Search results for: metal ions effect
14515 Expression of Micro-RNA268 in Zinc Deficient Rice
Authors: Sobia Shafqat, Saeed Ahmad Qaisrani
Abstract:
MicroRNAs play an essential role in the regulation and development of all processes in most eukaryotes because of their prospective part as mediators controlling cell growth and differentiation towards the exact position of RNAs response in plants under biotic and abiotic factors or stressors. In a few cases, Zn is oblivious poisonous for plants due to its heavy metal status. Some other metals are extremely toxic, like Cd, Hg, and Pb, but these elements require in rice for the programming of genes under abiotic stress resembling Zn stress when micro RNAs268 was importantly introduced in rice. The micro RNAs overexpressed in transgenic plants with an accumulation of a large amount of melanin dialdehyde, hydrogen peroxide, and an excessive quantity of Zn in the seedlings stage. Let out results for rice pliability under Zn stress micro RNAs act as negative controllers. But the role of micro RNA268 act as a modulator in different ecological condition. It has been explained clearly with a long understanding of the role of micro RNA268 under stress conditions; pliability and practically showed outcome to increase plant sufferance under Zn stress because micro RNAs is an intervention technique for gene regulation in gene expression. The proposed study was experimented with by using genetic factors of Zn stress and toxicity effect on rice plants done at District Vehari, Pakistan. The trial was performed randomly with three replications in a complete block design (RCBD). These blocks were controlled with different concentrations of genetic factors. By overexpression of micro RNA268 rice, seedling growth was not stopped under Zn deficiency due to the accumulation of a large amount of melanin dialdehyde, hydrogen peroxide, and an excessive quantity of Zn in their seedlings. Results showed that micro RNA268 act as a negative controller under Zn stress. In the end, under stress conditions, micro RNA268 showed the necessary function in the tolerance of rice plants. The directorial work sketch gave out high agronomic applications and yield outcomes in rice with a specific amount of Zn application.Keywords: micro RNA268, zinc, rice, agronomic approach
Procedia PDF Downloads 5914514 Assessment of the Two-Way Relationship between Capital Structure and Operation Performance of Listed Companies on Vietnam’s Stock
Authors: Uyen Tran Tu
Abstract:
The decision on capital structure is one of the most important and sophisticated decisions in financial management in order to improve firm performance. This article would study the two-way impact between capital structure and firm performance. The study use EVIEWS 6.0 software to determine a two-way relationship between the capital structure and firm performance based on two-stage regression (2SLS - Two-Stage Least Squares). The findings are: capital structure has the opposite effect on the business efficiency and vice versa, factors that effect on business efficiency include Size and Opportunities. Factors effects on the capital structure are size; liquidity. These factors also affect the ratio of capital structure (total debt/ total asset) of companies. In particular, liquidity has the opposite effect; and the size of the business has the same impact. The results of the study are in line with the theory and empirical studies presented, and the results of the study are unchanged for all three years 2015-2017.Keywords: capital structure, firm performance, factors, two-way relationship
Procedia PDF Downloads 15614513 Simulation and Analysis of Different Parameters in Hydraulic Circuit Due to Leakage
Abstract:
Leakage is the main gradual failure in the fluid power system, which is usually caused by the impurity in the oil and wear of matching surfaces between parts and lead to the change of the gap value. When leakage occurs in the system, the oil will flow from the high pressure chamber into the low pressure chamber through the gap, causing the reduction of system flow as well as the loss of system pressure, resulting in the decreasing of system efficiency. In the fluid power system, internal leakage may occur in various components such as gear pump, reversing valve and hydraulic cylinder, and affect the system work performance. Therefore, component leakage in the fluid power system is selected as the study to characterize the leakage and the effect of leakage on the system. Effect of leakage on system pressure and cylinder displacement can be obtained using pressure sensors and the displacement sensor. The leakage can be varied by changing the orifice using a flow control valve. Hydraulic circuit for leakage will be developed in Matlab/Simulink environment and simulations will be done by changing different parameters.Keywords: leakage causes, effect, analysis, MATLAB simulation, hydraulic circuit
Procedia PDF Downloads 39714512 Green and Cost-Effective Biofabrication of Copper Oxide Nanoparticles: Exploring Antimicrobial and Anticancer Applications
Authors: Yemane Tadesse Gebreslassie, Fisseha Guesh Gebremeskel
Abstract:
Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an alternative approach for future therapeutic interventions against cancer and microbial infections.Keywords: biological synthesis, copper oxide nanoparticles, microbial infection, nanotechnology
Procedia PDF Downloads 6014511 A New Co(II) Metal Complex Template with 4-dimethylaminopyridine Organic Cation: Structural, Hirshfeld Surface, Phase Transition, Electrical Study and Dielectric Behavior
Authors: Mohamed dammak
Abstract:
Great attention has been paid to the design and synthesis of novel organic-inorganic compounds in recent decades because of their structural variety and the large diversity of atomic arrangements. In this work, the structure for the novel dimethyl aminopyridine tetrachlorocobaltate (C₇H₁₁N₂)₂CoCl₄ prepared by the slow evaporation method at room temperature has been successfully discussed. The X-ray diffraction results indicate that the hybrid material has a triclinic structure with a P space group and features a 0D structure containing isolated distorted [CoCl₄]2- tetrahedra interposed between [C7H11N²⁻]+ cations forming planes perpendicular to the c axis at z = 0 and z = ½. The effect of the synthesis conditions and the reactants used, the interactions between the cationic planes, and the isolated [CoCl4]2- tetrahedra are employing N-H...Cl and C-H…Cl hydrogen bonding contacts. The inspection of the Hirshfeld surface analysis helps to discuss the strength of hydrogen bonds and to quantify the inter-contacts. A phase transition was discovered by thermal analysis at 390 K, and comprehensive dielectric research was reported, showing a good agreement with thermal data. Impedance spectroscopy measurements were used to study the electrical and dielectric characteristics over a wide range of frequencies and temperatures, 40 Hz–10 MHz and 313–483 K, respectively. The Nyquist plot (Z" versus Z') from the complex impedance spectrum revealed semicircular arcs described by a Cole-Cole model. An electrical circuit consisting of a link of grain and grain boundary elements is employed. The real and imaginary parts of dielectric permittivity, as well as tg(δ) of (C₇H₁₁N₂)₂CoCl₄ at different frequencies, reveal a distribution of relaxation times. The presence of grain and grain boundaries is confirmed by the modulus investigations. Electric and dielectric analyses highlight the good protonic conduction of this material.Keywords: organic-inorganic, phase transitions, complex impedance, protonic conduction, dielectric analysis
Procedia PDF Downloads 8414510 Analysis of Particle Reinforced Metal Matrix Composite Crankshaft
Authors: R. S. Vikaash, S. Vinodh, T. S. Sai Prashanth
Abstract:
Six sigma is a defect reduction strategy enabling modern organizations to achieve business prosperity. The practitioners are in need to select best six sigma project among the available alternatives to achieve customer satisfaction. In this circumstance, this article presents a study in which six sigma project selection is formulated as Multi-Criteria Decision-Making(MCDM) problem and the best project has been found using AHP. Five main governing criteria and 14 sub criteria are being formulated. The decision maker’s inputs were gathered and computations were performed. The project with the high values from the set of projects is selected as the best project. Based on calculations, Project “P1”is found to be the best and further deployment actions have been undertaken in the organization.Keywords: six Sigma, project selection, MCDM, analytic hierarchy process, business prosperity
Procedia PDF Downloads 34014509 Dynamic Externalities and Regional Productivity Growth: Evidence from Manufacturing Industries of India and China
Authors: Veerpal Kaur
Abstract:
The present paper aims at investigating the role of dynamic externalities of agglomeration in the regional productivity growth of manufacturing sector in India and China. Taking 2-digit level manufacturing sector data of states and provinces of India and China respectively for the period of 1998-99 to 2011-12, this paper examines the effect of dynamic externalities namely – Marshall-Arrow-Romer (MAR) specialization externalities, Jacobs’s diversity externalities, and Porter’s competition externalities on regional total factor productivity growth (TFPG) of manufacturing sector in both economies. Regressions have been carried on pooled data for all 2-digit manufacturing industries for India and China separately. The estimation of Panel has been based on a fixed effect by sector model. The results of econometric exercise show that labour-intensive industries in Indian regional manufacturing benefit from diversity externalities and capital intensive industries gain more from specialization in terms of TFPG. In China, diversity externalities and competition externalities hold better prospectus for regional TFPG in both labour intensive and capital intensive industries. But if we look at results for coastal and non-coastal region separately, specialization tends to assert a positive effect on TFPG in coastal regions whereas it has a negative effect on TFPG of coastal regions. Competition externalities put a negative effect on TFPG of non-coastal regions whereas it has a positive effect on TFPG of coastal regions. Diversity externalities made a positive contribution to TFPG in both coastal and non-coastal regions. So the results of the study postulate that the importance of dynamic externalities should not be examined by pooling all industries and all regions together. This could hold differential implications for region specific and industry-specific policy formulation. Other important variables explaining regional level TFPG in both India and China have been the availability of infrastructure, level of competitiveness, foreign direct investment, exports and geographical location of the region (especially in China).Keywords: China, dynamic externalities, India, manufacturing, productivity
Procedia PDF Downloads 12114508 Effect of Methoxy and Polyene Additional Functionalized Group on the Photocatalytic Properties of Polyene-Diphenylaniline Organic Chromophores for Solar Energy Applications
Authors: Ife Elegbeleye, Nnditshedzeni Eric, Regina Maphanga, Femi Elegbeleye, Femi Agunbiade
Abstract:
The global potential of other renewable energy sources such as wind, hydroelectric, bio-mass, and geothermal is estimated to be approximately 13 %, with hydroelectricity constituting a larger percentage. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from the sunlight strikes the Earth in one hour (4.3 × 1020 J) than all the energy consumed on the planet in a year (4.1 × 1020 J), hence, solar energy remains the most abundant clean, renewable energy resources for mankind. Photovoltaic (PV) devices such as silicon solar cells, dye sensitized solar cells are utilized for harnessing solar energy. Polyene-diphenylaniline organic molecules are important sets of molecules that has stirred many research interest as photosensitizers in TiO₂ semiconductor-based dye sensitized solar cells (DSSCs). The advantages of organic dye molecule over metal-based complexes are higher extinction coefficient, moderate cost, good environmental compatibility, and electrochemical properties. The polyene-diphenylaniline organic dyes with basic configuration of donor-π-acceptor are affordable, easy to synthesize and possess chemical structures that can easily be modified to optimize their photocatalytic and spectral properties. The enormous interest in polyene-diphenylaniline dyes as photosensitizers is due to their fascinating spectral properties which include visible light to near infra-red-light absorption. In this work, density functional theory approach via GPAW software, Avogadro and ASE were employed to study the effect of methoxy functionalized group on the spectral properties of polyene-diphenylaniline dyes and their photons absorbing characteristics in the visible region to near infrared region of the solar spectrum. Our results showed that the two-phenyl based complexes D5 and D7 exhibits maximum absorption peaks at 750 nm and 850 nm, while D9 and D11 with methoxy group shows maximum absorption peak at 800 nm and 900 nm respectively. The highest absorption wavelength is notable for D9 and D11 containing additional polyene and methoxy groups. Also, D9 and D11 chromophores with the methoxy group shows lower energy gap of 0.98 and 0.85 respectively than the corresponding D5 and D7 dyes complexes with energy gap of 1.32 and 1.08. The analysis of their electron injection kinetics ∆Ginject into the band gap of TiO₂ shows that D9 and D11 with the methoxy group has higher electron injection kinetics of -2.070 and -2.030 than the corresponding polyene-diphenylaniline complexes without the addition of polyene group with ∆Ginject values of -2.820 and -2.130 respectively. Our findings suggest that the addition of functionalized group as an extension of the organic complexes results in higher light harvesting efficiencies and bathochromic shift of the absorption spectra to higher wavelength which suggest higher current densities and open circuit voltage in DSSCs. The study suggests that the photocatalytic properties of organic chromophores/complexes with donor-π-acceptor configuration can be enhanced by the addition of functionalized groups.Keywords: renewable energy resource, solar energy, dye sensitized solar cells, polyene-diphenylaniline organic chromophores
Procedia PDF Downloads 11014507 The Effect of Particle Temperature on the Thickness of Thermally Sprayed Coatings
Authors: M. Jalali Azizpour, H.Mohammadi Majd
Abstract:
In this paper, the effect of WC-12Co particle Temperature in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are more effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose.Keywords: HVOF, temperature, thickness, velocity, WC-12Co
Procedia PDF Downloads 40014506 Effect of Amlodipine on Dichlorvos-Induced Seizure in Mice
Authors: Omid Ghollipoor Bashiri, Farzam Hatefi
Abstract:
Dichlorvos a synthetic organophosphate poisons are used as insecticide. These toxins can be used insecticides in agriculture and medicine for destruction and/or eradication of ectoparasites of animals. Studies have shown that Dichlorvos creation seizure effects in different animals. Amlodipine, dihydropyridine calcium channel blockers, widely used for treatment of cardiovascular diseases. Studies have shown that the calcium channel blockers are anticonvulsant effects in different animal models. The aim of this study was to determine the effect of Amlodipine on Dichlorvos-induced seizures in mice. In this experiment, the animals were received different doses of Amlodipine (2.5, 5, 10, 20 and 40 mg/ kg b.wt.) intraperitoneally 30 min before intraperitoneal injection of Dichlorvos (50 mg/kg b.wt). After Dichlorvos injection, clonic and tonic seizures, and finally was the fate was investigated. Results showed that Amlodipine dose-dependently reduced the severity of Dichlorvos-induced seizures, so that Amlodipine at a dose of 5mg (The lowest, p<0.05) and 40 mg/kg b.wt. (The highest, p<0.001) which had anticonvulsant effects. The anticonvulsant activity of Amlodipine suggests that possibly due to the antagonistic effect on voltage-dependent calcium channel.Keywords: dichlorvos, amlodipine, seizures, mice
Procedia PDF Downloads 30514505 Synthesis and Characterization of Zinc (II) Complex and Its Catalytic Activity on C(SP3)-H Oxidation Reactions
Authors: Yalçın Kılıç, İbrahim Kani
Abstract:
The conversion of hydrocarbons to carbonyl compounds by oxidation reaction is one of the most important reactions in the synthesis of fine chemicals. As a result of the oxidation of hydrocarbons containing aliphatic sp3-CH groups in their structures, aldehydes, ketones or carboxylic acids can be obtained. In this study, OSSO-type 2,2'-[1,4-butanedylbis(thio)]bis-benzoic acid (tsabutH2) ligand and [Zn(µ-tsabut)(phen)]n complex (where phen = 1,10-phenantroline) were synthesized and their structures were characterized by single crystal x-ray diffraction method. The catalytic efficiency of the complex in the catalytic oxidation studies of organic compounds such as cyclohexane, ethylbenzene, diphenylmethane, and p-xylene containing sp3-C-H in its structure was investigated.Keywords: metal complex, OSSO-type ligand, catalysis, oxidation
Procedia PDF Downloads 9814504 Antidiabetic Effect of Methanolic Leaves Extract and Isolated Constituents from Saraca Asoca
Authors: Sunil Kumar
Abstract:
Background: The present study was performed to investigate the antidiabetic effect of the constituents isolated from Sarca asoca by enzyme inhibitory activity. Methods: The dried leaves of Sarca asoca were defatted with petroleum ether and further the same amount plant materials were extracted with methanol. The dried methanol extract was subjected to fractionation and chromatographic separation, which led to the isolation of kaemferol, β-sitosterol and quercetin stigmasterol. Their structures were elucidated on the basis of spectroscopic studies as well as by comparison with the data available in the literature. The compounds were evaluated for in vitro enzyme inhibition effect. Results: The isolated compounds kaemferol, β-sitosterol and stigmasterol showed 45.32, 40.5 and 41.23% α-amylase inhibition respectively and 43.45, 39.29 and 32.43% α-glucosidase inhibition respectively at the conc. of 50 µg/kg. Conclusion: The compounds isolated from Sarca asoca showed in vitro and in vivo antidiabetic activity. So, Euphorbia hirta is a beneficial plant for management of diabetic disorders.Keywords: diabetes, quercetin, sitosterol, stigmasterol
Procedia PDF Downloads 42414503 Performance Assessment Of An Existing Multi-effect Desalination System Driven By Solar Energy
Authors: B. Shahzamanian, S. Varga, D. C. Alarcón-Padilla
Abstract:
Desalination is considered the primary alternative to increase water supply for domestic, agricultural and industrial use. Sustainable desalination is only possible in places where renewable energy resources are available. Solar energy is the most relevant type of renewable energy to driving desalination systems since most of the areas suffering from water scarcity are characterized by a high amount of available solar radiation during the year. Multi-Effect Desalination (MED) technology integrated with solar thermal concentrators is a suitable combination for heat-driven desalination. It can also be coupled with thermal vapour compressors or absorption heat pumps to boost overall system performance. The most interesting advantage of MED is the suitability to be used with a transient source of energy like solar. An experimental study was carried out to assess the performance of the most important life-size multi-effect desalination plant driven by solar energy located in the Plataforma Solar de Almería (PSA). The MED plant is used as a reference in many studies regarding multi-effect distillation. The system consists of a 14-effect MED plant coupled with a double-effect absorption heat pump. The required thermal energy to run the desalination system is supplied by means of hot water generated from 60 static flat-plate solar collectors with a total aperture area of 606 m2. In order to compensate for the solar energy variation, a thermal storage system with two interconnected tanks and an overall volume of 40 m3 is coupled to the MED unit. The multi-effect distillation unit is built in a forward feed configuration, and the last effect is connected to a double-effect LiBr-H2O absorption heat pump. The heat pump requires steam at 180 ºC (10 bar a) that is supplied by a small-aperture parabolic trough solar field with a total aperture area of 230 m2. When needed, a gas boiler is used as an auxiliary heat source for operating the heat pump and the MED plant when solar energy is not available. A set of experiments was carried out for evaluating the impact of the heating water temperature (Th), top brine temperature (TBT) and temperature difference between effects (ΔT) on the performance ratio of the MED plant. The considered range for variation of Th, TBT and ΔT was 60-70°C, 54-63°C and 1.1-1.6°C, respectively. The performance ratio (PR), defined as kg of distillate produced for every 2326 kJ of thermal energy supplied to the MED system, was almost independent of the applied variables with a variation of less than 5% for all the cases. The maximum recorded PR was 12.4. The results indicated that the system demonstrated robustness for the whole range of operating conditions considered. Author gratitude is expressed to the PSA for providing access to its installations, the support of its scientific and technical staff, and the financial support of the SFERA-III project (Grant Agreement No 823802). Special thanks to the access provider staff members who ensured the access support.Keywords: multi-effect distillation, performance ratio, robustness, solar energy
Procedia PDF Downloads 18514502 A Study of The STEAM Toy Pedagogy Plan Evaluation for Elementary School
Authors: Wen-Te Chang, Yun-Hsin Pai
Abstract:
Purpose: Based on the interdisciplinary of lower grade Elementary School with the integration of STEAM concept, related wooden toy and pedagogy plans were developed and evaluated. The research goal was to benefit elementary school education. Design/methodology/approach: The subjects were teachers from two primary school teachers and students from the department of design of universities in Taipei. Amount of 103participants (Male: 34, Female: 69) were invited to participate in the research. The research tools are “STEAM toy design” and “questionnaire of STEAM toy Pedagogy plan.” The STEAM toy pedagogy plans were evaluated after the activity of “The interdisciplinary literacy discipline guiding study program--STEAM wooden workshop,” Finding/results: The study results: (1) As factors analyzing of the questionnaire indicated the percentage on the major factors were cognition teaching 68.61%, affection 80.18% and technique 80.14%, with α=.936 of validity. The assessment tools were proved to be valid for STEAM pedagogy plan evaluation; (2) The analysis of the questionnaires investigation confirmed that the main effect of the teaching factors was not significant (affection = technique = cognition); however, the interaction between STEAM factors revealed to be significant (F (8, 1164) =5.51, p < .01); (3) The main effect of the six pedagogy plans was significant (climbing toy > bird toy = gondola toy > frog castanets > train toy > balancing toy), and an interactive effect between STEAM factors also reached a significant level, (F (8, 1164) =5.51, p < .01), especially on the artistic (A/ Art) aspect. Originality/value: The main achievement of research: (1) A pedagogy plan evaluation was successfully developed. (2) The interactive effect between the STEAM and the teaching factors reached a significant level. (3) An interactive effect between the STEAM factors and the pedagogy plans reached a significant level too.Keywords: STEAM, toy design, pedagogy plans, evaluation
Procedia PDF Downloads 28114501 Effect of Zr Addition to Aluminum Grain Refined by Ti+B on Its Wear Resistance after Extrusion Condition
Authors: Adnan I. O. Zaid, Safwan M. A. Alqawabah
Abstract:
Review of the available literature on grain refinement of aluminum and its alloys reveals that little work is published on the effect of refiners on mechanical characteristics and wear resistance. In this paper, the effect of addition of Zr to Al grain refined by Ti+B on its metallurgical, mechanical characteristics and wear resistance both in the as cast and after extrusion condition are presented and discussed. It was found that Addition of Zr to Al resulted in deterioration of its mechanical strength and hardness, whereas it resulted in improvement of both of them when added to Al grain refined by Ti+B. Furthermore it was found that the direct extrusion process resulted in further increase of the mechanical strength and hardness of Al and its micro-alloys. Also it resulted in increase of their work hardening index, n, i.e. improved their formability, hence it reduces the number of stages required for forming at large strains in excess of the plastic instability before Zr addition.Keywords: aluminum, grain refinement, titanium + boron, zirconium, mechanical characteristics, wear resistance, direct extrusion
Procedia PDF Downloads 44414500 Bioefficacy of Diclosulam for Controlling Weeds in Soybean [Glycine Max (L.) Merrill] and Its Carry Over Effect on Succeeding Wheat (Triticum Aestivum) Crop
Authors: Pratap Sing, Chaman. K. Jadon, H. P. Meena, D. L.yadav, S. L. Yadav, Uditi Dhakad
Abstract:
The experiment was conducted at Agricultural Research Station, Agriculture University, Kota, Rajasthan, India during kharif and rabi 2020-21 and 2021-22 to study the biofficacy of diclosulam and its residual effect on succeeding wheat crop. The treatments comprised of Diclosulam 84 % WDG viz. 6.25, 12.50, 25.00 and 37.50 g/ha as pre emergence (PE), Pendimethalin 30% EC 3.33 l/ha, Sulfentrazon 48% SC 750 g/ha, hand weeding at 30 and 45 DAS and weedy check, were evaluated in randomized block design in three replications. The experimental soil was clay in texture and non-calcareous. Experimental field was mainly dominated by grasses-Echinochloa colonum, E.crusgalli,Cynodon dactylon, Sedges-Cyperus rotundus and broad leaved weeds Celosia argentea and Digera arvensis.The result revealed that application of Diclosulam 84 % WDG 25 g/ha PE was found effective in controlling mostly weed species and registered higher weed control efficiency 81.2, 74.3, 69.6 per cent at 30, 45 days after sowing and at harvest. Diclosulam 84 % WDG (6.25-25.0 g/ha) was found selective to the soybean crop as no any phytotoxicity symptoms were observed. Among the herbicidal treatments, Diclosulam 84 % WDG 25 g/ha registered maximum and significantly higher soybean seed yield (1889 and 1431 kg/ha during kharif 2020 and 2021, respectively and was at par with Sulfentrazone 48% SC 750 g/ha and over weedy check( 1027 and 667 kg/ha).The wheat crop growth, yield attributes and seed yield were not influenced due to carry over effect of the Diclosulam 84 % WDG( 6.25-25.0 g/ha) and no any phytotoxicity symptoms were observed. Henceforth, the Diclosulam 84 % WDG 25.0 g/ha as pre emergence may be used in the soybean for effective weed control without carry over effect on succeeding wheat crop.Keywords: Diclosulam, soybean, carry over effect, succeeding wheat
Procedia PDF Downloads 11114499 Parameter and Lose Effect Analysis of Beta Stirling Cycle Refrigerating Machine
Authors: Muluken Z. Getie, Francois Lanzetta, Sylvie Begot, Bimrew T. Admassu
Abstract:
This study is aimed at the numerical analysis of the effects of phase angle and losses (shuttle heat loss and gas leakage to the crankcase) that could have an impact on the pressure and temperature of working fluid for a β-type Stirling cycle refrigerating machine. First, the developed numerical model incorporates into the ideal adiabatic analysis, the shuttle heat transfer (heat loss from compression space to expansion space), and gas leakage from the working space to the buffer space into the crankcase. The other losses that may not have a direct effect on the temperature and pressure of working fluid are simply incorporated in a simple analysis. The model is then validated by reversing the model to the engine model and compared with other literature results using (GPU-3) engine. After validating the model with other engine model and experiment results, analysis of the effect of phase angle, shuttle heat lose and gas leakage on temperature, pressure, and performance (power requirement, cooling capacity and coefficient of performance) of refrigerating machine considering the FEMTO 60 Stirling engine as a case study have been conducted. Shuttle heat loss has a greater effect on the temperature of working gas; gas leakage to the crankcase has more effect on the pressure of working spaces and hence both have a considerable impact on the performance of the Stirling cycle refrigerating machine. The optimum coefficient of performance exists between phase angles of 900-950, and optimum cooling capacity could be found between phase angles of 950-980.Keywords: beta configuration, engine model, moderate cooling, stirling refrigerator, and validation
Procedia PDF Downloads 10114498 Effects of Operating Conditions on Creep Life of Industrial Gas Turbine
Authors: Enyia James Diwa, Dodeye Ina Igbong, Archibong Eso Archibong
Abstract:
The creep life of an industrial gas turbine is determined through a physics-based model used to investigate the high pressure temperature (HPT) of the blade in use. A performance model was carried out via the Cranfield University TURBOMATCH simulation software to size the blade and to determine the corresponding stress. Various effects such as radial temperature distortion factor, turbine entry temperature, ambient temperature, blade metal temperature, and compressor degradation on the blade creep life were investigated. The output results show the difference in creep life and the location of failure along the span of the blade enabling better-informed advice for the gas turbine operator.Keywords: creep, living, performance, degradation
Procedia PDF Downloads 40114497 Investigation of the Effect of Teaching Thinking and Research Lesson by Cooperative and Traditional Methods on Creativity of Sixth Grade Students
Authors: Faroogh Khakzad, Marzieh Dehghani, Elahe Hejazi
Abstract:
The present study investigates the effect of teaching a Thinking and Research lesson by cooperative and traditional methods on the creativity of sixth-grade students in Piranshahr province. The statistical society includes all the sixth-grade students of Piranshahr province. The sample of this studytable was selected by available sampling from among male elementary schools of Piranshahr. They were randomly assigned into two groups of cooperative teaching method and traditional teaching method. The design of the study is quasi-experimental with a control group. In this study, to assess students’ creativity, Abedi’s creativity questionnaire was used. Based on Cronbach’s alpha coefficient, the reliability of the factor flow was 0.74, innovation was 0.61, flexibility was 0.63, and expansion was 0.68. To analyze the data, t-test, univariate and multivariate covariance analysis were used for evaluation of the difference of means and the pretest and posttest scores. The findings of the research showed that cooperative teaching method does not significantly increase creativity (p > 0.05). Moreover, cooperative teaching method was found to have significant effect on flow factor (p < 0.05), but in innovation and expansion factors no significant effect was observed (p < 0.05).Keywords: cooperative teaching method, traditional teaching method, creativity, flow, innovation, flexibility, expansion, thinking and research lesson
Procedia PDF Downloads 31514496 White Light Emission through Downconversion of Terbium and Europium Doped CEF3 Nanophosphors
Authors: Mohit Kalra, Varun S., Mayuri Gandhi
Abstract:
CeF3 nanophosphors has been extensively investigated in the recent years for lighting and numerous bio-applications. Down conversion emissions in CeF3:Eu3+/Tb3+ phosphors were studied with the aim of obtaining a white light emitting composition, by a simple co-precipitation method. The material was characterized by X-ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HR-TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Photoluminescence (PL). Uniformly distributed nanoparticles were obtained with an average particle size 8-10 nm. Different doping concentrations were performed and fluorescence study was carried out to optimize the dopants concentration for maximum luminescence intensity. The steady state and time resolved luminescence studies confirmed efficient energy transfer from the host to activator ions. Different concentrations of Tb 3+, Eu 3+ were doped to achieve a white light emitting phosphor for UV-based Light Emitting Diodes (LEDs). The nanoparticles showed characteristic emission of respective dopants (Eu 3+, Tb3+) when excited at the 4f→5d transition of Ce3+. The chromaticity coordinates for these samples were calculated and the CeF3 doped with Eu 3+ and Tb3+ gave an emission very close to white light. These materials may find its applications in optoelectronics and various bio applications.Keywords: white light down-conversion, nanophosphors, LEDs, rare earth, cerium fluoride, lanthanides
Procedia PDF Downloads 40414495 Integrated Thermal Control to Improve Workers' Intellectual Concentration in Office Environment
Authors: Kimi Ueda, Kosuke Sugita, Soma Kawamoto, Hiroshi Shimoda, Hirotake Ishii, Fumiaki Obayashi, Kazuhiro Taniguchi, Ayaka Suzuki
Abstract:
The authors have focused on the thermal difference between office rooms and break rooms, and proposed an integrated thermal control method to improve workers’ intellectual concentration. First, a trial experiment was conducted to verify the effect of temperature difference on workers’ intellectual concentration with using two experimental rooms; a thermally neutral break room and a cooler office room. As the result of the experiment, it was found that the thermal difference had a significant effect on improving their intellectual concentration. Workers, however, often take a short break at their desks without moving to a break room, so that the thermal difference cannot be given to them. So utilization of airflow was proposed as an integrated thermal control method instead of the temperature difference to realize the similar effect. Concretely, they are exposed to airflow when working in order to reduce their effective temperature while it is weakened when taking a break. Another experiment was conducted to confirm the effect of the airflow control on their intellectual concentration. As the result of concentration index and questionnaire survey, their intellectual concentration was significantly improved in the integrated thermal controlled environment. It was also found that most of them felt more comfortable and had higher motivation and higher degree of concentration in the environment.Keywords: airflow, evaluation experiment, intellectual concentration, thermal difference
Procedia PDF Downloads 29214494 Condition Monitoring for Controlling the Stability of the Rotating Machinery
Authors: A. Chellil, I. Gahlouz, S. Lecheb, A. Nour, S. Chellil, H. Mechakra, H. Kebir
Abstract:
In this paper, the experimental study for the instability of a separator rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor are developed. Numerical calculations on the model develop of three dimensions prove that the defects effect has a negative effect on the stability of the rotor. Experimentally, the study of the rotor in the transient system allowed to determine the vibratory responses due to the unbalances and various excitations.Keywords: rotor, frequency, finite element, specter
Procedia PDF Downloads 38114493 Fabrication of Zeolite Modified Cu Doped ZnO Films and Their Response towards Nitrogen Monoxide
Authors: Irmak Karaduman, Tugba Corlu, Sezin Galioglu, Burcu Akata, M. Ali Yildirim, Aytunç Ateş, Selim Acar
Abstract:
Breath analysis represents a promising non-invasive, fast and cost-effective alternative to well-established diagnostic and monitoring techniques such as blood analysis, endoscopy, ultrasonic and tomographic monitoring. Portable, non-invasive, and low-cost breath analysis devices are becoming increasingly desirable for monitoring different diseases, especially asthma. Beacuse of this, NO gas sensing at low concentrations has attracted progressive attention for clinical analysis in asthma. Recently, nanomaterials based sensors are considered to be a promising clinical and laboratory diagnostic tool, because its large surface–to–volume ratio, controllable structure, easily tailored chemical and physical properties, which bring high sensitivity, fast dynamic processand even the increasing specificity. Among various nanomaterials, semiconducting metal oxides are extensively studied gas-sensing materials and are potential sensing elements for breathanalyzer due to their high sensitivity, simple design, low cost and good stability.The sensitivities of metal oxide semiconductor gas sensors can be enhanced by adding noble metals. Doping contents, distribution, and size of metallic or metal oxide catalysts are key parameters for enhancing gas selectivity as well as sensitivity. By manufacturing doping MOS structures, it is possible to develop more efficient sensor sensing layers. Zeolites are perhaps the most widely employed group of silicon-based nanoporous solids. Their well-defined pores of sub nanometric size have earned them the name of molecular sieves, meaning that operation in the size exclusion regime is possible by selecting, among over 170 structures available, the zeolite whose pores allow the pass of the desired molecule, while keeping larger molecules outside.In fact it is selective adsorption, rather than molecular sieving, the mechanism that explains most of the successful gas separations achieved with zeolite membranes. In view of their molecular sieving and selective adsorption properties, it is not surprising that zeolites have found use in a number of works dealing with gas sensing devices. In this study, the Cu doped ZnO nanostructure film was produced by SILAR method and investigated the NO gas sensing properties. To obtain the selectivity of the sample, the gases including CO,NH3,H2 and CH4 were detected to compare with NO. The maximum response is obtained at 85 C for 20 ppb NO gas. The sensor shows high response to NO gas. However, acceptable responses are calculated for CO and NH3 gases. Therefore, there are no responses obtain for H2 and CH4 gases. Enhanced to selectivity, Cu doped ZnO nanostructure film was coated with zeolite A thin film. It is found that the sample possess an acceptable response towards NO hardly respond to CO, NH3, H2 and CH4 at room temperature. This difference in the response can be expressed in terms of differences in the molecular structure, the dipole moment, strength of the electrostatic interaction and the dielectric constant. The as-synthesized thin film is considered to be one of the extremely promising candidate materials in electronic nose applications. This work is supported by The Scientific and Technological Research Council of Turkey (TUBİTAK) under Project No, 115M658 and Gazi University Scientific Research Fund under project no 05/2016-21.Keywords: Cu doped ZnO, electrical characterization, gas sensing, zeolite
Procedia PDF Downloads 28414492 Effect of Non-Crimp Fabric Structure on Mechanical Properties of Laminates
Authors: Hireni R. Mankodi, D. J. Chudasama
Abstract:
The textile preforms play a key role in providing the mechanical properties and gives the idea about selection parameter of preforms to improve the quality and performance of laminates. The main objectives of this work are to study the effect of non-crimp fabric preform structure in final properties of laminates. It has been observed that the multi-axial preform give better mechanical properties of laminates as compared to woven and biaxial fabrics. This study investigated the effect of different non-crimp glass preform structure on tensile strength, bending and compression properties of glass laminates. The different woven, bi-axial and multi-axial fabrics with similar GSM used to manufacture the laminates using polyester resin. The structural and mechanical properties of preform and laminates were studied using standard methods. It has been observed that the glass fabric geometry, including type of weaves, warps and filling density and number of layer plays significant role in deciding mechanical properties of laminates.Keywords: preform, non-crimp structure, laminates, bi-axial, multiaxial
Procedia PDF Downloads 49114491 The Effect of Supplementary Cementitious Materials on the Quality of Passive Oxide Film Developed on Steel Reinforcement Bars in Simulated Concrete Pore Solution
Authors: M. S. Ashraf, Raja Rizwan Hussain, A. M. Alhozaimy, A. I. Al-Negheimish
Abstract:
The effect of supplementary cementitious materials (SCMs) with concrete pore solution on the protective properties of the oxide films that form on reinforcing steel bars has been experimentally investigated using electrochemical impedance spectroscopy (EIS) and Tafel Scan. The tests were conducted on oxide films grown in saturated calcium hydroxide solutions that included different representative amounts of NaOH and KOH which are the compounds commonly observed in ordinary portland cement concrete pore solution. In addition to that, commonly used mineral admixtures (silica fume, natural pozzolan and fly ash) were also added to the simulated concrete pore solution. The results of electrochemical tests show that supplementary cementitious materials do have an effect on the protective properties of the passive oxide film. In particular, silica fume has been shown to have a negative influence on the film quality though it has positive effect on the concrete properties. Fly ash and natural pozzolan increase the protective qualities of the passive film. The research data in this area is very limited in the past and needed further investigation.Keywords: supplementary cementitious materials (SCMs), passive film, EIS, Tafel scan, rebar, concrete, simulated concrete pore solution (SPS)
Procedia PDF Downloads 39314490 Numerical Analysis of Roughness Effect on Mini and Microchannels: Hydrodynamics and Heat Transfer
Authors: El-Ghalia Filali, Cherif Gadouche, Mohamed Tahar
Abstract:
A three-dimensional numerical simulation of flow through mini and microchannels with designed roughness is conducted here. The effect of the roughness height (surface roughness), geometry, Reynolds number on the friction factor and the Nusselt number is investigated. The study is carried out by employing CFD software, CFX. Our work focuses on a water flow inside a circular mini-channel of 1 mm and microchannels of 500 and 100 μm in diameter. The speed entry varies from 0.1 m/s to 20 m/s. The general trend can be observed that bigger sizes of roughness element lead to higher flow resistance. It is found that the friction factor increases in a nonlinear fashion with the increase in obstruction height. Particularly, the effect of roughness can no longer be ignored at relative roughness height higher than 3%. A significant increase in Poiseuille number is detected for all configurations considered. The same observation can be done for Nusselt number. The transition zone between laminar and turbulent flow depends on the channel diameter.Keywords: hydrodynamics, heat transfer, minichannel, microchannel, roughness
Procedia PDF Downloads 35914489 Investigation of NiO/V₂O₅ Powder Composite as Cathode Material for Lithium-Ion Batteries
Authors: Katia Ayouz-Chebout, Fatima Boudeffar, Maha Ayat, Malika Berouaken, Chafiaa Yaddaden, Saloua Merazga, Nouredine Gabouze
Abstract:
Transition metal oxide composites have been widely reported in energy storage and conversion systems. In this regard, an attempt has been made to synthesize NiO@V₂O₅ nanocomposite. The structures and morphology of synthesized powder are investigated by X-ray diffraction, scanning electron microscope (SEM), and Attenuated Total Reflection (ATR). The electrochemical properties and performances as cathode electrodes based on active material NiO@V₂O₅ were studied by cyclic voltammetry (CV), between potential bias [0.01V to 3V], with scanning speed of 0,1mVs⁻¹, the galvanostatic charge/discharge (CDG) for 100 cycles was also measured.Keywords: composite nanobelts, vanadium pentoxide, nickel oxide, Li-ion batteries
Procedia PDF Downloads 2214488 The Effect of Adding CuO Nanoparticles on Boiling Heat Transfer Enhancement in Horizontal Flattened Tubes
Authors: M. A. Akhavan-Behabadi, M. Najafi, A. Abbasi
Abstract:
An empirical investigation was performed in order to study the heat transfer characteristics of R600a flow boiling inside horizontal flattened tubes and the simultaneous effect of nanoparticles on boiling heat transfer in flattened channel. Round copper tubes of 8.7 mm I.D. were deformed into flattened shapes with different inside heights of 6.9, 5.5, and 3.4 mm as test areas. The effect of different parameters such as mass flux, vapor quality and inside height on heat transfer coefficient was studied. Flattening the tube caused a significant enhancement in heat transfer performance, so that the maximum augmentation ratio of 163% was obtained in flattened channel with lowest internal height. A new correlation was developed based on the present experimental data to predict the heat transfer coefficient in flattened tubes. This correlation estimated 90% of the entire database within ±20%. The best flat channel with the point of view of heat transfer performance was selected to study the effect of nanoparticle on heat transfer enhancement. Four homogenized mixtures containing 1% weight fraction of R600a/oil with different CuO nanoparticles concentration including 0.5%, 1% and 1.5% mass fraction of R600a/oil/CuO were studied. Observations show that heat transfer was improved by adding nanoparticles, which lead to maximum enhancement of 79% compare to the pure refrigerant at the same test condition.Keywords: nano fluids, heat transfer, flattend tube, transport phenomena
Procedia PDF Downloads 43114487 Preparation and Study of Pluronic F127 Monolayers at Air-Water Interface
Authors: Neha Kanodia, M. Kamil
Abstract:
Properties of mono layers of Pluronic F127 at air/water interface have been investigated by using Langmuir trough method. Pluronic F127 is a triblock copolymer of poly (ethyleneoxide) (PEO groups)– poly (propylene oxide) (PO groups)–poly(ethylene oxide) (PEO groups). Surface pressure versus mean molecular area isotherms is studied. The isotherm of the mono layer showed the characteristics of a pancake-to-brush transition upon compression of the mono layer. The effect of adding surfactant (SDS) to polymer and the effect of increasing loading on polymer was also studied. The effect of repeated compression and expansion cycle (or hysteresis curve) is investigated to know about stability of the film formed. Static elasticity of mono layer gives information about molecular arrangement, phase structure and phase transition.Keywords: surface-pressure, mean molecular area isotherms, hysteresis, static elasticity
Procedia PDF Downloads 44814486 Orientational Pair Correlation Functions Modelling of the LiCl6H2O by the Hybrid Reverse Monte Carlo: Using an Environment Dependence Interaction Potential
Authors: Mohammed Habchi, Sidi Mohammed Mesli, Rafik Benallal, Mohammed Kotbi
Abstract:
On the basis of four partial correlation functions and some geometric constraints obtained from neutron scattering experiments, a Reverse Monte Carlo (RMC) simulation has been performed in the study of the aqueous electrolyte LiCl6H2O at the glassy state. The obtained 3-dimensional model allows computing pair radial and orientational distribution functions in order to explore the structural features of the system. Unrealistic features appeared in some coordination peaks. To remedy to this, we use the Hybrid Reverse Monte Carlo (HRMC), incorporating an additional energy constraint in addition to the usual constraints derived from experiments. The energy of the system is calculated using an Environment Dependence Interaction Potential (EDIP). Ions effects is studied by comparing correlations between water molecules in the solution and in pure water at room temperature Our results show a good agreement between experimental and computed partial distribution functions (PDFs) as well as a significant improvement in orientational distribution curves.Keywords: LiCl6H2O, glassy state, RMC, HRMC
Procedia PDF Downloads 467