Search results for: kitchen chemical
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4562

Search results for: kitchen chemical

2162 Evaluation of Fluidized Bed Bioreactor Process for Mmabatho Waste Water Treatment Plant

Authors: Shohreh Azizi, Wag Nel

Abstract:

The rapid population growth in South Africa has increased the requirement of waste water treatment facilities. The aim of this study is to assess the potential use of Fluidized bed Bio Reactor for Mmabatho sewage treatment plant. The samples were collected from the Inlet and Outlet of reactor daily to analysis the pH, Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solid (TSS) as per standard method APHA 2005. The studies were undertaken on a continue laboratory scale, and analytical data was collected before and after treatment. The reduction of 87.22 % COD, 89.80 BOD % was achieved. Fluidized Bed Bio Reactor remove Bod/COD removal as well as nutrient removal. The efforts also made to study the impact of the biological system if the domestic wastewater gets contaminated with any industrial contamination and the result shows that the biological system can tolerate high Total dissolved solids up to 6000 mg/L as well as high heavy metal concentration up to 4 mg/L. The data obtained through the experimental research are demonstrated that the FBBR may be used (<3 h total Hydraulic Retention Time) for secondary treatment in Mmabatho wastewater treatment plant.

Keywords: fluidized bed bioreactor, wastewater treatment plant, biological system, high TDS, heavy metal

Procedia PDF Downloads 167
2161 Mathematical Modeling of the Fouling Phenomenon in Ultrafiltration of Latex Effluent

Authors: Amira Abdelrasoul, Huu Doan, Ali Lohi

Abstract:

An efficient and well-planned ultrafiltration process is becoming a necessity for monetary returns in the industrial settings. The aim of the present study was to develop a mathematical model for an accurate prediction of ultrafiltration membrane fouling of latex effluent applied to homogeneous and heterogeneous membranes with uniform and non-uniform pore sizes, respectively. The models were also developed for an accurate prediction of power consumption that can handle the large-scale purposes. The model incorporated the fouling attachments as well as chemical and physical factors in membrane fouling for accurate prediction and scale-up application. Both Polycarbonate and Polysulfone flat membranes, with pore sizes of 0.05 µm and a molecular weight cut-off of 60,000, respectively, were used under a constant feed flow rate and a cross-flow mode in ultrafiltration of the simulated paint effluent. Furthermore, hydrophilic ultrafilic and hydrophobic PVDF membranes with MWCO of 100,000 were used to test the reliability of the models. Monodisperse particles of 50 nm and 100 nm in diameter, and a latex effluent with a wide range of particle size distributions were utilized to validate the models. The aggregation and the sphericity of the particles indicated a significant effect on membrane fouling.

Keywords: membrane fouling, mathematical modeling, power consumption, attachments, ultrafiltration

Procedia PDF Downloads 470
2160 Role of Arbuscular Mycorrhiza in Heavy Metal Tolerance in Sweet Basil Plants

Authors: Aboul-Nasr Amal, Sabry Soraya, Sabra Mayada

Abstract:

The effects of phosphorus amendments and arbuscular mycorrhizal (AM) fungi Glomus intraradices on the sweet basil (Ocimum basilicum L.), chemical composition and percent of volatile oil, and metal accumulation in plants and its availability in soil were investigated in field experiment at two seasons 2012 and 2013 under contaminated soil with Pb and Cu. The content of essential oil and shoot and root dry weights of sweet basil was increased by the application of mineral phosphorus as compared to control. Inoculation with AM fungi reduced the metal concentration in shoot, recording a lowest value of (33.24, 18.60 mg/kg) compared to the control (46.49, 23.46 mg/kg) for Pb and Cu, respectively. Availability of Pb and Cu in soil were decreased after cultivation in all treatments compared to control. However, metal root concentration increased with the inoculation, with highest values of (30.15, 39.25 mg/kg)compared to control (22.01, 33.57mg/kg) for Pb and Cu, respectively. The content of linalool and methyl chavicol in basil oil was significantly increased in all treatments compared to control. We can thus conclude that the AM-sweet basil symbiosis could be employed as an approach to bioremediate polluted soils and enhance the yield and maintain the quality of volatile oil of sweet basil plants.

Keywords: arbuscular mycorrhizal fungus, heavy metals, sweet basil, oil composition

Procedia PDF Downloads 252
2159 Mimicking of Various ECM Tangible Cues for the Manipulation of Hepatocellular Behaviours

Authors: S. A. Abdellatef, A. Taniguchi, Namiki, Tsukuba, Ibaraki

Abstract:

The alterations in the physicochemical characteristics of bio-materials are renowned for their impact in cellular behaviors. Surface chemistry and substratum topography are separately considered as mutable characteristics with deep impact on the overall cell behaviors. In our recent work, we examined the manipulation of the physical cues on hepatic cellular behaviors. We have proven that the geometrical or dimensional characteristics of nano features are essential for the optimum hepatocellular functions. While here, the collective impact of both physical and chemical cues on hepatocellular behaviors was investigated. On which RGD peptide was immobilized on a TiO2 nano pattern that imitates the hierarchically extend collagen nano fibrillar structures. The hepatocytes morphological and functional changes induced by simultaneously combining the diversified cues were investigated. TiO2 substrates that integrate nano topography with the adhesive peptide motif (RGD) had showed an increase in the hepatocellular functionality to the maximum extent. While a significant enhancement in expression of these liver specific markers on RGD coated surfaces were observed compared to uncoated substrates regardless of topography. Consequently in depth understanding of the relationship between various kind of cues and hepatocytes behaviors would be a paving step in the application of tissue engineering and bio reactor technology.

Keywords: biomaterial, tiO2, hepG2, RGD

Procedia PDF Downloads 393
2158 Parametric Analysis of Syn-gas Fueled SOFC with Internal Reforming

Authors: Sanjay Tushar Choudhary

Abstract:

This paper focuses on the thermodynamic analysis of Solid Oxide Fuel Cell (SOFC). In the present work the SOFC has been modeled to work with internal reforming of fuel which takes place at high temperature and direct energy conversion from chemical energy to electrical energy takes place. The fuel-cell effluent is a high-temperature steam which can be used for co-generation purposes. Syn-gas has been used here as fuel which is essentially produced by steam reforming of methane in the internal reformer of the SOFC. A thermodynamic model of SOFC has been developed for planar cell configuration to evaluate various losses in the energy conversion process within the fuel cell. Cycle parameters like fuel utilization ratio and the air-recirculation ratio have been varied to evaluate the thermodynamic performance of the fuel cell. Output performance parameters like terminal voltage, cell-efficiency and power output have been evaluated for various values of current densities. It has been observed that a combination of a lower value of air-circulation ratio and higher values of fuel utilization efficiency gives a better overall thermodynamic performance.

Keywords: current density, SOFC, suel utilization factor, recirculation ratio

Procedia PDF Downloads 508
2157 Controlled Size Synthesis of ZnO and PEG-ZnO NPs and Their Biological Evaluation

Authors: Mahnoor Khan, Bashir Ahmad, Khizar Hayat, Saad Ahmad Khan, Laiba Ahmad, Shumaila Bashir, Abid Ali Khan

Abstract:

The objective of this study was to synthesize the smallest possible size of ZnO NPs using a modified wet chemical synthesis method and to prepare core shell using polyethylene glycol (PEG) as shell material. Advanced and sophisticated techniques were used to confirm the synthesis, size, and shape of these NPs. Rounded, clustered NPs of size 5.343 nm were formed. Both the plain and core shell NPs were tested against MDR bacteria (E. cloacae, E. amnigenus, Shigella, S. odorifacae, Citrobacter, and E. coli). Both of the NPs showed excellent antibacterial properties, whereas E. cloacae showed maximum zone of inhibition of 16 mm, 27 mm, and 32 mm for 500 μg/ml, 1000 μg/ml, and 1500 μg/ml, respectively for plain ZnO NPs and 18 mm, 28 mm and 35 mm for 500 μg/ml, 1000 μg/ml and 1500 μg/ml for core shell NPs. These NPs were also biocompatible on human red blood cells showing little hemolysis of only 4% for 70 μg/ml for plain NPs and 1.5% for 70 μg/ml for core shell NPs. Core shell NPs were highly biocompatible because of the PEG. Their therapeutic effect as photosensitizers in photodynamic therapy (PDT) for cancer treatment was also monitored. The cytotoxicity of ZnO and PEG-ZnO was evaluated using MTT assay. Our results demonstrated that these NPs could generate ROS inside tumor cells after irradiation which in turn initiates an apoptotic pathway leading to cell death hence proving to be an effective candidate for PDT.

Keywords: ZnO, hemolysis, cytotoxiciy assay, photodynamic therapy, antibacterial

Procedia PDF Downloads 140
2156 Using the Combination of Food Waste and Animal Waste as a Reliable Energy Source in Rural Guatemala

Authors: Jina Lee

Abstract:

Methane gas is a common byproduct in any process of rot and degradation of organic matter. This gas, when decomposition occurs, is emitted directly into the atmosphere. Methane is the simplest alkane hydrocarbon that exists. Its chemical formula is CH₄. This means that there are four atoms of hydrogen and one of carbon, which is linked by covalent bonds. Methane is found in nature in the form of gas at normal temperatures and pressures. In addition, it is colorless and odorless, despite being produced by the rot of plants. It is a non-toxic gas, and the only real danger is that of burns if it were to ignite. There are several ways to generate methane gas in homes, and the amount of methane gas generated by the decomposition of organic matter varies depending on the type of matter in question. An experiment was designed to measure the efficiency, such as a relationship between the amount of raw material and the amount of gas generated, of three different mixtures of organic matter: 1. food remains of home; 2. animal waste (excrement) 3. equal parts mixing of food debris and animal waste. The results allowed us to conclude which of the three mixtures is the one that grants the highest efficiency in methane gas generation and which would be the most suitable for methane gas generation systems for homes in order to occupy less space generating an equal amount of gas.

Keywords: alternative energy source, energy conversion, methane gas conversion system, waste management

Procedia PDF Downloads 168
2155 Substitution of Formaldehyde in Phenolic Resins with Innovative and Bio-Based Vanillin Derived Compounds

Authors: Sylvain Caillol, Ghislain David

Abstract:

Phenolic resins are industrially used in a wide range of applications from commodity and construction materials to high-technology aerospace industry. They are mainly produced from the reaction between phenolic compounds and formaldehyde. Nevertheless, formaldehyde is a highly volatile and hazardous compound, classified as a Carcinogenic, Mutagenic and Reprotoxic chemical (CMR). Vanillin is a bio-based and non-toxic aromatic aldehyde compound obtained from the abundant lignin resources. Also, its aromaticity is very interesting for the synthesis of phenolic resins with high thermal stability. However, because of the relatively low reactivity of its aldehyde function toward phenolic compounds, it has never been used to synthesize phenolic resins. We developed innovative functionalization reactions and designed new bio-based aromatic aldehyde compounds from vanillin. Those innovative compounds present improved reactivity toward phenolic compounds compared to vanillin. Moreover, they have target structures to synthesize highly cross-linked phenolic resins with high aromatic densities. We have obtained phenolic resins from substituted vanillin, thus without the use of any aldehyde compound classified as CMR. The analytical tests of the cured resins confirmed that those bio-based resins exhibit high levels of performance with high thermal stability and high rigidity properties

Keywords: phenolic resins, formaldehyde-free, vanillin, bio-based, non-toxic

Procedia PDF Downloads 272
2154 Optimization of Syngas Quality for Fischer-Tropsch Synthesis

Authors: Ali Rabah

Abstract:

This research received no grant or financial support from any public, commercial, or none governmental agency. The author conducted this work as part of his normal research activities as a professor of Chemical Engineering at the University of Khartoum, Sudan. Abstract While fossil oil reserves have been receding, the demand for diesel and gasoline has been growing. In recent years, syngas of biomass origin has been emerging as a viable feedstock for Fischer-Tropsch (FT) synthesis, a process for manufacturing synthetic gasoline and diesel. This paper reports the optimization of syngas quality to match FT synthesis requirements. The optimization model maximizes the thermal efficiency under the constraint of H2/CO≥2.0 and operating conditions of equivalent ratio (0 ≤ ER ≤ 1.0), steam to biomass ratio (0 ≤ SB ≤ 5), and gasification temperature (500 °C ≤ Tg ≤ 1300 °C). The optimization model is executed using the optimization section of the Model Analysis Tools of the Aspen Plus simulator. The model is tested using eleven (11) types of MSW. The optimum operating conditions under which the objective function and the constraint are satisfied are ER=0, SB=0.66-1.22, and Tg=679 - 763°C. Under the optimum operating conditions, the syngas quality is H2=52.38 - 58.67-mole percent, LHV=12.55 - 17.15 MJ/kg, N2=0.38 - 2.33-mole percent, and H2/CO≥2.15. The generalized optimization model reported could be extended to any other type of biomass and coal. Keywords: MSW, Syngas, Optimization, Fischer-Tropsch.

Keywords: syngas, MSW, optimization, Fisher-Tropsh

Procedia PDF Downloads 80
2153 Hemp Defoliation Technology and Management before Harvesting

Authors: Rataya Yanaphan, Saksiri Kuppatarat, Sarita Pinmanee

Abstract:

Hemp (Cannabis sativa L. ssp. Sativa) cultivation for fiber is limited by extremely high labor cost, especially for the removal of the leaves before harvest. This study evaluated chemical defoliants as a means to remove the leaves of hemp before harvest, in an effort to reduce labor expenditures in the production on hemp fiber. This study was conducted by spraying the leaves of hemp with five different treatments: saline solution, Urea (CH4N2O), Ethephon, copper Sulphate (CuSO4) and water (control) before harvesting. The largest percentage of leaf loss 6 days after spraying was with saline solution (43%), followed by Ethephon (32%). However, saline solution also caused drying of the stems but Ethephon did not. Thus, Ethephon was evaluated in the second experiment by spraying with Ethephon concentrations of 0, 10, 15 and 20 ml per 1 liter of water at 7 days before harvest. Spraying with 0.5% Ethephon resulted in 13.6% leaf fall. Spraying with 1.5% and 2% Ethephon resulted in 82.2% and 82.3 % leaf fall, respectively. In addition, using Ethephon to defoliate hemp had no detrimental effect the yield. Therefore, Ethephon concentration at 15 ml per 1 liter of water will be recommended for use in removing hemp leaves by spraying at 7 days before harvest to lower labor cost.

Keywords: defoliation technology, ethephon, hemp cultivation, saline solution

Procedia PDF Downloads 220
2152 Effect of Using Different Packaging Materials on Quality of Minimally Process (Fresh-Cut) Banana (Musa acuminata balbisiana) Cultivar 'Nipah'

Authors: Nur Allisha Othman, Rosnah Shamsudin, Zaulia Othman, Siti Hajar Othman

Abstract:

Mitigating short storage life of fruit like banana uses minimally process or known as fresh cut can contribute to the growing demand especially in South East Asian countries. The effect of different types of packaging material on fresh-cut Nipah (Musa acuminata balbisiana) were studied. Fresh cut banana cultivar (cv) Nipah are packed in polypropylene plastic (PP), low density polypropylene plastic (LDPE), polymer plastic film (shrink wrap) and polypropylene container as control for 12 days at low temperature (4ᵒC). Quality of physical and chemical evaluation such as colour, texture, pH, TA, TSS, and vitamin C were examined every 2 days interval for 12 days at 4ᵒC. Result shows that the PP is the most suitable packaging for banana cv Nipah because it can reduce respiration and physicochemical quality changes of banana cv Nipah. Different types of packaging significantly affected quality of fresh-cut banana cv Nipah. PP bag was the most suitable packaging to maintain quality and prolong storage life of fresh-cut banana cv Nipah for 12 days at 4ᵒC.

Keywords: physicochemical, PP, LDPE, shrink wrap, browning, respiration

Procedia PDF Downloads 229
2151 Impact of Calcium Carbide Waste Dumpsites on Soil Chemical and Microbial Characteristics

Authors: C. E. Ihejirika, M. I. Nwachukwu, R. F. Njoku-Tony, O. C. Ihejirika, U. O. Enwereuzoh, E. O. Imo, D. C. Ashiegbu

Abstract:

Disposal of industrial solid wastes in the environment is a major environmental challenge. This study investigated the effects of calcium carbide waste dumpsites on soil quality. Soil samples were collected with hand auger from three different dumpsites at varying depths and made into composite samples. Samples were subjected to standard analytical procedures. pH varied from 10.38 to 8.28, nitrate from 5.6mg/kg to 9.3mg/kg, phosphate from 8.8mg/kg to 12.3mg/kg, calcium carbide reduced from 10% to to 3%. Calcium carbide was absent in control soil samples. Bacterial counts from dumpsites ranged from 1.8 x 105cfu/g - 2.5 x 105cfu/g while fungal ranged from 0.8 x 103cfu/g - 1.4 x 103cfu/g. Bacterial isolates included Pseudomonas spp, Flavobacterium spp, and Achromobacter spp, while fungal isolates include Penicillium notatum, Aspergillus niger, and Rhizopus stolonifer. No organism was isolated from the dumpsites at soil depth of 0-15 cm, while there were isolates from other soil depths. Toxicity might be due to alkaline condition of the dumpsite. Calcium carbide might be bactericidal and fungicidal leading to cellular physiology, growth retardation, death, general loss of biodiversity and reduction of ecosystem processes. Detoxification of calcium carbide waste before disposal on soil might be the best option in management.

Keywords: biodiversity, calcium-carbide, denitrification, toxicity

Procedia PDF Downloads 547
2150 Studies on Mechanical Behavior of Kevlar/Kenaf/Graphene Reinforced Polymer Based Hybrid Composites

Authors: H. K. Shivanand, Ranjith R. Hombal, Paraveej Shirahatti, Gujjalla Anil Babu, S. ShivaPrakash

Abstract:

When it comes to the selection of materials the knowledge of materials science plays a vital role in selection and enhancements of materials properties. In the world of material science a composite material has the significant role based on its application. The composite materials are those in which two or more components having different physical and chemical properties are combined to create a new enhanced property substance. In this study three different materials (Kenaf, Kevlar and Graphene) been chosen based on their properties and a composite material is developed with help of vacuum bagging process. The fibers (Kenaf and Kevlar) and Resin(vinyl ester) ratio was maintained at 70:30 during the process and 0.5% 1% and 1.5% of Graphene was added during fabrication process. The material was machined to thedimension ofASTM standards(300×300mm and thickness 3mm)with help of water jet cutting machine. The composite materials were tested for Mechanical properties such as Interlaminar shear strength(ILSS) and Flexural strength. It is found that there is significant increase in material properties in the developed composite material.

Keywords: Kevlar, Kenaf, graphene, vacuum bagging process, Interlaminar shear strength test, flexural test

Procedia PDF Downloads 94
2149 Spectroscopy Investigation of Ni0.5Zn0.5Fe2O4 Nano Ferrite Prepared by Soft Mechanochemical Synthesis

Authors: Z. Ž. Lazarević, Č. Jovalekić, V. N. Ivanovski, N. Ž. Romčević

Abstract:

Nickel-zinc ferrite, Ni0.5Zn0.5Fe2O4 was prepared by mechanochemical route in a planetary ball mill starting from mixture of the appropriate quantities of the Ni(OH)2, Zn(OH)2 and Fe(OH)3 hydroxide powders. In order to monitor the progress of chemical reaction and confirm phase formation, powder samples obtained after 5 h and 10 h of milling were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), IR, Raman and Mössbauer spectroscopy. It is shown that the soft mechanochemical method, i.e. mechanochemical activation of hydroxides, produces high quality single phase Ni0.5Zn0.5Fe2O4 samples in much more efficient way. From the IR spectroscopy of single phase samples it is obvious that energy of modes depends on the ratio of cations. It is obvious that all samples have more than 5 Raman active modes predicted by group theory in the normal spinel structure. Deconvolution of measured spectra allows one to conclude that all complex bands in the spectra are made of individual peaks with the intensities that vary from spectrum to spectrum. The deconvolution of Raman spectra alows to separate contributions of different cations to a particular type of vibration and to estimate the degree of inversion.

Keywords: ferrite, X-ray diffraction, infrared spectroscopy, Raman spectroscopy, Mössbauer spectroscopy

Procedia PDF Downloads 505
2148 Optimisation of Wastewater Treatment for Yeast Processing Effluent Using Response Surface Methodology

Authors: Shepherd Manhokwe, Sheron Shoko, Cuthbert Zvidzai

Abstract:

In the present study, the interactive effects of temperature and cultured bacteria on the performance of a biological treatment system of yeast processing wastewater were investigated. The main objective of this study was to investigate and optimize the operating parameters that reduce organic load and colour. Experiments were conducted based on a Central Composite Design (CCD) and analysed using Response Surface Methodology (RSM). Three dependent parameters were either directly measured or calculated as response. These parameters were total Chemical Oxygen Demand (COD) removal, colour reduction and total solids. COD removal efficiency of 26 % and decolourization efficiency of 44 % were recorded for the wastewater treatment. The optimized conditions for the biological treatment were found to be at 20 g/l cultured bacteria and 25 °C for COD reduction. For colour reduction optimum conditions were temperature of 30.35°C and bacterial formulation of 20g/l. Biological treatment of baker’s yeast processing effluent is a suitable process for the removal of organic load and colour from wastewater, especially when the operating parameters are optimized.

Keywords: COD reduction, optimisation, response surface methodology, yeast processing wastewater

Procedia PDF Downloads 344
2147 Synthesis and Characterization of Mass Catalysts Based on Cobalt and Molybdenum

Authors: Nassira Ouslimani

Abstract:

The electronic structure of transition metals gives them many catalytic possibilities in many types of reactions, particularly cobalt and molybdenum. It is in this context that this study is part of the synthesis and characterization of mass catalysts based on cobalt and molybdenum Co1₋xMoO4 (X=0 and X=0.5 and X=1). The two catalysts were prepared by Co-precipitation using ammonia as a precipitating agent and one by precipitation. The samples obtained were analyzed by numerous physic-chemical analysis techniques: ATG-ATD-DSC, DRX-HT, SEM-EDX, and the elemental composition of the catalysts was verified by SAA as well as the FTIR. The ATG-DSC shows a mass loss for all the catalysts of approximately 8%, corresponding to the loss of water and the decomposition of nitrates. The DRX-HT analysis allows the detection of the two CoMoO4 phases with diffraction peaks which increase with the increase in temperature. The results of the FTIR analysis made it possible to highlight the vibration modes of the bonds of the structure of the prepared catalysts. The SEM images of the solids show very different textures with almost homogeneous surfaces with a more regular particle size distribution and a more defined grain shape. The EDX analysis showed the presence of the elements Co, Mo, and O in proportions very close to the nominal proportions. Finally, the actual composition, evaluated by SAA, is close to the theoretical composition fixed during the preparation. This testifies to the good conditions for the preparation of the catalysts by the co-precipitation method.

Keywords: catalytic, molybdenum, coprecipitation, cobalt, ammonia

Procedia PDF Downloads 90
2146 Multiscale Computational Approach to Enhance the Understanding, Design and Development of CO₂ Catalytic Conversion Technologies

Authors: Agnieszka S. Dzielendziak, Lindsay-Marie Armstrong, Matthew E. Potter, Robert Raja, Pier J. A. Sazio

Abstract:

Reducing carbon dioxide, CO₂, is one of the greatest global challenges. Conversion of CO₂ for utilisation across synthetic fuel, pharmaceutical, and agrochemical industries offers a promising option, yet requires significant research to understanding the complex multiscale processes involved. To experimentally understand and optimize such processes at that catalytic sites and exploring the impact of the process at reactor scale, is too expensive. Computational methods offer significant insight and flexibility but require a more detailed multi-scale approach which is a significant challenge in itself. This work introduces a computational approach which incorporates detailed catalytic models, taken from experimental investigations, into a larger-scale computational flow dynamics framework. The reactor-scale species transport approach is modified near the catalytic walls to determine the influence of catalytic clustering regions. This coupling approach enables more accurate modelling of velocity, pressures, temperatures, species concentrations and near-wall surface characteristics which will ultimately enable the impact of overall reactor design on chemical conversion performance.

Keywords: catalysis, CCU, CO₂, multi-scale model

Procedia PDF Downloads 253
2145 Characteristics of Elastic Tracked-Crawler Based on Worm-Rack Mechanism

Authors: Jun-ya Nagase

Abstract:

There are many pipes such as a water pipe and a gas pipe in a chemical plant and house. It is possible to prevent accidents by these inspections. However, many pipes are very narrow and it is difficult for people to inspect directly. Therefore, development of a robot that can move in narrow pipe is necessary. A wheel movement type robot, a snake-like robot and a multi-leg robot are all described in the relevant literature as pipe inspection robots that are currently studied. Among them, the tracked crawler robot can travel by traversing uneven ground flexibly with a crawler belt attached firmly to the ground surface. Although conventional crawler robots have high efficiency and/or high ground-covering ability, they require a comparatively large space to move. In this study, a cylindrical crawler robot based on worm-rack mechanism, which does not need large space to move and which has high ground-covering ability, is proposed. Experiments have demonstrated smooth operation and a forward movement of the robot by application of voltage to the motor. In addition, performance tests show that it can propel itself in confined spaces. This paper reports the structure, drive mechanism, prototype, and experimental evaluation.

Keywords: tracked-crawler, pipe inspection robot, worm-rack mechanism, amoeba locomotion

Procedia PDF Downloads 431
2144 Studies on Dye Removal by Aspergillus niger Strain

Authors: M. S. Mahmoud, Samah A. Mohamed, Neama A. Sobhy

Abstract:

For color removal from wastewater containing organic contaminants, biological treatment systems have been widely used such as physical and chemical methods of flocculation, coagulation. Fungal decolorization of dye containing wastewater is one of important goal in industrial wastewater treatment. This work was aimed to characterize Aspergillus niger strain for dye removal from aqueous solution and from raw textile wastewater. Batch experiments were studied for removal of color using fungal isolate biomass under different conditions. Environmental conditions like pH, contact time, adsorbent dose and initial dye concentration were studied. Influence of the pH on the removal of azo dye by Aspergillus niger was carried out between pH 1.0 and pH 11.0. The optimum pH for red dye decolonization was 9.0. Results showed the decolorization of dye was decreased with the increase of its initial dye concentration. The adsorption data was analyzed based on the models of equilibrium isotherm (Freundlich model and Langmuir model). During the adsorption isotherm studies; dye removal was better fitted to Freundlich model. The isolated fungal biomass was characterized according to its surface area both pre and post the decolorization process by Scanning Electron Microscope (SEM) analysis. Results indicate that the isolated fungal biomass showed higher affinity for dye in decolorization process.

Keywords: biomass, biosorption, dye, isotherms

Procedia PDF Downloads 305
2143 Determination the Effects of Physico-Chemical Parameters on Groundwater Status by Water Quality Index

Authors: Samaneh Abolli, Mahdi Ahmadi Nasab, Kamyar Yaghmaeian, Mahmood Alimohammadi

Abstract:

The quality of drinking water, in addition to the presence of physicochemical parameters, depends on the type and geographical location of water sources. In this study, groundwater quality was investigated by sampling total dissolved solids (TDS), electrical conductivity (EC), total hardness (TH), Cl, Ca²⁺, and Mg²⁺ parameters in 13 sites, and 40 water samples were sent to the laboratory. Electrometric, titration, and spectrophotometer methods were used. In the next step, the water quality index (WQI) was used to investigate the impact and weight of each parameter in the groundwater. The results showed that only the mean of magnesium ion (40.88 mg/l) was lower than the guidelines of World Health Organization (WHO). Interpreting the WQI based on the WHO guidelines showed that the statuses of 21, 11, and 7 samples were very poor, poor, and average quality, respectively, and one sample had excellent quality. Among the studied parameters, the means of EC (2,087.49 mS/cm) and Cl (1,015.87 mg/l) exceeded the global and national limits. Classifying water quality of TH was very hard (87.5%), hard (7.5%), and moderate (5%), respectively. Based on the geographical distribution, the drinking water index in sites 4 and 11 did not have acceptable quality. Chloride ion was identified as the responsible pollutant and the most important ion for raising the index. The outputs of statistical tests and Spearman correlation had significant and direct correlation (p < 0.05, r > 0.7) between TDS, EC, and chloride, EC and chloride, as well as TH, Ca²⁺, and Mg²⁺.

Keywords: water quality index, groundwater, chloride, GIS, Garmsar

Procedia PDF Downloads 104
2142 Influence of Coatings on Energy Conservation in Construction Industry

Authors: Nancy Sakr, Mohamed Abou-Zeid

Abstract:

World energy consumption has increased rapidly in the past few years. Due to population growth, total energy consumption is increasing; a large amount of energy is wasted on the cooling and heating processes in buildings. However, using thermal heating management can minimize costs, heat consumption and create a management system for the heat insulation for buildings. This concept is being implemented through different approaches. Based on analysis and research, there is evidence in the energy consumption before and after testing and applying construction approaches for thermal heating management in building units. This investigation addresses the evaluation of the influence of external coatings on energy consumption. Coatings are considered one of the smart effective available approaches for energy efficiency. Unfortunately, this approach is not widely applied in the construction industry. It needs more data to prove effectiveness and credibility between people to use it as a smart thermal insulation approach. Two precedents have been analyzed in order to monitor buildings’ heat exposure, and how the buildings will be affected by thermal insulation materials. Data sheets from chemical companies which produce similar coatings are compared with the usual products and the protective thermal products.

Keywords: energy consumption, building envelope, thermal insulation, protective coatings

Procedia PDF Downloads 144
2141 Controlling the Surface Morphology of the Biocompatible Hydroxyapatite Layer Deposited by Using a Flame-Coating

Authors: Nabaa M. Abdul Rahim, Mohammed A.Kadhim, Fadhil K. Fuliful

Abstract:

A biocompatible layer is prepared from calcium phosphate, which plays a role in building damaged bones and is used in many applications. In this research, calcium phosphate is coated on stainless steel substrates (SS 316) by using the flame coating. FE-SEM images show that the behavior of the sample surfaces varies with distance, at 3cm, appeared with nanostructures of bumps shaped of diameter about 317 nm. The contents of the elements are analyzed by energy-dispersive X-ray spectroscopy (EDX). The chemical elements C, Ca, Fe, Ni, Cr, Mn and O corresponding to calcium phosphate and the alloy are revealed by EDX analysis of the coating layer. XRD patterns for the calcium phosphate layers indicate the formation of the Hap layer on the deposited layers. The samples are immersed in a solution of simulated body fluids (SBF) for 21 days to examine the biocompatibility, as the tests show that the calcium phosphate ratio of 1.65 is the appropriate and biocompatible ratio in the human body. The assays show antibacterial activity using the diffusion disk procedure. On the surface of the agar, observed infested E.coli bacteria and incubated for 24 hours at 37°C. Bacteria grow on the entire agar rather than in some areas around some samples at a distance of 3 cm from the flame hole.

Keywords: biomaterial, flame coating, antibacterial activity, stainless steel

Procedia PDF Downloads 97
2140 The Clarification of Palm Oil Wastewater Treatment by Coagulant Composite from Palm Oil Ash

Authors: Rewadee Anuwattana, Narumol Soparatana, Pattamaphorn Phuangngamphan, Worapong Pattayawan, Atiporn Jinprayoon, Saroj Klangkongsap, Supinya Sutthima

Abstract:

In this work focus on clarification in palm oil wastewater treatment by using coagulant composite from palm oil ash. The design of this study was carried out by two steps; first, synthesis of new coagulant composite from palm oil ash which was fused by using Al source combined with Fe source and form to the crystal by the hydrothermal crystallization process. The characterization of coagulant composite from palm oil ash was analyzed by advanced instruments, and The pattern was analyzed by X-ray Diffraction (XRD), chemical composition by X-Ray Fluorescence (XRFS) and morphology characterized by SEM. The second step, the clarification wastewater treatment efficiency of synthetic coagulant composite, was evaluated by coagulation/flocculation process based on the COD, turbidity, phosphate and color removal of wastewater from palm oil factory by varying the coagulant dosage (1-8 %w/v) with no adjusted pH and commercial coagulants (Alum, Ferric Chloride and poly aluminum chloride) which adjusted the pH (6). The results found that the maximum removal of 6% w/v of synthetic coagulant from palm oil ash can remove COD, turbidity, phosphate and color was 88.44%, 93.32%, 93.32% and 93.32%, respectively. The experiments were compared using 6% w/v of commercial coagulants (Alum, Ferric Chloride and Polyaluminum Chloride) can remove COD of 74.29%, 71.43% and 57.14%, respectively.

Keywords: coagulation, coagulant, wastewater treatment, waste utilization, palm oil ash

Procedia PDF Downloads 191
2139 Biogenic Synthesis of ZnO Nanoparticles Using Annona muricata Plant Leaf Extract and Its Anti-Cancer Efficacy

Authors: Siva Chander Chabattula, Piyush Kumar Gupta, Debashis Chakraborty, Rama Shanker Verma

Abstract:

Green nanoparticles have gotten a lot of attention because of their potential applications in tissue regeneration, bioimaging, wound healing, and cancer therapy. The physical and chemical methods to synthesize metal oxide nanoparticles have an environmental impact, necessitating the development of an environmentally friendly green strategy for nanoparticle synthesis. In this study, we used Annona muricata plant leaf extract to synthesize Zinc Oxide nanoparticles (Am-ZnO NPs), which were evaluated using UV/Visible spectroscopy, FTIR spectroscopy, X-Ray Diffraction, DLS, and Zeta potential. Nanoparticles had an optical absorbance of 355 nm and a net negative surface charge of ~ - 2.59 mV. Transmission Electron Microscope characterizes the Shape and size of the nanoparticles. The obtained Am-ZnO NPs are biocompatible and hemocompatible in nature. These nanoparticles caused an anti-cancer therapeutic effect in MIA PaCa2 and MOLT4 cancer cells by inducing oxidative stress, and a change in mitochondrial membrane potential leads to programmed cell death. Further, we observed a reduction in the size of lung cancer spheroids (act as tumor micro-environment) with doxorubicin as a positive control.

Keywords: Biomaterials, nanoparticle, anticancer activity, ZnO nanoparticles

Procedia PDF Downloads 204
2138 Optical and Structural Properties of ZnO Quantum Dots Functionalized with 3-Aminopropylsiloxane Prepared by Sol-gel Method

Authors: M. Pacio, H. Juárez, R. Pérez-Cuapio E. Rosendo, T. Díaz, G. García

Abstract:

In this study, zinc oxide (ZnO) quantum dots (QDs) have been prepared by a simple route. The growth parameters for ZnO QDs were systematically studied inside a SiO2 shell; this shell acts as a capping agent and also enhances stability of the nanoparticles in water. ZnO QDs in silica shell could be produced by initially synthesizing a ZnO colloid (containing ZnO nanoparticles in methanol solution) and then was mixed with 3-aminopropylsiloxane used as SiO2 precursor. ZnO QDs were deposited onto silicon substrates (100) orientation by spin-coating technique. ZnO QDs into a SiO2 shell were pre-heated at 300 °C for 10 min after each coating, that procedure was repeated five times. The films were subsequently annealing in air atmosphere at 500 °C for 2 h to remove the trapped fluid inside the amorphous silica cage. ZnO QDs showed hexagonal wurtzite structure and about 5 nm in diameter. The composition of the films at the surface and in the bulk was obtained by Secondary Ion Mass Spectrometry (SIMS), the spectra revealed the presence of Zn- and Si- related clusters associated to the chemical species in the solid matrix. Photoluminescence (PL) spectra under 325 nm of excitation only show a strong UV emission band corresponding to ZnO QDs, such emission is enhanced with annealing. Our results showed that the method is appropriate for the preparation of ZnO QDs films embedded in a SiO2 shell with high UV photoluminescence.

Keywords: ZnO QDs, sol gel, functionalization

Procedia PDF Downloads 433
2137 Effect of Crude Flowers Extract of Citrus reticulata Blanco Flowers on Physicochemical and Nutritional Properties of Cheddar Cheese

Authors: Usman Mir Khan, Ishtiaque Ahmad, Saima Inayat, H. M. Arslan Amin, Muhammad Ayaz, Nisar Ahmad

Abstract:

Citrus reticulata Blanco crude flowers extract (CFE) at four different concentration (1, 2, 3 and 4%, v/v) were used as natural milk coagulant instead of rennet to apply for Cheddar cheese making from buffalo milk. The physicochemical properties and nutrition composition of Cheddar cheeses were compared with cheese made with 0.002% (v/v) rennet (control cheese). Physico-chemical of Cheddar cheese showed that cheese made with 1% and 2% of CFE had a crumbly and slightly softer texture of cheese. While, cheeses containing 3 and 4% CFE had semi-hard textural properties of curd similar to rennet added cheese. The CFE made cheese had moisture 37 %, fat 45 % on dry basis similar to rennet made Cheddar cheese. Protein analysis shows that CFE made cheese had significant higher protein content than control. The Cheddar cheese with 3% and 1% CFE were preferred by consumers instead of 2% and 4% CFE for their taste, texture/appearance and overall acceptability. Conclusively, CFE coagulated Cheddar cheese fulfills the nutritional requirement with acceptable organoleptic characteristics and at the same time provides nutritional health benefits.

Keywords: cheddar cheese, Citrus reticulata Blanco, buffalo milk, milk coagulant

Procedia PDF Downloads 307
2136 Seaweed as a Future Fuel Option: Potential and Conversion Technologies

Authors: Muhammad Rizwan Tabassum, Ao Xia, Jerry D. Murphy

Abstract:

The purpose of this work is to provide a comprehensive overview of seaweed as the alternative feedstock for biofuel production and key conversion technologies. Resource depletion and climate change are the driving forces to hunt for renewable sources of energy. Macroalgae can be preferred over land based crops for biofuel production because they are not in competition with food crops for arable land, high growth rates and low lignin contents which require less energy-intensive pre-treatments. However, some disadvantages, such as high moisture content, seasonal variation in chemical composition and process inhibition limit its economic feasibility. Seaweed can be converted into gaseous and liquid fuel by different conversion technologies, but biogas via anaerobic digestion from seaweed is attracting increased attention due to its dual benefit of an economic source of bio-fuel and environment-friendly technology. Biodiesel and bioethanol conversion technologies from seaweed are still under development. A selection of high yielding seaweed species, optimal harvesting season and process optimization make them economically feasible for the alternative source of renewable and sustainable feedstock for biofuel in future.

Keywords: anaerobic digestion, biofuel, bio-methane, conversion technologies, seaweed

Procedia PDF Downloads 474
2135 Separation of Lanthanides Ions from Mineral Waste with Functionalized Pillar[5]Arenes: Synthesis, Physicochemical Characterization and Molecular Dynamics Studies

Authors: Ariesny Vera, Rodrigo Montecinos

Abstract:

The rare-earth elements (REEs) or rare-earth metals (REMs), correspond to seventeen chemical elements composed by the fifteen lanthanoids, as well as scandium and yttrium. Lanthanoids corresponds to lanthanum and the f-block elements, from cerium to lutetium. Scandium and yttrium are considered rare-earth elements because they have ionic radii similar to the lighter f-block elements. These elements were called rare earths because they are simply more difficult to extract and separate individually than the most metals and, generally, they do not accumulate in minerals, they are rarely found in easily mined ores and are often unfavorably distributed in common ores/minerals. REEs show unique chemical and physical properties, in comparison to the other metals in the periodic table. Nowadays, these physicochemical properties are utilized in a wide range of synthetic, catalytic, electronic, medicinal, and military applications. Because of their applications, the global demand for rare earth metals is becoming progressively more important in the transition to a self-sustaining society and greener economy. However, due to the difficult separation between lanthanoid ions, the high cost and pollution of these processes, the scientists search the development of a method that combines selectivity and quantitative separation of lanthanoids from the leaching liquor, while being more economical and environmentally friendly processes. This motivation has favored the design and development of more efficient and environmentally friendly cation extractors with the incorporation of compounds as ionic liquids, membrane inclusion polymers (PIM) and supramolecular systems. Supramolecular chemistry focuses on the development of host-guest systems, in which a host molecule can recognize and bind a certain guest molecule or ion. Normally, the formation of a host-guest complex involves non-covalent interactions Additionally, host-guest interactions can be influenced among others effects by the structural nature of host and guests. The different macrocyclic hosts for lanthanoid species that have been studied are crown ethers, cyclodextrins, cucurbituryls, calixarenes and pillararenes.Among all the factors that can influence and affect lanthanoid (III) coordination, perhaps the most basic of them is the systematic control using macrocyclic substituents that promote a selective coordination. In this sense, macrocycles pillar[n]arenes (P[n]As) present a relatively easy functionalization and they have more π-rich cavity than other host molecules. This gives to P[n]As a negative electrostatic potential in the cavity which would be responsible for the selectivity of these compounds towards cations. Furthermore, the cavity size, the linker, and the functional groups of the polar headgroups could be modified in order to control the association of lanthanoid cations. In this sense, different P[n]As systems, specifically derivatives of the pentamer P[5]A functionalized with amide, amine, phosphate and sulfate derivatives, have been designed in terms of experimental synthesis and molecular dynamics, and the interaction between these P[5]As and some lanthanoid ions such as La³+, Eu³+ and Lu³+ has been studied by physicochemical characterization by 1H-NMR, ITC and fluorescence in the case of Eu³+ systems. The molecular dynamics study of these systems was developed in hexane as solvent, also taking into account the lanthanoid ions mentioned above, and the respective comparison studies between the different ions.

Keywords: lanthanoids, macrocycles, pillar[n]arenes, rare-earth metal extraction, supramolecular chemistry, supramolecular complexes.

Procedia PDF Downloads 77
2134 Optimization of Pyrogallol Based Manganese / Ferroin Catalyzed Nonlinear Chemical Systems and Interaction with Monomeric and Polymeric Entities

Authors: Ghulam Mustafa Peerzada, Shagufta Rashid, Nadeem Bashir

Abstract:

These the influence of initial reagent concentrations on the Belousov-Zhabotinsky (BZ) system with Mn2+/Mn3+ as redox catalyst, inorganic bromate as oxidant and pyrogallol as organic substrate was studied. The reactions were monitored by potentiometery in oxidation reduction potential (ORP) mode. The aforesaid reagents were mixed with varying concentrations to evolve the optimal concentrations at which the reaction system exhibited better oscillations. The various oscillatory parameters such as induction period (tin), time period (tp), frequency (v), amplitude (A) and number of oscillations (n) were derived and the dependence of concentration of the reacting species on these oscillatory parameters was interpreted on the basis of the Field-Koros-Noyes mechanism. Ferroin based BZ system with pyrogallol as organic substrate was optimized under CSTR condition at temperature of 30±0.1oC Effect of molecules like monomer and polymer as additives to the system was checked and their interaction with the system was also studied. It has been observed that the monomer affects the time period, while the polymer has its effect on the amplitude of oscillations because of monomer’s interaction with the bromine and polymer’s with that of the Ferroin.

Keywords: Belousov Zhabotinsky reaction, oscillatory parameters, polymer, pyrogallol

Procedia PDF Downloads 312
2133 Flow Analysis of Viscous Nanofluid Due to Rotating Rigid Disk with Navier’s Slip: A Numerical Study

Authors: Khalil Ur Rehman, M. Y. Malik, Usman Ali

Abstract:

In this paper, the problem proposed by Von Karman is treated in the attendance of additional flow field effects when the liquid is spaced above the rotating rigid disk. To be more specific, a purely viscous fluid flow yield by rotating rigid disk with Navier’s condition is considered in both magnetohydrodynamic and hydrodynamic frames. The rotating flow regime is manifested with heat source/sink and chemically reactive species. Moreover, the features of thermophoresis and Brownian motion are reported by considering nanofluid model. The flow field formulation is obtained mathematically in terms of high order differential equations. The reduced system of equations is solved numerically through self-coded computational algorithm. The pertinent outcomes are discussed systematically and provided through graphical and tabular practices. A simultaneous way of study makes this attempt attractive in this sense that the article contains dual framework and validation of results with existing work confirms the execution of self-coded algorithm for fluid flow regime over a rotating rigid disk.

Keywords: Navier’s condition, Newtonian fluid model, chemical reaction, heat source/sink

Procedia PDF Downloads 171