Search results for: bridge monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3963

Search results for: bridge monitoring

1563 Use of Alternative Water Sources Based on a Rainwater in the Multi-Dwelling Urban Building 2030

Authors: Monika Lipska

Abstract:

Drinking water is water with a very high quality, and as such represents only 2.5% of the total quantity of all water in the world. For many years we have observed continuous increase in its consumption as a result of many factors such as: Growing world population (7 billion in 2011r.), increase of human lives comfort and – above all – the economic growth. Due to the rocketing consumption and growing costs of production of water with such high-quality parameters, we experience accelerating interest in alternative sources of obtaining potable water. One of the ways of saving this valuable material is using rainwater in the Urban Building. With an exponentially growing demand, the acquisition of additional sources of water is necessary to maintain the proper balance of all ecosystems. The first part of the paper describes what rainwater is and what are its potential sources and means of use, while the main part of the article focuses on the description of the methods of obtaining water from rain on the example of new urban building in Poland. It describes the method and installations of rainwater in the new urban building (“MBJ2030”). The paper addresses also the issue of monitoring of the whole recycling systems as well as the particular quality indicators important because of identification of the potential risks to human health. The third part describes the legal arrangements concerning the recycling of rainwater existing in different European Union countries with particular reference to Poland on example the new urban building in Warsaw.

Keywords: rainwater, potable water, non-potable water, Poland

Procedia PDF Downloads 416
1562 Noninvasive Disease Diagnosis through Breath Analysis Using DNA-functionalized SWNT Sensor Array

Authors: W. J. Zhang, Y. Q. Du, M. L. Wang

Abstract:

Noninvasive diagnostics of diseases via breath analysis has attracted considerable scientific and clinical interest for many years and become more and more promising with the rapid advancement in nanotechnology and biotechnology. The volatile organic compounds (VOCs) in exhaled breath, which are mainly blood borne, particularly provide highly valuable information about individuals’ physiological and pathophysiological conditions. Additionally, breath analysis is noninvasive, real-time, painless and agreeable to patients. We have developed a wireless sensor array based on single-stranded DNA (ssDNA)-decorated single-walled carbon nanotubes (SWNT) for the detection of a number of physiological indicators in breath. Eight DNA sequences were used to functionalize SWNT sensors to detect trace amount of methanol, benzene, dimethyl sulfide, hydrogen sulfide, acetone and ethanol, which are indicators of heavy smoking, excessive drinking, and diseases such as lung cancer, breast cancer, cirrhosis and diabetes. Our tests indicated that DNA functionalized SWNT sensors exhibit great selectivity, sensitivity, reproducibility, and repeatability. Furthermore, different molecules can be distinguished through pattern recognition enabled by this sensor array. Thus, the DNA-SWNT sensor array has great potential to be applied in chemical or bimolecular detection for the noninvasive diagnostics of diseases and health monitoring.

Keywords: breath analysis, diagnosis, DNA-SWNT sensor array, noninvasive

Procedia PDF Downloads 349
1561 Harnessing Digital Technologies for Youth-Led Anti-Corruption Movements in the Balkans

Authors: Layla Weiss, Agim Selami

Abstract:

In an era where digital tools shape governance and political participation, youth in the Balkans face dual challenges: systemic corruption and limited opportunities for meaningful engagement. These challenges are exacerbated by the "brain drain" phenomenon, as young, educated individuals leave the region in search of better opportunities, weakening local efforts to combat corruption and build accountability. This paper explores how digital technologies can empower youth in North Macedonia and neighboring countries to address cross-border corruption while fostering political activism in response to EU integration policies. Drawing on global case studies of youth-driven digital activism, it examines how digital platforms can amplify youth voices, mobilize collective action, and overcome systemic barriers. Movements such as those during the Arab Spring demonstrate the potential of digital tools to bridge local and transnational activism, offering valuable insights into strategies that can be adapted for the Balkan context. The central research is based on how digital technologies can empower youth in the Balkans to combat corruption and foster political engagement while addressing the challenges posed by brain drain. To address this, the research employs a mixed-methods approach. Quantitative data from big data analytics, such as social media activity and online petitions, will map trends in youth-led digital activism. Qualitative methods, including interviews with youth leaders and policy experts, will capture the lived experiences of young activists. By situating global examples within the specific context of the Balkans, the research identifies strategies for mitigating brain drain and fostering local resilience through youth-driven initiatives. By exploring how digital platforms can both facilitate and combat corruption, this paper underscores the transformative potential of technology in fostering transparency and accountability. It argues that young people, armed with digital tools, are key players in reshaping the anti-corruption landscape in the Balkans. The findings will offer practical recommendations for policymakers and international organizations to strengthen youth engagement, address brain drain and bolster transnational anti-corruption strategies.

Keywords: youth political engagement, digital anti-corruption, balkans, brain drain, cross-border activism

Procedia PDF Downloads 4
1560 Application of Nuclear Magnetic Resonance (1H-NMR) in the Analysis of Catalytic Aquathermolysis: Colombian Heavy Oil Case

Authors: Paola Leon, Hugo Garcia, Adan Leon, Samuel Munoz

Abstract:

The enhanced oil recovery by steam injection was considered a process that only generated physical recovery mechanisms. However, there is evidence of the occurrence of a series of chemical reactions, which are called aquathermolysis, which generates hydrogen sulfide, carbon dioxide, methane, and lower molecular weight hydrocarbons. These reactions can be favored by the addition of a catalyst during steam injection; in this way, it is possible to generate the original oil in situ upgrading through the production increase of molecules of lower molecular weight. This additional effect could increase the oil recovery factor and reduce costs in transport and refining stages. Therefore, this research has focused on the experimental evaluation of the catalytic aquathermolysis on a Colombian heavy oil with 12,8°API. The effects of three different catalysts, reaction time, and temperature were evaluated in a batch microreactor. The changes in the Colombian heavy oil were quantified through nuclear magnetic resonance 1H-NMR. The relaxation times interpretation and the absorption intensity allowed to identify the distribution of the functional groups in the base oil and upgraded oils. Additionally, the average number of aliphatic carbons in alkyl chains, the number of substituted rings, and the aromaticity factor were established as average structural parameters in order to simplify the samples' compositional analysis. The first experimental stage proved that each catalyst develops a different reaction mechanism. The aromaticity factor has an increasing order of the salts used: Mo > Fe > Ni. However, the upgraded oil obtained with iron naphthenate tends to form a higher content of mono-aromatic and lower content of poly-aromatic compounds. On the other hand, the results obtained from the second phase of experiments suggest that the upgraded oils have a smaller difference in the length of alkyl chains in the range of 240º to 270°C. This parameter has lower values at 300°C, which indicates that the alkylation or cleavage reactions of alkyl chains govern at higher reaction temperatures. The presence of condensation reactions is supported by the behavior of the aromaticity factor and the bridge carbons production between aromatic rings (RCH₂). Finally, it is observed that there is a greater dispersion in the aliphatic hydrogens, which indicates that the alkyl chains have a greater reactivity compared to the aromatic structures.

Keywords: catalyst, upgrading, aquathermolysis, steam

Procedia PDF Downloads 113
1559 The 6Rs of Radiobiology in Photodynamic Therapy: Review

Authors: Kave Moloudi, Heidi Abrahamse, Blassan P. George

Abstract:

Radiotherapy (RT) and photodynamic therapy (PDT) are both forms of cancer treatment that aim to kill cancer cells while minimizing damage to healthy tissue. The similarity between RT and PDT lies in their mechanism of action. Both treatments use energy to damage cancer cells. RT uses high-energy radiation to damage the DNA of cancer cells, while PDT uses light energy to activate a photosensitizing agent, which produces reactive oxygen species (ROS) that damage the cancer cells. Both treatments require careful planning and monitoring to ensure the correct dose is delivered to the tumor while minimizing damage to surrounding healthy tissue. They are also often used in combination with other treatments, such as surgery or chemotherapy, to improve overall outcomes. However, there are also significant differences between RT and PDT. For example, RT is a non-invasive treatment that can be delivered externally or internally, while PDT requires the injection of a photosensitizing agent and the use of a specialized light source to activate it. Additionally, the side effects and risks associated with each treatment can vary. In this review, we focus on generalizing the 6Rs of radiobiology in PDT, which can open a window for the clinical application of Radio-photodynamic therapy with minimum side effects. Furthermore, this review can open new insight to work on and design new radio-photosensitizer agents in Radio-photodynamic therapy.

Keywords: radiobiology, photodynamic therapy, radiotherapy, 6Rs in radiobiology, ROS, DNA damages, cellular and molecular mechanism, clinical application.

Procedia PDF Downloads 108
1558 Data Disorders in Healthcare Organizations: Symptoms, Diagnoses, and Treatments

Authors: Zakieh Piri, Shahla Damanabi, Peyman Rezaii Hachesoo

Abstract:

Introduction: Healthcare organizations like other organizations suffer from a number of disorders such as Business Sponsor Disorder, Business Acceptance Disorder, Cultural/Political Disorder, Data Disorder, etc. As quality in healthcare care mostly depends on the quality of data, we aimed to identify data disorders and its symptoms in two teaching hospitals. Methods: Using a self-constructed questionnaire, we asked 20 questions in related to quality and usability of patient data stored in patient records. Research population consisted of 150 managers, physicians, nurses, medical record staff who were working at the time of study. We also asked their views about the symptoms and treatments for any data disorders they mentioned in the questionnaire. Using qualitative methods we analyzed the answers. Results: After classifying the answers, we found six main data disorders: incomplete data, missed data, late data, blurred data, manipulated data, illegible data. The majority of participants believed in their important roles in treatment of data disorders while others believed in health system problems. Discussion: As clinicians have important roles in producing of data, they can easily identify symptoms and disorders of patient data. Health information managers can also play important roles in early detection of data disorders by proactively monitoring and periodic check-ups of data.

Keywords: data disorders, quality, healthcare, treatment

Procedia PDF Downloads 437
1557 Investigation of Factors Affecting the Total Ionizing Dose Threshold of Electrically Erasable Read Only Memories for Use in Dose Rate Measurement

Authors: Liqian Li, Yu Liu, Karen Colins

Abstract:

The dose rate present in a seriously contaminated area can be indirectly determined by monitoring radiation damage to inexpensive commercial electronics, instead of deploying expensive radiation hardened sensors. EEPROMs (Electrically Erasable Read Only Memories) are a good candidate for this purpose because they are inexpensive and are sensitive to radiation exposure. When the total ionizing dose threshold is reached, an EEPROM chip will show signs of damage that can be monitored and transmitted by less susceptible electronics. The dose rate can then be determined from the known threshold dose and the exposure time, assuming the radiation field remains constant with time. Therefore, the threshold dose needs to be well understood before this method can be used. There are many factors affecting the threshold dose, such as the gamma ray energy spectrum, the operating voltage, etc. The purpose of this study was to experimentally determine how the threshold dose depends on dose rate, temperature, voltage, and duty factor. It was found that the duty factor has the strongest effect on the total ionizing dose threshold, while the effect of the other three factors that were investigated is less significant. The effect of temperature was found to be opposite to that expected to result from annealing and is yet to be understood.

Keywords: EEPROM, ionizing radiation, radiation effects on electronics, total ionizing dose, wireless sensor networks

Procedia PDF Downloads 190
1556 Long-Term Subcentimeter-Accuracy Landslide Monitoring Using a Cost-Effective Global Navigation Satellite System Rover Network: Case Study

Authors: Vincent Schlageter, Maroua Mestiri, Florian Denzinger, Hugo Raetzo, Michel Demierre

Abstract:

Precise landslide monitoring with differential global navigation satellite system (GNSS) is well known, but technical or economic reasons limit its application by geotechnical companies. This study demonstrates the reliability and the usefulness of Geomon (Infrasurvey Sàrl, Switzerland), a stand-alone and cost-effective rover network. The system permits deploying up to 15 rovers, plus one reference station for differential GNSS. A dedicated radio communication links all the modules to a base station, where an embedded computer automatically provides all the relative positions (L1 phase, open-source RTKLib software) and populates an Internet server. Each measure also contains information from an internal inclinometer, battery level, and position quality indices. Contrary to standard GNSS survey systems, which suffer from a limited number of beacons that must be placed in areas with good GSM signal, Geomon offers greater flexibility and permits a real overview of the whole landslide with good spatial resolution. Each module is powered with solar panels, ensuring autonomous long-term recordings. In this study, we have tested the system on several sites in the Swiss mountains, setting up to 7 rovers per site, for an 18 month-long survey. The aim was to assess the robustness and the accuracy of the system in different environmental conditions. In one case, we ran forced blind tests (vertical movements of a given amplitude) and compared various session parameters (duration from 10 to 90 minutes). Then the other cases were a survey of real landslides sites using fixed optimized parameters. Sub centimetric-accuracy with few outliers was obtained using the best parameters (session duration of 60 minutes, baseline 1 km or less), with the noise level on the horizontal component half that of the vertical one. The performance (percent of aborting solutions, outliers) was reduced with sessions shorter than 30 minutes. The environment also had a strong influence on the percent of aborting solutions (ambiguity search problem), due to multiple reflections or satellites obstructed by trees and mountains. The length of the baseline (distance reference-rover, single baseline processing) reduced the accuracy above 1 km but had no significant effect below this limit. In critical weather conditions, the system’s robustness was limited: snow, avalanche, and frost-covered some rovers, including the antenna and vertically oriented solar panels, leading to data interruption; and strong wind damaged a reference station. The possibility of changing the sessions’ parameters remotely was very useful. In conclusion, the rover network tested provided the foreseen sub-centimetric-accuracy while providing a dense spatial resolution landslide survey. The ease of implementation and the fully automatic long-term survey were timesaving. Performance strongly depends on surrounding conditions, but short pre-measures should allow moving a rover to a better final placement. The system offers a promising hazard mitigation technique. Improvements could include data post-processing for alerts and automatic modification of the duration and numbers of sessions based on battery level and rover displacement velocity.

Keywords: GNSS, GSM, landslide, long-term, network, solar, spatial resolution, sub-centimeter.

Procedia PDF Downloads 115
1555 Advanced Driver Assistance System: Veibra

Authors: C. Fernanda da S. Sampaio, M. Gabriela Sadith Perez Paredes, V. Antonio de O. Martins

Abstract:

Today the transport sector is undergoing a revolution, with the rise of Advanced Driver Assistance Systems (ADAS), industry and society itself will undergo a major transformation. However, the technological development of these applications is a challenge that requires new techniques and great machine learning and artificial intelligence. The study proposes to develop a vehicular perception system called Veibra, which consists of two front cameras for day/night viewing and an embedded device capable of working with Yolov2 image processing algorithms with low computational cost. The strategic version for the market is to assist the driver on the road with the detection of day/night objects, such as road signs, pedestrians, and animals that will be viewed through the screen of the phone or tablet through an application. The system has the ability to perform real-time driver detection and recognition to identify muscle movements and pupils to determine if the driver is tired or inattentive, analyzing the student's characteristic change and following the subtle movements of the whole face and issuing alerts through beta waves to ensure the concentration and attention of the driver. The system will also be able to perform tracking and monitoring through GSM (Global System for Mobile Communications) technology and the cameras installed in the vehicle.

Keywords: advanced driver assistance systems, tracking, traffic signal detection, vehicle perception system

Procedia PDF Downloads 157
1554 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends

Authors: Zheng Yuxun

Abstract:

This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.

Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis

Procedia PDF Downloads 61
1553 Impact of Advertisement on Audience Retention of YouTube Comedy Skits – The Most Watched Content on YouTube in Lagos, Nigeria

Authors: Igbozuruike Chigozie Jude, Agwu Agwu Ejem

Abstract:

This study investigated that advertisement has an impact on audience retention on YouTube Comedy skits, which is the most watched content on YouTube in Lagos, Nigeria. The main objective was to determine if the advertisements affect the average number of times they spend watching YouTube comedy skits. The study was anchored on Festinger's (1952) cognitive dissonance theory. The research method for this exercise was a survey to get responses from people in Lagos state on how they react to the advertisements they face when watching YouTube comedy skits in Lagos state. The sample size derived from the Krejcie and Morgan (1970) Table was 384 YouTube users. The instrument that was used to gather data was a questionnaire. The findings showed that the adverts have far-reaching exposure by the target audience, but most of the audience perceived them to be intrusive. It was also found that there is not enough evidence to infer that advertisement is indeed impacting audience retention on YouTube comedy skits in Lagos, Nigeria. The reason is that, for a majority of the audience, adverts do not essentially affect their retention on those skits, but for a considerable percentage (34%), these adverts do break their concentration and affect how much time they end up spending on the YouTube comedy skits. It was recommended that, among others, there should be regular monitoring and adaptation of YouTube advertisements to the audience preferences and behaviors of the audience. Insights on changes or trends in audience preferences can be gained through surveys.

Keywords: advertisement, audience, YouTube, comedy skits, Lagos Nigeria

Procedia PDF Downloads 89
1552 Long Term Monitoring and Assessment of Atmospheric Aerosols in Indo-Gangetic Region of India

Authors: Ningombam Linthoingambi Devi, Amrendra Kumar

Abstract:

The long term sampling at one of the most populated city in Indo-Gangetic region shows higher mass concentration of atmospheric aerosol (PM₂.₅) during spring season (144.70µg/m³), summer season (91.96 µg/m³), the autumn season (266.48µg/m³) and winter season (367.09 µg/m³) respectively. The concentration of PM₂.₅ in Patna across the year shows much higher than the limit fixed by the national ambient air quality level fixed by central pollution control board India (CPCB, India) and World Health Organization (WHO). Different water-soluble cation (Na⁺, K⁺, Ca²⁺, NH₄⁺ , and Mg²⁺) and anion (Cl⁻, NO₃⁻ , and SO₄²⁻) species were detected in PM₂.₅. Results show the significantly higher loaded of water-soluble ions during winter and spring seasons. The acidity of the atmosphere was revealed and calculated using selected major cations (K⁺, Ca²⁺ , and NH₄⁺) and anions (SO₄²⁻, and NO₃⁻). A regression correlation was analyzed to check the significant linkage between the acidity and alkalinity ions. During the winter season (r² = 0.79) and spring season (r² = 0.64) shows good significant correlation between the cations and anions. The ratio of NO₃⁻/SO₄²⁻ indicates the sources of secondary pollutants were mainly influenced by industrial and vehicular emission however SO₄²⁻ mostly emitted from industries during the winter season.

Keywords: aerosols, inorganic species, source apportionment, Indo-Gangetic region

Procedia PDF Downloads 135
1551 Integrating Machine Learning and Rule-Based Decision Models for Enhanced B2B Sales Forecasting and Customer Prioritization

Authors: Wenqi Liu, Reginald Bailey

Abstract:

This study proposes a comprehensive and effective approach to business-to-business (B2B) sales forecasting by integrating advanced machine learning models with a rule-based decision-making framework. The methodology addresses the critical challenge of optimizing sales pipeline performance and improving conversion rates through predictive analytics and actionable insights. The first component involves developing a classification model to predict the likelihood of conversion, aiming to outperform traditional methods such as logistic regression in terms of accuracy, precision, recall, and F1 score. Feature importance analysis highlights key predictive factors, such as client revenue size and sales velocity, providing valuable insights into conversion dynamics. The second component focuses on forecasting sales value using a regression model, designed to achieve superior performance compared to linear regression by minimizing mean absolute error (MAE), mean squared error (MSE), and maximizing R-squared metrics. The regression analysis identifies primary drivers of sales value, further informing data-driven strategies. To bridge the gap between predictive modeling and actionable outcomes, a rule-based decision framework is introduced. This model categorizes leads into high, medium, and low priorities based on thresholds for conversion probability and predicted sales value. By combining classification and regression outputs, this framework enables sales teams to allocate resources effectively, focus on high-value opportunities, and streamline lead management processes. The integrated approach significantly enhances lead prioritization, increases conversion rates, and drives revenue generation, offering a robust solution to the declining pipeline conversion rates faced by many B2B organizations. Our findings demonstrate the practical benefits of blending machine learning with decision-making frameworks, providing a scalable, data-driven solution for strategic sales optimization. This study underscores the potential of predictive analytics to transform B2B sales operations, enabling more informed decision-making and improved organizational outcomes in competitive markets.

Keywords: machine learning, XGBoost, regression, decision making framework, system engineering

Procedia PDF Downloads 34
1550 Life Cycle Carbon Dioxide Emissions from the Construction Phase of Highway Sector in China

Authors: Yuanyuan Liu, Yuanqing Wang, Di Li

Abstract:

Carbon dioxide (CO2) emissions mitigation from road construction activities is one of the potential pathways to deal with climate change due to its higher use of materials, machinery energy consumption, and high quantity of vehicle and equipment fuels for transportation and on-site construction activities. Aiming to assess the environmental impact of the road infrastructure construction activities and to identify hotspots of emissions sources, this study developed a life-cycle CO2 emissions assessment framework covering three stages of material production, to-site and on-site transportation under the guidance of the principle of LCA ISO14040. Then streamlined inventory analysis on sub-processes of each stage was conducted based on the budget files from cases of highway projects in China. The calculation results were normalized into functional unit represented as ton per km per lane. Then a comparison between the amount of emissions from each stage, and sub-process was made to identify the major contributor in the whole highway lifecycle. In addition, the calculating results were used to be compared with results in other countries for understanding the level of CO2 emissions associated with Chinese road infrastructure in the world. The results showed that materials production stage produces the most of the CO2 emissions (for more than 80%), and the production of cement and steel accounts for large quantities of carbon emissions. Life cycle CO2 emissions of fuel and electric energy associated with to-site and on-site transportation vehicle and equipment are a minor component of total life cycle CO2 emissions from highway project construction activities. Bridges and tunnels are dominant large carbon contributor compared to the road segments. The life cycle CO2 emissions of road segment in highway project in China are slightly higher than the estimation results of highways in European countries and USA, about 1500 ton per km per lane. In particularly, the life cycle CO2 emissions of road pavement in majority cities all over the world are about 500 ton per km per lane. However, there is obvious difference between the cities when the estimation on life cycle CO2 emissions of highway projects included bridge and tunnel. The findings of the study could offer decision makers a more comprehensive reference to understand the contribution of road infrastructure to climate change, especially understand the contribution from road infrastructure construction activities in China. In addition, the identified hotspots of emissions sources provide the insights of how to reduce road carbon emissions for development of sustainable transportation.

Keywords: carbon dioxide emissions, construction activities, highway, life cycle assessment

Procedia PDF Downloads 271
1549 Bridge the Gap: Livability, Sustainable Development Goals and Pandemics: A Review on Visakhapatnam

Authors: Meenakshi Pappu

Abstract:

The terms like liveability, Sustainable Development Goals and pandemic have been widely analysed in proving sustainable cities and community living in growing urban areas by 2030. The pandemic has made us all ruminate about how we look into different fast-growing cities which vary in geographical location, climatic zones, terrains, land use and varying cultural backgrounds & traditions belong to the mother soil. India has taken up huge steps to move towards achieving UN-SDGs. Smart city missions have played a vital role in moving towards SDG. Visakhapatnam city is the executive capital in the state of Andhra Pradesh. Located on the Eastern Ghats in South India, it is surrounded by a mountain range on three sides and the Indian Ocean on one side. This unique geographical location and fast urbanization in the last two decades, has put up immense pressure on the natural environment and recourses. It's observed that a lot of investigation to address the existing and proposed land-use, spatial, natural resources, air quality, environmental challenges, and a range of socio-economic, economic challenges were identified during the assessment phase. The citizen concerns with quality and quantity of access to water, sewerage, energy, transportation (public & private) and safety for the public were found out through surveying. Urban infrastructure plays a major part in city building. These cities are occupied by people who come for a better living. This paper aims to provide off-center way of approach to citizens-oriented community habits by addressing SDG 11: Sustainable cities & community by enkindling a characteristic framework of amalgamating 1.eco-design principal, 2. three factors of liveability and 3. a local traditional planning solution. Aiming towards a sustainable development utilized with the focus on the quality of the life and experience of the people who live in urban areas integrating life with soil & water. Building strong social agenda that includes affordable housing for all levels of households, secure and place for good quality public realm for the local people with activity in green corridor, open meeting space & adding recreational places for advantage..

Keywords: livability, eco-design, smart city mission, sustainable

Procedia PDF Downloads 188
1548 A Comparative Asessment of Some Algorithms for Modeling and Forecasting Horizontal Displacement of Ialy Dam, Vietnam

Authors: Kien-Trinh Thi Bui, Cuong Manh Nguyen

Abstract:

In order to simulate and reproduce the operational characteristics of a dam visually, it is necessary to capture the displacement at different measurement points and analyze the observed movement data promptly to forecast the dam safety. The accuracy of forecasts is further improved by applying machine learning methods to data analysis progress. In this study, the horizontal displacement monitoring data of the Ialy hydroelectric dam was applied to machine learning algorithms: Gaussian processes, multi-layer perceptron neural networks, and the M5-rules algorithm for modelling and forecasting of horizontal displacement of the Ialy hydropower dam (Vietnam), respectively, for analysing. The database which used in this research was built by collecting time series of data from 2006 to 2021 and divided into two parts: training dataset and validating dataset. The final results show all three algorithms have high performance for both training and model validation, but the MLPs is the best model. The usability of them are further investigated by comparison with a benchmark models created by multi-linear regression. The result show the performance which obtained from all the GP model, the MLPs model and the M5-Rules model are much better, therefore these three models should be used to analyze and predict the horizontal displacement of the dam.

Keywords: Gaussian processes, horizontal displacement, hydropower dam, Ialy dam, M5-Rules, multi-layer perception neural networks

Procedia PDF Downloads 219
1547 A Minimally Invasive Approach Using Bio-Miniatures Implant System for Full Arch Rehabilitation

Authors: Omid Allan

Abstract:

The advent of ultra-narrow diameter implants initially offered an alternative to wider conventional implants. However, their design limitations have restricted their applicability primarily to overdentures and cement-retained fixed prostheses, often with unpredictable long-term outcomes. The introduction of the new Miniature Implants has revolutionized the field of implant dentistry, leading to a more streamlined approach. The utilization of Miniature Implants has emerged as a promising alternative to the traditional approach that entails the traumatic sequential bone drilling procedures and the use of conventional implants for full and partial arch restorations. The innovative "BioMiniatures Implant System serves as a groundbreaking bridge connecting mini implants with standard implant systems. This system allows practitioners to harness the advantages of ultra-small implants, enabling minimally invasive insertion and facilitating the application of fixed screw-retained prostheses, which were only available to conventional wider implant systems. This approach streamlines full and partial arch rehabilitation with minimal or even no bone drilling, significantly reducing surgical risks and complications for clinicians while minimizing patient morbidity. The ultra-narrow diameter and self-advancing features of these implants eliminate the need for invasive and technically complex procedures such as bone augmentation and guided bone regeneration (GBR), particularly in cases involving thin alveolar ridges. Furthermore, the absence of a microcap between the implant and abutment eliminates the potential for micro-leakage and micro-pumping effects, effectively mitigating the risk of marginal bone loss and future peri-implantitis. The cumulative experience of restoring over 50 full and partial arch edentulous cases with this system has yielded an outstanding success rate exceeding 97%. The long-term success with a stable marginal bone level in the study firmly establishes these implants as a dependable alternative to conventional implants, especially for full arch rehabilitation cases. Full arch rehabilitation with these implants holds the promise of providing a simplified solution for edentulous patients who typically present with atrophic narrow alveolar ridges, eliminating the need for extensive GBR and bone augmentation to restore their dentition with fixed prostheses.

Keywords: mini-implant, biominiatures, miniature implants, minimally invasive dentistry, full arch rehabilitation

Procedia PDF Downloads 79
1546 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network

Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui

Abstract:

Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.

Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN

Procedia PDF Downloads 136
1545 Breaking Sensitivity Barriers: Perovskite Based Gas Sensors With Dimethylacetamide-Dimethyl Sulfoxide Solvent Mixture Strategy

Authors: Endalamaw Ewnu Kassa, Ade Kurniawan, Ya-Fen Wu, Sajal Biring

Abstract:

Perovskite-based gas sensors represent a highly promising materials within the realm of gas sensing technology, with a particular focus on detecting ammonia (NH3) due to its potential hazards. Our work conducted thorough comparison of various solvents, including dimethylformamide (DMF), DMF-dimethyl sulfoxide (DMSO), dimethylacetamide (DMAC), and DMAC-DMSO, for the preparation of our perovskite solution (MAPbI3). Significantly, we achieved an exceptional response at 10 ppm of ammonia gas by employing a binary solvent mixture of DMAC-DMSO. In contrast to prior reports that relied on single solvents for MAPbI3 precursor preparation, our approach using mixed solvents demonstrated a marked improvement in gas sensing performance. We attained enhanced surface coverage, a reduction in pinhole occurrences, and precise control over grain size in our perovskite films through the careful selection and mixtures of appropriate solvents. This study shows a promising potential of employing binary and multi-solvent mixture strategies as a means to propel advancements in gas sensor technology, opening up new opportunities for practical applications in environmental monitoring and industrial safety.

Keywords: sensors, binary solvents, ammonia, sensitivity, grain size, pinholes, surface coverage

Procedia PDF Downloads 111
1544 Comparing Different Frequency Ground Penetrating Radar Antennas for Tunnel Health Assessment

Authors: Can Mungan, Gokhan Kilic

Abstract:

Structural engineers and tunnel owners have good reason to attach importance to the assessment and inspection of tunnels. Regular inspection is necessary to maintain and monitor the health of the structure not only at the present time but throughout its life cycle. Detection of flaws within the structure, such as corrosion and the formation of cracks within the internal elements of the structure, can go a long way to ensuring that the structure maintains its integrity over the course of its life. Other issues that may be detected earlier through regular assessment include tunnel surface delamination and the corrosion of the rebar. One advantage of new technology such as the ground penetrating radar (GPR) is the early detection of imperfections. This study will aim to discuss and present the effectiveness of GPR as a tool for assessing the structural integrity of the heavily used tunnel. GPR is used with various antennae in frequency and application method (2 GHz and 500 MHz GPR antennae). The paper will attempt to produce a greater understanding of structural defects and identify the correct tool for such purposes. Conquest View with 3D scanning capabilities was involved throughout the analysis, reporting, and interpretation of the results. This study will illustrate GPR mapping and its effectiveness in providing information of value when it comes to rebar position (lower and upper reinforcement). It will also show how such techniques can detect structural features that would otherwise remain unseen, as well as moisture ingress.

Keywords: tunnel, GPR, health monitoring, moisture ingress, rebar position

Procedia PDF Downloads 124
1543 Numerical Analysis of Wire Laser Additive Manufacturing for Low Carbon Steels+

Authors: Juan Manuel Martinez Alvarez, Michele Chiumenti

Abstract:

This work explores the benefit of the thermo-metallurgical simulation to tackle the Wire Laser Additive Manufacturing (WLAM) of low-carbon steel components. The Finite Element Analysis is calibrated by process monitoring via thermal imaging and thermocouples measurements, to study the complex thermo-metallurgical behavior inherent to the WLAM process of low carbon steel parts.A critical aspect is the analysis of the heterogeneity in the resulting microstructure. This heterogeneity depends on both the thermal history and the residual stresses experienced during the WLAM process. Because of low carbon grades are highly sensitive to quenching, a high-gradient microstructure often arises due to the layer-by-layer metal deposition in WLAM. The different phases have been identified by scanning electron microscope. A clear influence of the heterogeneities on the final mechanical performance has been established by the subsequent mechanical characterization. The thermo-metallurgical analysis has been used to determine the actual thermal history and the corresponding thermal gradients during the printing process. The correlation between the thermos-mechanical evolution, the printing parameters and scanning sequence has been established. Therefore, an enhanced printing strategy, including optimized process window has been used to minimize the microstructure heterogeneity at ArcelorMittal.

Keywords: additive manufacturing, numerical simulation, metallurgy, steel

Procedia PDF Downloads 76
1542 Numerical Simulation for a Shallow Braced Excavation of Campus Building

Authors: Sao-Jeng Chao, Wen-Cheng Chen, Wei-Humg Lu

Abstract:

In order to prevent encountering unpredictable factors, geotechnical engineers always conduct numerical analysis for braced excavation design. Simulation work in advance can predict the response of subsequent excavation and thus will be designed to increase the security coefficient of construction. The parameters that are considered include geological conditions, soil properties, soil distributions, loading types, and the analysis and design methods. National Ilan University is located on the LanYang plain, mainly deposited by clayey soil and loose sand, and thus is vulnerable to external influence displacement. National Ilan University experienced a construction of braced excavation with a complete program of monitoring excavation. This study takes advantage of a one-dimensional finite element method RIDO to simulate the excavation process. The predicted results from numerical simulation analysis are compared with the monitored results of construction to explore the differences between them. Numerical simulation analysis of the excavation process can be used to analyze retaining structures for the purpose of understanding the relationship between the displacement and supporting system. The resulting deformation and stress distribution from the braced excavation cab then be understand in advance. The problems can be prevented prior to the construction process, and thus acquire all the affected important factors during design and construction.

Keywords: excavation, numerical simulation, RIDO, retaining structure

Procedia PDF Downloads 265
1541 Enhancement of Fracture Toughness for Low-Temperature Applications in Mild Steel Weldments

Authors: Manjinder Singh, Jasvinder Singh

Abstract:

Existing theories of Titanic/Liberty ship, Sydney bridge accidents and practical experience generated an interest in developing weldments those has high toughness under sub-zero temperature conditions. The purpose was to protect the joint from undergoing DBT (Ductile to brittle transition), when ambient temperature reach sub-zero levels. Metallurgical improvement such as low carbonization or addition of deoxidization elements like Mn and Si was effective to prevent fracture in weldments (crack) at low temperature. In the present research, an attempt has been made to investigate the reason behind ductile to brittle transition of mild steel weldments when subjected to sub-zero temperatures and method of its mitigation. Nickel is added to weldments using manual metal arc welding (MMAW) preventing the DBT, but progressive reduction in charpy impact values as temperature is lowered. The variation in toughness with respect to nickel content being added to the weld pool is analyzed quantitatively to evaluate the rise in toughness value with increasing nickel amount. The impact performance of welded specimens was evaluated by Charpy V-notch impact tests at various temperatures (20 °C, 0 °C, -20 °C, -40 °C, -60 °C). Notch is made in the weldments, as notch sensitive failure is particularly likely to occur at zones of high stress concentration caused by a notch. Then the effect of nickel to weldments is investigated at various temperatures was studied by mechanical and metallurgical tests. It was noted that a large gain in impact toughness could be achieved by adding nickel content. The highest yield strength (462J) in combination with good impact toughness (over 220J at – 60 °C) was achieved with an alloying content of 16 wt. %nickel. Based on metallurgical behavior it was concluded that the weld metals solidify as austenite with increase in nickel. The microstructure was characterized using optical and high resolution SEM (scanning electron microscopy). At inter-dendritic regions mainly martensite was found. In dendrite core regions of the low carbon weld metals a mixture of upper bainite, lower bainite and a novel constituent coalesced bainite formed. Coalesced bainite was characterized by large bainitic ferrite grains with cementite precipitates and is believed to form when the bainite and martensite start temperatures are close to each other. Mechanical properties could be rationalized in terms of micro structural constituents as a function of nickel content.

Keywords: MMAW, Toughness, DBT, Notch, SEM, Coalesced bainite

Procedia PDF Downloads 527
1540 Operational Software Maturity: An Aerospace Industry Analysis

Authors: Raúl González Muñoz, Essam Shehab, Martin Weinitzke, Chris Fowler, Paul Baguley

Abstract:

Software applications have become crucial to the aerospace industry, providing a wide range of functionalities and capabilities used during the design, manufacturing and support of aircraft. However, as this criticality increases, so too does the risk for business operations when facing a software failure. Hence, there is a need for new methodologies to be developed to support aerospace companies in effectively managing their software portfolios, avoiding the hazards of business disruption and additional costs. This paper aims to provide a definition of operational software maturity, and how this can be used to assess software operational behaviour, as well as a view on the different aspects that drive software maturity within the aerospace industry. The key research question addressed is, how can operational software maturity monitoring assist the aerospace industry in effectively managing large software portfolios? This question has been addressed by conducting an in depth review of current literature, by working closely with aerospace professionals and by running an industry case study within a major aircraft manufacturer. The results are a software maturity model composed of a set of drivers and a prototype tool used for the testing and validation of the research findings. By utilising these methodologies to assess the operational maturity of software applications in aerospace, benefits in maintenance activities and operations disruption avoidance have been observed, supporting business cases for system improvement.

Keywords: aerospace, software lifecycle, software maintenance, software maturity

Procedia PDF Downloads 328
1539 Bacterial Profiling and Development of Molecular Diagnostic Assays for Detection of Bacterial Pathogens Associated with Bovine mastitis

Authors: Aqeela Ashraf, Muhammad Imran, Tahir Yaqub, Muhammad Tayyab, Yung Fu Chang

Abstract:

For the identification of bovine mastitic pathogen, an economical, rapid and sensitive molecular diagnostic assay is developed by PCR multiplexing of gene and pathogenic species specific DNA sequences. The multiplex PCR assay is developed for detecting nine important bacterial pathogens causing mastitis Worldwide. The bacterial species selected for this study are Streptococcus agalactiae, Streptococcus dysagalactiae, Streptococcus uberis, Staphylococcus aureus, Escherichia coli, Staphylococcus haemolyticus, Staphylococcus chromogenes Mycoplasma bovis and Staphylococcus epidermidis. A single reaction assay was developed and validated by 27 reference strains and further tested on 276 bacterial strains obtained from culturing mastitic milk. The multiplex PCR assay developed here is further evaluated by applying directly on genomic DNA isolated from 200 mastitic milk samples. It is compared with bacterial culturing method and proved to be more sensitive, rapid, economical and can specifically identify 9 bacterial pathogens in a single reaction. It has detected the pathogens in few culture negative mastitic samples. Recognition of disease is the foundation of disease control and prevention. This assay can be very helpful for maintaining the udder health and milk monitoring.

Keywords: multiplex PCR, bacteria, mastitis, milk

Procedia PDF Downloads 336
1538 Digital Twin of Real Electrical Distribution System with Real Time Recursive Load Flow Calculation and State Estimation

Authors: Anosh Arshad Sundhu, Francesco Giordano, Giacomo Della Croce, Maurizio Arnone

Abstract:

Digital Twin (DT) is a technology that generates a virtual representation of a physical system or process, enabling real-time monitoring, analysis, and simulation. DT of an Electrical Distribution System (EDS) can perform online analysis by integrating the static and real-time data in order to show the current grid status and predictions about the future status to the Distribution System Operator (DSO), producers and consumers. DT technology for EDS also offers the opportunity to DSO to test hypothetical scenarios. This paper discusses the development of a DT of an EDS by Smart Grid Controller (SGC) application, which is developed using open-source libraries and languages. The developed application can be integrated with Supervisory Control and Data Acquisition System (SCADA) of any EDS for creating the DT. The paper shows the performance of developed tools inside the application, tested on real EDS for grid observability, Smart Recursive Load Flow (SRLF) calculation and state estimation of loads in MV feeders.

Keywords: digital twin, distributed energy resources, remote terminal units, supervisory control and data acquisition system, smart recursive load flow

Procedia PDF Downloads 115
1537 Acoustic Analysis of Ball Bearings to Identify Localised Race Defect

Authors: M. Solairaju, Nithin J. Thomas, S. Ganesan

Abstract:

Each and every rotating part of a machine element consists of bearings within its structure. In particular, the rolling element bearings such as cylindrical roller bearing and deep groove ball bearings are frequently used. Improper handling, excessive loading, improper lubrication and sealing cause bearing damage. Hence health monitoring of bearings is an important aspect for radiation pattern of bearing vibration is computed using the dipole model. Sound pressure level for defect-free and race defect the prolonged life of machinery and auto motives. This paper presents modeling and analysis of Acoustic response of deep groove ball bearing with localized race defects. Most of the ball bearings, especially in machine tool spindles and high-speed applications are pre-loaded along an axial direction. The present study is carried out with axial preload. Based on the vibration response, the orbit motion of the inner race is studied, and it was found that the oscillation takes place predominantly in the axial direction. Simplified acoustic is estimated. Acoustic response shows a better indication in identifying the defective bearing. The computed sound signal is visualized in diagrammatic representation using Symmetrised Dot Pattern (SDP). SDP gives better visual distinction between the defective and defect-free bearing

Keywords: bearing, dipole, noise, sound

Procedia PDF Downloads 297
1536 Feasibility of Using Musical Intervention to Promote Growth in Preterm Infants in the Neonatal Intensive Care Unit (NICU)

Authors: Yutong An

Abstract:

Premature babies in the Neonatal Intensive Care Unit (NICU) are usually protected in individual incubators to ensure a constant temperature and humidity. Accompanied by 24-hour monitoring by medical equipment, this provides a considerable degree of protection for the growth of preterm babies. However, preterm babies are still continuously exposed to noise at excessively high decibels (>45dB). Such noise has a highly damaging effect on the growth and development of preterm babies. For example, in the short term, it can lead to sleep deprivation, stress reactions, and difficulty calming emotions, while in the long term, it can trigger endocrine disorders, metabolic disorders, and hearing impairment. Fortunately, musical interventions in the NICU have been shown to provide calmness to newborns. This article integrates existing research on three types of music that are beneficial for preterm infants and their respective advantages and disadvantages. This paper aims to present a possibility, based on existing NICU equipment and experimental data related to musical interventions, to reduce the impact of noise on preterm babies in the NICU through a system design approach that incorporates a personalized adjustable music system in the incubator and an overall music enhancement in the open bay of the NICU.

Keywords: music interventions, neonatal intensive care unit (NICU), premature babies, neonatal nursing

Procedia PDF Downloads 68
1535 School Emergency Drills Evaluation through E-PreS Monitoring System

Authors: A. Kourou, A. Ioakeimidou, V. Avramea

Abstract:

Planning for natural disasters and emergencies is something every school or educational institution must consider, regardless of its size or location. Preparedness is the key to save lives if a disaster strikes. School disaster management mirrors individual and family disaster prevention, and wider community disaster prevention efforts. This paper presents the usage of E-PreS System as a helpful, managerial tool during the school earthquake drill, in order to support schools in developing effective disaster and emergency plans specific to their local needs. The project comes up with a holistic methodology using real-time evaluation involving different categories of actors, districts, steps and metrics. The main outcomes of E-PreS project are the development of E-PreS web platform that host the needed data of school emergency planning; the development of E-PreS System; the implementation of disaster drills using E-PreS System in educational premises and local schools; and the evaluation of E-PreS System. Taking into consideration that every disaster drill aims to test and valid school plan and procedures; clarify and train personnel in roles and responsibilities; improve interagency coordination; identify gaps in resources; improve individual performance; and identify opportunities for improvement, E-PreS Project was submitted and approved by the European Commission (EC).

Keywords: disaster drills, earthquake preparedness, E-PreS System, school emergency plans

Procedia PDF Downloads 232
1534 Measuring the Amount of Eroded Soil and Surface Runoff Water in the Field

Authors: Abdulfatah Faraj Aboufayed

Abstract:

Water erosion is the most important problems of the soil in the Jebel Nefusa area located in north west of Libya, therefore erosion station had been established in the Faculty of Veterinary and rainfed agriculture research Station, University of the Jepel Algherbee in Zentan. The length of the station is 72.6 feet, 6 feet width, and the percentage of it's slope is 3%. The station was established to measure the mount of soil eroded and amount of surface water produced during the seasons 95/96 and 96/97 from each rain storms. The Monitoring shows that there was a difference between the two seasons in the number of rainstorms which made differences in the amount of surface runoff water and the amount of soil eroded between the two seasons. Although the slope is low (3%), the soil texture is sandy and the land ploughed twice during each season surface runoff and soil eroded occurred. The average amount of eroded soil was 3792 grams (gr) per season and the average amount of surface runoff water was 410 litter (L) per season. The amount of surface runoff water would be much greater from Jebel Nefusa upland with steep slopes and collecting of them will save a valuable amount of water which lost as a runoff while this area is in desperate of this water. The regression analysis of variance show strong correlation between rainfall depth and the other two depended variable (the amount of surface runoff water and the amount of eroded soil). It shows also strong correlation between amount of surface runoff water and amount of eroded soil.

Keywords: rain, surface runoff water, soil, water erosion, soil erosion

Procedia PDF Downloads 408