BET adsorption isotherm, pressure-varying adsorption parameters, adsorbate and adsorbent properties and energetics

Procedia PDF Downloads 218
11920 Synthesis of Y2O3 Films by Spray Coating with Milled EDTA ・Y・H Complexes

Authors: Keiji Komatsu,Tetsuo Sekiya, Ayumu Toyama, Atsushi Nakamura, Ikumi Toda, Shigeo Ohshio, Hiroyuki Muramatsu, Hidetoshi Saitoh

Abstract:

Yttrium oxide (Y2O3) films have been successfully deposited with yttrium-ethylenediaminetetraacetic acid (EDTA・Y・H) complexes prepared by various milling techniques. The effects of the properties of the EDTA・Y・H complex on the properties of the deposited Y2O3 films have been analyzed. Seven different types of the raw EDTA・Y・H complexes were prepared by various commercial milling techniques such as ball milling, hammer milling, commercial milling, and mortar milling. The milled EDTA・Y・H complexes exhibited various particle sizes and distributions, depending on the milling method. Furthermore, we analyzed the crystal structure, morphology and elemental distribution profile of the metal oxide films deposited on stainless steel substrate with the milled EDTA・Y・H complexes. Depending on the milling technique, the flow properties of the raw powders differed. The X-ray diffraction pattern of all the samples revealed the formation of Y2O3 crystalline phase, irrespective of the milling technique. Of all the different milling techniques, the hammer milling technique is considered suitable for fabricating dense Y2O3 films.

Keywords: powder sizes and distributions, flame spray coating techniques, Yttrium oxide

Procedia PDF Downloads 379
11919 Na Doped ZnO UV Filters with Reduced Photocatalytic Activity for Sunscreen Application

Authors: Rafid Mueen, Konstantin Konstantinov, Micheal Lerch, Zhenxiang Cheng

Abstract:

In the past two decades, the concern for skin protection from ultraviolet (UV) radiation has attracted considerable attention due to the increased intensity of UV rays that can reach the Earth’s surface as a result of the breakdown of ozone layer. Recently, UVA has also attracted attention, since, in comparison to UVB, it can penetrate deeply into the skin, which can result in significant health concerns. Sunscreen agents are one of the significant tools to protect the skin from UV irradiation, and it is either organic or in organic. Developing of inorganic UV blockers is essential, which provide efficient UV protection over a wide spectrum rather than organic filters. Furthermore inorganic UV blockers are good comfort, and high safety when applied on human skin. Inorganic materials can absorb, reflect, or scatter the ultraviolet radiation, depending on their particle size, unlike the organic blockers, which absorb the UV irradiation. Nowadays, most inorganic UV-blocking filters are based on (TiO2) and ZnO). ZnO can provide protection in the UVA range. Indeed, ZnO is attractive for in sunscreen formulization, and this relates to many advantages, such as its modest refractive index (2.0), absorption of a small fraction of solar radiation in the UV range which is equal to or less than 385 nm, its high probable recombination of photogenerated carriers (electrons and holes), large direct band gap, high exciton binding energy, non-risky nature, and high tendency towards chemical and physical stability which make it transparent in the visible region with UV protective activity. A significant issue for ZnO use in sunscreens is that it can generate ROS in the presence of UV light because of its photocatalytic activity. Therefore it is essential to make a non-photocatalytic material through modification by other metals. Several efforts have been made to deactivate the photocatalytic activity of ZnO by using inorganic surface modifiers. The doping of ZnO by different metals is another way to modify its photocatalytic activity. Recently, successful doping of ZnO with different metals such as Ce, La, Co, Mn, Al, Li, Na, K, and Cr by various procedures, such as a simple and facile one pot water bath, co-precipitation, hydrothermal, solvothermal, combustion, and sol gel methods has been reported. These materials exhibit greater performance than undoped ZnO towards increasing the photocatalytic activity of ZnO in visible light. Therefore, metal doping can be an effective technique to modify the ZnO photocatalytic activity. However, in the current work, we successfully reduce the photocatalytic activity of ZnO through Na doped ZnO fabricated via sol-gel and hydrothermal methods.

Keywords: photocatalytic, ROS, UVA, ZnO

Procedia PDF Downloads 131
11918 Synthesizing and Fabrication of Pani-(SnO₂, ZnO)/rGO by Sol-Gel Method to Develop a Biosensor Thin-Films on Top Glass Substrate

Authors: Mohammad Arifin, Huda Abdullah, Norshafadzila Mohammad Naim

Abstract:

The fabricated PANI-(SnO₂, ZnO)/rGO nanocomposite thin films for the E. coli bacteria sensor were investigated. The nanocomposite thin films were prepared by the sol-gel method and deposited on the glass substrate using the spin-coating technique. The internal structure and surface morphology of the thin films have been analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM). The optical properties of the films were investigated by UV-Vis spectroscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). The sensitivity performance was identified by measuring the changing conductivity before and after the incubation of E. coli bacteria using current-voltage (I-V) and cyclic voltammetry (C-V) measurements.

Keywords: PANI-(SnO₂, ZnO)/rGO, nanocomposite, bacteria sensor, thin films

Procedia PDF Downloads 97
11917 Investigation of Corrosion Inhibition Potential of Acalypha chamaedrifolia Leaves Extract towards Mild Steel in Acid Medium

Authors: Stephen Eyije Abechi, Casimir Emmanuel Gimba, Zaharaddeen Nasiru Garba, Sani Shamsudeen, David Ebuka Authur

Abstract:

Corrosion inhibition of mild steel in acid medium using Acalypha chamaedrifolia leaves extract as potential green inhibitor was investigated. Gravimetric (weight loss) technique was used for the corrosion studies. Mild steel coupons of 2cm × 1cm × 0.27 cm dimensions were exposed for varying durations of between 24 to 120 hours, in 1M HCl medium containing a varying concentrations of the leaves extract (0.25g/L, - 1.25g/L). The results show that corrosion rates dropped from a value of 0.49 mgcm-2hr-1 for the uninhibited medium to a value of 0.15 mgcm-2hr-1 for the inhibited medium of 1M HCl in 0.25 g/l of the extract. Values of corrosion inhibition efficiencies of 70.38-85.11% were observed as the concentration of the inhibitor were increased from 0.25g/L, - 1.25g/L. Corrosion Inhibition was found to increase with increase in immersion time and temperature. The magnitude of the Ea indicates that the interaction between the metal surface and the inhibitor was chemisorptions. The Adsorption process fit into the Langmuir isotherm model with a correlation coefficient of 0.97. Evidence from molecular dynamics model shows that Methyl stearate (Line 5) and (3Z, 13Z)-2-methyloctadeca-3,13-dien-1-ol (line 11) were found to have the highest binding energy of -197.69 ± 3.12 and-194.56 ± 10.04 in kcal/mol respectively. The binding energy of these compounds indicates that they would be a very good corrosion inhibitor for mild steel and other Fe related materials.

Keywords: binding energy, corrosion, inhibitor, langmuir isotherm, mild steel

Procedia PDF Downloads 337
11916 Trend and Distribution of Heavy Metals in Soil and Sediment: North of Thailand Region

Authors: Chatkaew Tansakul, Saovajit Nanruksa, Surasak Chonchirdsin

Abstract:

Heavy metals in the environment can be occurred by both natural weathering process and human activity, which may present significant risks to human health and the wider environment. A number of heavy metals, i.e. Arsenic (As) and Manganese (Mn), are found with a relatively high concentration in the northern part of Thailand that was assumptively from natural parent rocks and materials. However, scarce literature is challenging to identify the accurate root cause and best available explanation. This study is, therefore, aim to gather heavy metals data in 5 provinces of the North of Thailand where PTT Exploration and Production (PTTEP) public company limited has operated for more than 20 years. A thousand heavy metal analysis is collected and interpreted in term of Enrichment Factor (EF). The trend and distribution of heavy metals in soil and sediment are analyzed by considering altogether the geochemistry of the regional soil and rock. . In addition, the relationship between land use and heavy metals distribution is investigated. In the first conclusion, heavy metal concentrations of (As) and (Mn) in the studied areas are equal to 7.0 and 588.6 ppm, respectively, which are comparable to those in regional parent materials (1 – 12 and 850 – 1,000 ppm for As and Mn respectively). Moreover, there is an insignificant escalation of the heavy metals in these studied areas over two decades.

Keywords: contaminated soil, enrichment factor, heavy metals, parent materials in North of Thailand

Procedia PDF Downloads 138
11915 Flutter Control Analysis of an Aircraft Wing Using Carbon Nanotubes Reinforced Polymer

Authors: Timothee Gidenne, Xia Pinqi

Abstract:

In this paper, an investigation of the use of carbon nanotubes (CNTs) reinforced polymer as an actuator for an active flutter suppression to counter the flutter phenomena is conducted. The goal of this analysis is to establish a link between the behavior of the control surface and the actuators to demonstrate the veracity of using such a suppression system for the aeronautical field. A preliminary binary flutter model using simplified unsteady aerodynamics is developed to study the behavior of the wing while reaching the flutter speed and when the control system suppresses the flutter phenomena. The Timoshenko beam theory for bilayer materials is used to match the response of the control surface with the CNTs reinforced polymer (CNRP) actuators. According to Timoshenko theory, results show a good and realistic response for such a purpose. Even if the results are still preliminary, they show evidence of the potential use of CNRP for control surface actuation for the small-scale and lightweight system.

Keywords: actuators, aeroelastic, aeroservoelasticity, carbon nanotubes, flutter, flutter suppression

Procedia PDF Downloads 111
11914 Flexural Properties of Halloysite Nanotubes-Polyester Nanocomposites Exposed to Aggressive Environment

Authors: Mohd Shahneel Saharudin, Jiacheng Wei, Islam Shyha, Fawad Inam

Abstract:

This study aimed to investigate the effect of aggressive environment on the flexural properties of halloysite nanotubes-polyester nanocomposites. Results showed that the addition of halloysite nanotubes into polyester matrix was found to improve flexural properties of the nanocomposites in dry condition and after water-methanol exposure. Significant increase in surface roughness was also observed and measured by Alicona Infinite Focus optical microscope.

Keywords: halloysite nanotube, composites, flexural properties, surface roughness

Procedia PDF Downloads 268
11913 Evaluation and Risk Assessment of Heavy Metals Pollution Using Edible Crabs, Based on Food Intended for Human Consumption

Authors: Nayab Kanwal, Noor Us Saher

Abstract:

The management and utilization of food resources is becoming a big issue due to rapid urbanization, wastage and non-sustainable use of food, especially in developing countries. Therefore, the use of seafood as alternative sources is strongly promoted worldwide. Marine pollution strongly affects marine organisms, which ultimately decreases their export quality. The monitoring of contamination in marine organisms is a good indicator of the environmental quality as well as seafood quality. Monitoring the accumulation of chemical elements within various tissues of organisms has become a useful tool to survey current or chronic levels of heavy metal exposure within an environment. In this perspective, this study was carried out to compare the previous and current levels (Year 2012 and 2014) of heavy metals (Cd, Pb, Cr, Cu and Zn) in crabs marketed in Karachi and to estimate the toxicological risk associated with their intake. The accumulation of metals in marine organisms, both essential (Cu and Zn) and toxic (Pb, Cd and Cr), natural and anthropogenic, is an actual food safety issue. Significant (p>0.05) variations in metal concentrations were found in all crab species between the two years, with most of the metals showing high accumulation in 2012. For toxicological risk assessment, EWI (Estimated weekly intake), Target Hazard quotient (THQ) and cancer risk (CR) were also assessed and high EWI, Non- cancer risk (THQ < 1) showed that there is no serious threat associated with the consumption of shellfish species on Karachi coast. The Cancer risk showed the highest risk from Cd and Pb pollution if consumed in excess. We summarize key environmental health research on health effects associated with exposure to contaminated seafood. It could be concluded that considering the Pakistan coast, these edible species may be sensitive and vulnerable to the adverse effects of environmental contaminants; more attention should be paid to the Pb and Cd metal bioaccumulation and to toxicological risks to seafood and consumers.

Keywords: cancer risk, edible crabs, heavy metals pollution, risk assessment

Procedia PDF Downloads 363
11912 Electron Beam Melting Process Parameter Optimization Using Multi Objective Reinforcement Learning

Authors: Michael A. Sprayberry, Vincent C. Paquit

Abstract:

Process parameter optimization in metal powder bed electron beam melting (MPBEBM) is crucial to ensure the technology's repeatability, control, and industry-continued adoption. Despite continued efforts to address the challenges via the traditional design of experiments and process mapping techniques, there needs to be more successful in an on-the-fly optimization framework that can be adapted to MPBEBM systems. Additionally, data-intensive physics-based modeling and simulation methods are difficult to support by a metal AM alloy or system due to cost restrictions. To mitigate the challenge of resource-intensive experiments and models, this paper introduces a Multi-Objective Reinforcement Learning (MORL) methodology defined as an optimization problem for MPBEBM. An off-policy MORL framework based on policy gradient is proposed to discover optimal sets of beam power (P) – beam velocity (v) combinations to maintain a steady-state melt pool depth and phase transformation. For this, an experimentally validated Eagar-Tsai melt pool model is used to simulate the MPBEBM environment, where the beam acts as the agent across the P – v space to maximize returns for the uncertain powder bed environment producing a melt pool and phase transformation closer to the optimum. The culmination of the training process yields a set of process parameters {power, speed, hatch spacing, layer depth, and preheat} where the state (P,v) with the highest returns corresponds to a refined process parameter mapping. The resultant objects and mapping of returns to the P-v space show convergence with experimental observations. The framework, therefore, provides a model-free multi-objective approach to discovery without the need for trial-and-error experiments.

Keywords: additive manufacturing, metal powder bed fusion, reinforcement learning, process parameter optimization

Procedia PDF Downloads 77
11911 Effect of Gas-Diffusion Oxynitriding on Microstructure and Hardness of Ti-6Al-4V Alloys

Authors: Dong Bok Lee, Min Jung Kim

Abstract:

The commercially available titanium alloy, Ti-6Al-4V, was oxynitrided in the deoxygenated nitrogen gas at high temperatures followed by cooling in oxygen-containing nitrogen in order to analyze the influence of oxynitriding parameters on the phase modification, hardness, and the microstructural evolution of the oxynitrided coating. The surface microhardness of the oxynitrided alloy increased due to the strengthening effect of the formed titanium oxynitrides, TiNxOy. The maximum microhardness was obtained, when TiNxOy had near equiatomic composition of nitrogen and oxygen. It could be attained under the optimum oxygen partial pressure and temperature-time condition.

Keywords: titanium alloy, oxynitriding, gas diffusion, surface treatment

Procedia PDF Downloads 302
11910 Preliminary Study on Analysis of Pinching Motion Actuated by Electro-Active Polymers

Authors: Doo W. Lee, Soo J. Lee, Bye R. Yoon, Jae Y. Jho, Kyehan Rhee

Abstract:

Hand exoskeletons have been developed in order to assist daily activities for disabled and elder people. A figure exoskeleton was developed using ionic polymer metal composite (IPMC) actuators, and the performance of it was evaluated in this study. In order to study dynamic performance of a finger dummy performing pinching motion, force generating characteristics of an IPMC actuator and pinching motion of a thumb and index finger dummy actuated by IMPC actuators were analyzed. The blocking force of 1.54 N was achieved under 4 V of DC. A thumb and index finger dummy, which has one degree of freedom at the proximal joint of each figure, was manufactured by a three dimensional rapid prototyping. Each figure was actuated by an IPMC actuator, and the maximum fingertip force was 1.18 N. Pinching motion of a dummy was analyzed by two video cameras in vertical top and horizontal left end view planes. A figure dummy powered by IPMC actuators could perform flexion and extension motion of an index figure and a thumb.

Keywords: finger exoskeleton, ionic polymer metal composite, flexion and extension, motion analysis

Procedia PDF Downloads 222
11909 Stability Evaluation on Accumulation Body of Reservoir Slope in Rumei Hydropower Station, China

Authors: Yaofei Jiang, Liangqing Wang, Yanjun Xu

Abstract:

In recent years, geological explorations have been carried out on the Rumei hydropower station, China. After preliminary analysis of results, the mainly problem of slope in reservoir area is about the stability of accumulation body. It is found that there are 23 accumulations in various sizes in the reservoir area, and most of them are unfavorable geological bodies. Three typical (No. 1, 7, 17) accumulation body slopes were selected as subjects to investigate the stability of the slopes. Take No. 1 accumulation body slope as an example and basic geological condition investigation and formation mechanism analysis were carried out to study the stability and geological analysis of engineering influence of the slope. The accumulation body in the research area distributes along the river with natural slope of 32° ~ 37° which is the natural angle of repose of gravel. The formation mechanism is analyzed based on the composition and structure of the accumulation body. The middle and lower part of the body is dense full of gravel soil mixed with a small amount of sand gravel which is stable. In the upper part, gravel soil is interbedded with bad cemented gravel which as a weak surface is not conducive to slope stability. Under the natural condition before storing water, the underground water level is deep buried, mainly distributed in the bedrock, and the surface and groundwater discharge conditions of the accumulation body are good, which is beneficial to the stability of slope. The safety coefficient calculated by the limit equilibrium method is 1.14, which indicates the slope is basically stable. However, the safety coefficient drops to 1.02 when the normal storage level is 2895m, which is in a dangerous state. The accumulation body will be destabilized by a small-area instability to large-scale or overall instability.

Keywords: accumulation body slope, stability evaluation, geological engineering investigation, effect of storing water

Procedia PDF Downloads 153
11908 Enhanced Dielectric Properties of La Substituted CoFe2O4 Magnetic Nanoparticles

Authors: M. Vadivel, R. Ramesh Babu

Abstract:

Spinel ferrite magnetic nanomaterials have received a great deal of attention in recent years due to their wide range of potential applications in various fields such as magnetic data storage and microwave device applications. Among the family of spinel ferrites, cobalt ferrite (CoFe2O4) has been widely used in the field of high-frequency applications because of its remarkable material qualities such as moderate saturation magnetization, high coercivity, large permeability at higher frequency and high electrical resistivity. For aforementioned applications, the materials should have an improved electrical property, especially enhancement in the dielectric properties. It is well known that the substitution of rare earth metal cations in Fe3+ site of CoFe2O4 nanoparticles leads to structural distortion and thus significantly influences the structural and morphological properties whereas greatly modifies the electrical and magnetic properties of a material. In the present investigation, we report on the influence of lanthanum (La3+) ion substitution on the structural, morphological, dielectric and magnetic properties of CoFe2O4 magnetic nanoparticles prepared by co-precipitation method. Powder X-ray diffraction patterns reveal the formation of inverse cubic spinel structure with the signature of LaFeO3 phase at higher La3+ ion concentrations. Raman and Fourier transform infrared spectral analysis also confirms the formation of inverse cubic spinel structure and Fe-O symmetrical stretching vibrations of CoFe2O4 nanoparticles, respectively. Transmission electron microscopy study reveals that the size of the particles gradually increases with increasing La3+ ion concentrations whereas the agglomeration gets slightly reduced for La3+ ion substituted CoFe2O4 nanoparticles than that of undoped CoFe2O4 nanoparticles. Dielectric properties such as dielectric constant and dielectric loss were recorded as a function of frequency and temperature which reveals that the dielectric constant gradually increases with increasing temperatures as well as La3+ ion concentrations. The increased dielectric constant might be the reason that the formation of LaFeO3 secondary phase at higher La3+ ion concentrations. Magnetic measurement demonstrates that the saturation magnetization gradually decreases from 61.45 to 25.13 emu/g with increasing La3+ ion concentrations which is due to the nonmagnetic nature of La3+ ions substitution.

Keywords: cobalt ferrite, co-precipitation, dielectric properties, saturation magnetization

Procedia PDF Downloads 303
11907 Surface Water Pollution by Open Refuse Dumpsite in North Central of Nigeria

Authors: Abimbola Motunrayo Folami, Ibironke Titilayo Enitan, Feroz Mohomed Swalaha

Abstract:

Water is a vital resource that is important in ensuring the growth and development of any country. To sustain the basic human needs and the demands for agriculture, industry, conservational and ecosystem, enough quality and quantity water is needed. Contamination of water resources is now a global and public health concern. Hence, this study assessed the water quality of Ndawuse River by measuring the physicochemical parameters and heavy metals concentrations of the river using standard methods. In total, 16 surface water samples were obtained from five locations along the river, from upstream to downstream as well as samples from the dumpsite. The results obtained were compared with the standard limits set by both the World Health Organization and the Federal Environmental Protection Agency for domestic purposes. The results of the measured parameters indicated that biological oxygen demand (85.88 mg/L), turbidity (44.51 NTU), Iron (0.014 - 3.511 mg /L) and chromium (0.078 - 0.14 mg /L) were all above the standard limits. The results further showed that the quality of surface water is being significantly affected by human activities around the Ndawuse River which could pose an adverse health risk to several communities that rely on this river as their primary source of water. Therefore, there is a need for strict enforcement of environmental laws to protect the aquatic ecosystem and to avoid long term cumulative exposure risk that heavy metals may pose on human health.

Keywords: Abuja, contaminants, heavy metals, Ndawuse River, Nigeria, surface water

Procedia PDF Downloads 143
11906 Preparation of Activated Carbon From Waste Feedstock: Activation Variables Optimization and Influence

Authors: Oluwagbemi Victor Aladeokin

Abstract:

In the last decade, the global peanut cultivation has seen increased demand, which is attributed to their health benefits, rising to ~ 41.4 MMT in 2019/2020. Peanut and other nutshells are considered as waste in various parts of the world and are usually used for their fuel value. However, this agricultural by-product can be converted to a higher value product such as activated carbon. For many years, due to the highly porous structure of activated carbon, it has been widely and effectively used as an adsorbent in the purification and separation of gases and liquids. Those used for commercial purposes are primarily made from a range of precursors such as wood, coconut shell, coal, bones, etc. However, due to difficulty in regeneration and high cost, various agricultural residues such as rice husk, corn stalks, apricot stones, almond shells, coffee beans, etc, have been explored to produce activated carbons. In the present study, the potential of peanut shells as precursors in the production of activated carbon and their adsorption capacity is investigated. Usually, precursors used to produce activated carbon have carbon content above 45 %. A typical raw peanut shell has 42 wt.% carbon content. To increase the yield, this study has employed chemical activation method using zinc chloride. Zinc chloride is well known for its effectiveness in increasing porosity of porous carbonaceous materials. In chemical activation, activation temperature and impregnation ratio are parameters commonly reported to be the most significant, however, this study has also studied the influence of activation time on the development of activated carbon from peanut shells. Activated carbons are applied for different purposes, however, as the application of activated carbon becomes more specific, an understanding of the influence of activation variables to have a better control of the quality of the final product becomes paramount. A traditional approach to experimentally investigate the influence of the activation parameters, involves varying each parameter at a time. However, a more efficient way to reduce the number of experimental runs is to apply design of experiment. One of the objectives of this study is to optimize the activation variables. Thus, this work has employed response surface methodology of design of experiment to study the interactions between the activation parameters and consequently optimize the activation parameters (temperature, impregnation ratio, and activation time). The optimum activation conditions found were 485 °C, 15 min and 1.7, temperature, activation time, and impregnation ratio respectively. The optimum conditions resulted in an activated carbon with relatively high surface area ca. 1700 m2/g, 47 % yield, relatively high density, low ash, and high fixed carbon content. Impregnation ratio and temperature were found to mostly influence the final characteristics of the produced activated carbon from peanut shells. The results of this study, using response surface methodology technique, have revealed the potential and the most significant parameters that influence the chemical activation process, of peanut shells to produce activated carbon which can find its use in both liquid and gas phase adsorption applications.

Keywords: chemical activation, fixed carbon, impregnation ratio, optimum, surface area

Procedia PDF Downloads 128
11905 Quantum Sieving for Hydrogen Isotope Separation

Authors: Hyunchul Oh

Abstract:

One of the challenges in modern separation science and technology is the separation of hydrogen isotopes mixtures since D2 and H2 consist of almost identical size, shape and thermodynamic properties. Recently, quantum sieving of isotopes by confinement in narrow space has been proposed as an alternative technique. Despite many theoretical suggestions, however, it has been difficult to discover a feasible microporous material up to now. Among various porous materials, the novel class of microporous framework materials (COFs, ZIFs and MOFs) is considered as a promising material class for isotope sieving due to ultra-high porosity and uniform pore size which can be tailored. Hence, we investigate experimentally the fundamental correlation between D2/H2 molar ratio and pore size at optimized operating conditions by using different ultramicroporous frameworks. The D2/H2 molar ratio is strongly depending on pore size, pressure and temperature. An experimentally determined optimum pore diameter for quantum sieving lies between 3.0 and 3.4 Å which can be an important guideline for designing and developing feasible microporous frameworks for isotope separation. Afterwards, we report a novel strategy for efficient hydrogen isotope separation at technologically relevant operating pressure through the development of quantum sieving exploited by the pore aperture engineering. The strategy involves installation of flexible components in the pores of the framework to tune the pore surface.

Keywords: gas adsorption, hydrogen isotope, metal organic frameworks(MOFs), quantum sieving

Procedia PDF Downloads 254
11904 Towards the Production of Least Contaminant Grade Biosolids and Biochar via Mild Acid Pre-treatment

Authors: Ibrahim Hakeem

Abstract:

Biosolids are stabilised sewage sludge produced from wastewater treatment processes. Biosolids contain valuable plant nutrient which facilitates their beneficial reuse in agricultural land. However, the increasing levels of legacy and emerging contaminants such as heavy metals (HMs), PFAS, microplastics, pharmaceuticals, microbial pathogens etc., are restraining the direct land application of biosolids. Pyrolysis of biosolids can effectively degrade microbial and organic contaminants; however, HMs remain a persistent problem with biosolids and their pyrolysis-derived biochar. In this work, we demonstrated the integrated processing of biosolids involving the acid pre-treatment for HMs removal and selective reduction of ash-forming elements followed by the bench-scale pyrolysis of the treated biosolids to produce quality biochar and bio-oil enriched with valuable platform chemicals. The pre-treatment of biosolids using 3% v/v H₂SO₄ at room conditions for 30 min reduced the ash content from 30 wt% in raw biosolids to 15 wt% in the treated sample while removing about 80% of limiting HMs without degrading the organic matter. The preservation of nutrients and reduction of HMs concentration and mobility via the developed hydrometallurgical process improved the grade of the treated biosolids for beneficial land reuse. The co-removal of ash-forming elements from biosolids positively enhanced the fluidised bed pyrolysis of the acid-treated biosolids at 700 ℃. Organic matter devolatilisation was improved by 40%, and the produced biochar had higher surface area (107 m²/g), heating value (15 MJ/kg), fixed carbon (35 wt%), organic carbon retention (66% dry-ash free) compared to the raw biosolids biochar with surface area (56 m²/g), heating value (9 MJ/kg), fixed carbon (20 wt%) and organic carbon retention (50%). Pre-treatment also improved microporous structure development of the biochar and substantially decreased the HMs concentration and bioavailability by at least 50% relative to the raw biosolids biochar. The integrated process is a viable approach to enhancing value recovery from biosolids.

Keywords: biosolids, pyrolysis, biochar, heavy metals

Procedia PDF Downloads 63
11903 Analysis of Particulate Matter Concentration, EC, OC Emission and Elemental Composition for Biodiesel-Fuelled Diesel Engine

Authors: A. M. Ashraful, H .H. Masjuki, M. A. Kalam

Abstract:

Comparative investigations were performed on the particles matter emitted from a DI diesel engine utilizing palm biodiesel. In this experiment, palm biodiesel PB10 (90% diesel and 10% palm biodiesel), PB20 (80% diesel, 20% palm biodiesel) and diesel fuel samples exhaust were investigated at different working condition (25% and 50% load at 1500 rpm constant speed). Observation of this experiment it clearly seen that at low load condition particle matter concentration of palm biodiesel exhaust were de-creased than that of diesel fuel. At no load and 25% load condition PB10 biodiesel blend exhibited 2.2 times lower PM concentration than that of diesel fuel. On the other hand, elemental carbon (EC) and organic emission for PB10 showed decreases trend as varies 4.2% to 6.6% and 32 to 39% respectively, while elemental carbon percentage increased by 0.85 to 10% respectively. Similarly, metal composition of PB10 biodiesel blend increased by 4.8 to 26.5% respectively. SEM images for B10 and B20 demonstrated granular structure particulates with greater grain sizes compared with diesel fuel. Finally, the experimental outcomes showed that the blend composition and degree of unsaturation of the methyl ester present in biodiesel influence on the particulate matter formation.

Keywords: particulate matter, elemental carbon, organic carbon, biodiesel

Procedia PDF Downloads 374
11902 Influence of Argon Gas Concentration in N2-Ar Plasma for the Nitridation of Si in Abnormal Glow Discharge

Authors: K. Abbas, R. Ahmad, I. A. Khan, S. Saleem, U. Ikhlaq

Abstract:

Nitriding of p-type Si samples by pulsed DC glow discharge is carried out for different Ar concentrations (30% to 90%) in nitrogen-argon plasma whereas the other parameters like pressure (2 mbar), treatment time (4 hr) and power (175 W) are kept constant. The phase identification, crystal structure, crystallinity, chemical composition, surface morphology and topography of the nitrided layer are studied using X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) respectively. The XRD patterns reveal the development of different diffraction planes of Si3N4 confirming the formation of polycrystalline layer. FTIR spectrum confirms the formation of bond between Si and N. Results reveal that addition of Ar into N2 plasma plays an important role to enhance the production of active species which facilitate the nitrogen diffusion.

Keywords: crystallinity, glow discharge, nitriding, sputtering

Procedia PDF Downloads 407
11901 Tribological Study of TiC Powder Cladding on 6061 Aluminum Alloy

Authors: Yuan-Ching Lin, Sin-Yu Chen, Pei-Yu Wu

Abstract:

This study reports the improvement in the wear performance of A6061 aluminum alloy clad with mixed powders of titanium carbide (TiC), copper (Cu) and aluminum (Al) using the gas tungsten arc welding (GTAW) method. The wear performance of the A6061 clad layers was evaluated by performing pin-on-disc mode wear test. Experimental results clearly indicate an enhancement in the hardness of the clad layer by about two times that of the A6061 substrate without cladding. Wear test demonstrated a significant improvement in the wear performance of the clad layer when compared with the A6061 substrate without cladding. Moreover, the interface between the clad layer and the A6061 substrate exhibited superior metallurgical bonding. Due to this bonding, the clad layer did not spall during the wear test; as such, massive wear loss was prevented. Additionally, massive oxidized particulate debris was generated on the worn surface during the wear test; this resulted in three-body abrasive wear and reduced the wear behavior of the clad surface.

Keywords: GTAW、A6061 aluminum alloy, 、surface modification, tribological study, TiC powder cladding

Procedia PDF Downloads 445