Search results for: climate network
4966 Convolution Neural Network Based on Hypnogram of Sleep Stages to Predict Dosages and Types of Hypnotic Drugs for Insomnia
Authors: Chi Wu, Dean Wu, Wen-Te Liu, Cheng-Yu Tsai, Shin-Mei Hsu, Yin-Tzu Lin, Ru-Yin Yang
Abstract:
Background: The results of previous studies compared the benefits and risks of receiving insomnia medication. However, the effects between hypnotic drugs used and enhancement of sleep quality were still unclear. Objective: The aim of this study is to establish a prediction model for hypnotic drugs' dosage used for insomnia subjects and associated the relationship between sleep stage ratio change and drug types. Methodologies: According to American Academy of Sleep Medicine (AASM) guideline, sleep stages were classified and transformed to hypnogram via the polysomnography (PSG) in a hospital in New Taipei City (Taiwan). The subjects with diagnosis for insomnia without receiving hypnotic drugs treatment were be set as the comparison group. Conversely, hypnotic drugs dosage within the past three months was obtained from the clinical registration for each subject. Furthermore, the collecting subjects were divided into two groups for training and testing. After training convolution neuron network (CNN) to predict types of hypnotics used and dosages are taken, the test group was used to evaluate the accuracy of classification. Results: We recruited 76 subjects in this study, who had been done PSG for transforming hypnogram from their sleep stages. The accuracy of dosages obtained from confusion matrix on the test group by CNN is 81.94%, and accuracy of hypnotic drug types used is 74.22%. Moreover, the subjects with high ratio of wake stage were correctly classified as requiring medical treatment. Conclusion: CNN with hypnogram was potentially used for adjusting the dosage of hypnotic drugs and providing subjects to pre-screening the types of hypnotic drugs taken.Keywords: convolution neuron network, hypnotic drugs, insomnia, polysomnography
Procedia PDF Downloads 1954965 A Survey of Field Programmable Gate Array-Based Convolutional Neural Network Accelerators
Authors: Wei Zhang
Abstract:
With the rapid development of deep learning, neural network and deep learning algorithms play a significant role in various practical applications. Due to the high accuracy and good performance, Convolutional Neural Networks (CNNs) especially have become a research hot spot in the past few years. However, the size of the networks becomes increasingly large scale due to the demands of the practical applications, which poses a significant challenge to construct a high-performance implementation of deep learning neural networks. Meanwhile, many of these application scenarios also have strict requirements on the performance and low-power consumption of hardware devices. Therefore, it is particularly critical to choose a moderate computing platform for hardware acceleration of CNNs. This article aimed to survey the recent advance in Field Programmable Gate Array (FPGA)-based acceleration of CNNs. Various designs and implementations of the accelerator based on FPGA under different devices and network models are overviewed, and the versions of Graphic Processing Units (GPUs), Application Specific Integrated Circuits (ASICs) and Digital Signal Processors (DSPs) are compared to present our own critical analysis and comments. Finally, we give a discussion on different perspectives of these acceleration and optimization methods on FPGA platforms to further explore the opportunities and challenges for future research. More helpfully, we give a prospect for future development of the FPGA-based accelerator.Keywords: deep learning, field programmable gate array, FPGA, hardware accelerator, convolutional neural networks, CNN
Procedia PDF Downloads 1284964 Introduction to Multi-Agent Deep Deterministic Policy Gradient
Authors: Xu Jie
Abstract:
As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decisionmaking problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security). By modeling the multi-job collaborative cryptographic service scheduling problem as a multiobjective optimized job flow scheduling problem, and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing, and effectively solves the problem of complex resource scheduling in cryptographic services.Keywords: multi-agent reinforcement learning, non-stationary dynamics, multi-agent systems, cooperative and competitive agents
Procedia PDF Downloads 244963 Multi-Sender MAC Protocol Based on Temporal Reuse in Underwater Acoustic Networks
Authors: Dongwon Lee, Sunmyeng Kim
Abstract:
Underwater acoustic networks (UANs) have become a very active research area in recent years. Compared with wireless networks, UANs are characterized by the limited bandwidth, long propagation delay and high channel dynamic in acoustic modems, which pose challenges to the design of medium access control (MAC) protocol. The characteristics severely affect network performance. In this paper, we study a MS-MAC (Multi-Sender MAC) protocol in order to improve network performance. The proposed protocol exploits temporal reuse by learning the propagation delays to neighboring nodes. A source node locally calculates the transmission schedules of its neighboring nodes and itself based on the propagation delays to avoid collisions. Performance evaluation is conducted using simulation, and confirms that the proposed protocol significantly outperforms the previous protocol in terms of throughput.Keywords: acoustic channel, MAC, temporal reuse, UAN
Procedia PDF Downloads 3504962 A Study of Sources and Control of Environmental Noise Pollution on Selected Areas of Osogbo, Capital of Osun State, Nigeria
Authors: Abdulrazaq Adepoju
Abstract:
Climate change and its negative environmental challenges to humanity has for decades, taken the centre stage globally receiving attention on ways to take care of the menace and keep the damaging effects to manageable and tolerable level. However, noise pollution, another major environmental hazard militating against human habitation particularly in the developing countries of the world, is not receiving enough attention by the concerned authorities at all tiers of governance. A good knowledge of the major sources of environmental noise pollution will go a long way in assisting relevant stakeholders in planning, designing, and management of problems associated with noise pollution. This paper seeks to identify the major sources of noise in the built environment on selected areas of Osogbo, Nigeria. The paper adopted a survey research method of collecting data from surveys carried out on buildings around old Garage-Okefia axis, Old garage-Oja Oba axis, and Okefia-Olaiya junction axis, all within Osogbo metropolis using sound surveying metre. It was discovered that noise from vehicular and pedestrian traffic, commercial activities such as advertising vendors and religious buildings (churches and mosques) constitute major causes of noise in the study area. The paper recommends some measures to the affected stakeholders particularly government agencies on means of reducing noise pollution to a tolerable level in the study areas and places of the same industrial layout.Keywords: built environment, climate change, environmental pollution, noise
Procedia PDF Downloads 3614961 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms
Authors: Selim M. Khan
Abstract:
Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America
Procedia PDF Downloads 964960 Evaluation of Traditional Housing Texture in Context of Sustainability
Authors: Esra Yaldız, Dicle Aydın
Abstract:
Sustainability is a term that provides deciding about the future considering environment and investigates the harmony and balance between protection and usage of the resource. The main objective of sustainability is creating residential areas is nature compatible or providing continuance thereby adapting existing residential area to nature. In this context, historical and traditional areas must have utilized according to sustainability. Traditional housing texture are identified as a traditional architectural product has been designed based on this term. General characteristics of traditional housing within the context of sustainable architecture are their specific dynamics and components and their harmonisation of environment and nature. Owing to the fact that traditional housing texture harmonizes natural conditions of the region, topography, climate and their context, construction materials are provided from environment and traditional techniques and their forms are used and due to construction materials has natural insulation traditional housing create healthy and comfortable living environment, traditional housing is rather significant in terms of sustainable architecture. The basis of this study comprise the routers in traditional housing design in accordance with the principles of sustainability. These are, accommodating topography, climate, and geography, accessibility, structuring at the scale of human, utilization of green zones, unique to the region used construction materials, the form of construction, building envelope and space organization of dwelling. In this context, the purpose of this study is that vernacular architecture approaches of traditional housing textures which are in Central Anatolia Region Located in Anatolia are utilized with regard to sustainability.Keywords: Anatolia, sustainability, traditional housing texture, vernacular architecture
Procedia PDF Downloads 4534959 PM Air Quality of Windsor Regional Scale Transport’s Impact and Climate Change
Authors: Moustafa Osman Mohammed
Abstract:
This paper is mapping air quality model to engineering the industrial system that ultimately utilized in extensive range of energy systems, distribution resources, and end-user technologies. The model is determining long-range transport patterns contribution as area source can either traced from 48 hrs backward trajectory model or remotely described from background measurements data in those days. The trajectory model will be run within stable conditions and quite constant parameters of the atmospheric pressure at the most time of the year. Air parcel trajectory is necessary for estimating the long-range transport of pollutants and other chemical species. It provides a better understanding of airflow patterns. Since a large amount of meteorological data and a great number of calculations are required to drive trajectory, it will be very useful to apply HYPSLIT model to locate areas and boundaries influence air quality at regional location of Windsor. 2–days backward trajectories model at high and low concentration measurements below and upward the benchmark which was areas influence air quality measurement levels. The benchmark level will be considered as 30 (μg/m3) as the moderate level for Ontario region. Thereby, air quality model is incorporating a midpoint concept between biotic and abiotic components to broaden the scope of quantification impact. The later outcomes’ theories of environmental obligation suggest either a recommendation or a decision of what is a legislative should be achieved in mitigation measures of air emission impact ultimately.Keywords: air quality, management systems, environmental impact assessment, industrial ecology, climate change
Procedia PDF Downloads 2474958 Impact of Urbanization on Natural Drainage Pattern in District of Larkana, Sindh Pakistan
Authors: Sumaira Zafar, Arjumand Zaidi
Abstract:
During past few years, several floods have adversely affected the areas along lower Indus River. Besides other climate related anomalies, rapidly increasing urbanization and blockage of natural drains due to siltation or encroachments are two other critical causes that may be responsible for these disasters. Due to flat topography of river Indus plains and blockage of natural waterways, drainage of storm water takes time adversely affecting the crop health and soil properties of the area. Government of Sindh is taking a keen interest in revival of natural drainage network in the province and has initiated this work under Sindh Irrigation and Drainage Authority. In this paper, geospatial techniques are used to analyze landuse/land-cover changes of Larkana district over the past three decades (1980-present) and their impact on natural drainage system. Satellite derived Digital Elevation Model (DEM) and topographic sheets (recent and 1950) are used to delineate natural drainage pattern of the district. The urban landuse map developed in this study is further overlaid on drainage line layer to identify the critical areas where the natural floodwater flows are being inhibited by urbanization. Rainfall and flow data are utilized to identify areas of heavy flow, whereas, satellite data including Landsat 7 and Google Earth are used to map previous floods extent and landuse/cover of the study area. Alternatives to natural drainage systems are also suggested wherever possible. The output maps of natural drainage pattern can be used to develop a decision support system for urban planners, Sindh development authorities and flood mitigation and management agencies.Keywords: geospatial techniques, satellite data, natural drainage, flood, urbanization
Procedia PDF Downloads 5084957 Gradient-Based Reliability Optimization of Integrated Energy Systems Under Extreme Weather Conditions: A Case Study in Ningbo, China
Abstract:
Recent extreme weather events, such as the 2021 European floods and North American heatwaves, have exposed the vulnerability of energy systems to both extreme demand scenarios and potential physical damage. Current integrated energy system designs often overlook performance under these challenging conditions. This research, focusing on a regional integrated energy system in Ningbo, China, proposes a distinct design method to optimize system reliability during extreme events. A multi-scenario model was developed, encompassing various extreme load conditions and potential system damages caused by severe weather. Based on this model, a comprehensive reliability improvement scheme was designed, incorporating a gradient approach to address different levels of disaster severity through the integration of advanced technologies like distributed energy storage. The scheme's effectiveness was validated through Monte Carlo simulations. Results demonstrate significant enhancements in energy supply reliability and peak load reduction capability under extreme scenarios. The findings provide several insights for improving energy system adaptability in the face of climate-induced challenges, offering valuable references for building reliable energy infrastructure capable of withstanding both extreme demands and physical threats across a spectrum of disaster intensities.Keywords: extreme weather events, integrated energy systems, reliability improvement, climate change adaptation
Procedia PDF Downloads 254956 Impact of Transportation on the Economic Growth of Nigeria
Authors: E. O. E. Nnadi
Abstract:
Transportation is a critical factor in the economic growth and development of any nation, region or state. Good transportation network supports every sector of the economy like the manufacturing, transportation and encourages investors thereby affect the overall economic prosperity. The paper evaluates the impact of transportation on the economic growth of Nigeria using south eastern states as a case study. The choice of the case study is its importance as the commercial and industrial nerve of the country. About 200 respondents who are of different professions such as dealers in goods, transporters, contractors, consultants, bankers were selected and a set of questionnaire were administered to using the systematic sampling technique in the five states of the region. Descriptive statistics and relative importance index (RII) technique was employed for the analysis of the data gathered. The findings of the analysis reveal that Nigeria has the least effective ratio per population in Africa of 949.91 km/Person. Conclusion was drawn to improve road network in the area and the country as a whole to enhance the economic activities of the people.Keywords: economic growth, south-east, transportation, transportation cost, Nigeria
Procedia PDF Downloads 2734955 Coal Mining Safety Monitoring Using Wsn
Authors: Somdatta Saha
Abstract:
The main purpose was to provide an implementable design scenario for underground coal mines using wireless sensor networks (WSNs). The main reason being that given the intricacies in the physical structure of a coal mine, only low power WSN nodes can produce accurate surveillance and accident detection data. The work mainly concentrated on designing and simulating various alternate scenarios for a typical mine and comparing them based on the obtained results to arrive at a final design. In the Era of embedded technology, the Zigbee protocols are used in more and more applications. Because of the rapid development of sensors, microcontrollers, and network technology, a reliable technological condition has been provided for our automatic real-time monitoring of coal mine. The underground system collects temperature, humidity and methane values of coal mine through sensor nodes in the mine; it also collects the number of personnel inside the mine with the help of an IR sensor, and then transmits the data to information processing terminal based on ARM.Keywords: ARM, embedded board, wireless sensor network (Zigbee)
Procedia PDF Downloads 3404954 A Study of Adult Lifelong Learning Consulting and Service System in Taiwan
Authors: Wan Jen Chang
Abstract:
Back ground: Taiwan's current adult lifelong learning services have expanded from vocational training to universal lifelong learning. However, both the professional knowledge training of learning guidance and consulting services and the provision of adult online learning consulting service systems still need to be established. Purpose: The purposes of this study are as follows: 1. Analyze the professional training mechanism for cultivating adult lifelong learning consultation and coaching; 2. Explore the feasibility of constructing a system that uses network technology to provide adult learning consultation services. Research design: This study conducts a literature analysis of counseling and coaching policy reports on lifelong learning in European countries and the United States. There are two focus discussions were conducted with 15 lifelong learning scholars, experts and practitioners as research subjects. The following two topics were discussed and suggested: 1. The current situation, needs and professional ability training mechanism of "Adult Lifelong Learning Consulting and Services"; 2. Strategies for establishing an "Adult Lifelong Learning Consulting and Service internet System". Conclusion: 1.Based on adult lifelong learning consulting and service needs, plan a professional knowledge training and certification system.2.Adult lifelong learning consulting and service professional knowledge and skills training should include the use of network technology to provide consulting service skills.3.To establish an adult lifelong learning consultation and service system, the Ministry of Education should promulgate policies and measures at the central level and entrust local governments or private organizations to implement them.4.The adult lifelong learning consulting and service system can combine the national qualifications framework, private sector and NPO to expand learning consulting service partners.Keywords: adult lifelong learning, profesional knowledge, consulting and service, network system
Procedia PDF Downloads 674953 Presenting a Job Scheduling Algorithm Based on Learning Automata in Computational Grid
Authors: Roshanak Khodabakhsh Jolfaei, Javad Akbari Torkestani
Abstract:
As a cooperative environment for problem-solving, it is necessary that grids develop efficient job scheduling patterns with regard to their goals, domains and structure. Since the Grid environments facilitate distributed calculations, job scheduling appears in the form of a critical problem for the management of Grid sources that influences severely on the efficiency for the whole Grid environment. Due to the existence of some specifications such as sources dynamicity and conditions of the network in Grid, some algorithm should be presented to be adjustable and scalable with increasing the network growth. For this purpose, in this paper a job scheduling algorithm has been presented on the basis of learning automata in computational Grid which the performance of its results were compared with FPSO algorithm (Fuzzy Particle Swarm Optimization algorithm) and GJS algorithm (Grid Job Scheduling algorithm). The obtained numerical results indicated the superiority of suggested algorithm in comparison with FPSO and GJS. In addition, the obtained results classified FPSO and GJS in the second and third position respectively after the mentioned algorithm.Keywords: computational grid, job scheduling, learning automata, dynamic scheduling
Procedia PDF Downloads 3434952 Innovative Approaches to Water Resources Management: Addressing Challenges through Machine Learning and Remote Sensing
Authors: Abdelrahman Elsehsah, Abdelazim Negm, Eid Ashour, Mohamed Elsahabi
Abstract:
Water resources management is a critical field that encompasses the planning, development, conservation, and allocation of water resources to meet societal needs while ensuring environmental sustainability. This paper reviews the key concepts and challenges in water resources management, emphasizing the significance of a holistic approach that integrates social, economic, and environmental factors. Traditional water management practices, characterized by supply-oriented strategies and centralized control, are increasingly inadequate in addressing contemporary challenges such as water scarcity, climate change impacts, and ecosystem degradation. Emerging technologies, particularly machine learning and remote sensing, offer innovative solutions to enhance decision-making processes in water management. Machine learning algorithms facilitate accurate water demand forecasting, quality monitoring, and leak detection, while remote sensing technologies provide vital data for assessing water availability and quality. This review highlights the need for integrated water management strategies that leverage these technologies to promote sustainable practices and foster resilience in water systems. Future research should focus on improving data quality, accessibility, and the integration of diverse datasets to optimize the benefits of these technological advancements.Keywords: water resources management, water scarcity, climate change, machine learning, remote sensing, water quality, water governance, sustainable practices, ecosystem management
Procedia PDF Downloads 84951 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor
Authors: Hidir S. Nogay
Abstract:
In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.Keywords: cascaded neural network, internal temperature, inverter, three-phase induction motor
Procedia PDF Downloads 3454950 Genome-Wide Expression Profiling of Cicer arietinum Heavy Metal Toxicity
Authors: B. S. Yadav, A. Mani, S. Srivastava
Abstract:
Chickpea (Cicer arietinum L.) is an annual, self-pollinating, diploid (2n = 2x = 16) pulse crop that ranks second in world legume production after common bean (Phaseolus vulgaris). ICC 4958 flowers approximately 39 days after sowing under peninsular Indian conditions and the crop matures in less than 90 days in rained environments. The estimated collective yield losses due to abiotic stresses (6.4 million t) have been significantly higher than for biotic stresses (4.8 million t). Most legumes are known to be salt sensitive, and therefore, it is becoming increasingly important to produce cultivars tolerant to high-salinity in addition to other abiotic and biotic stresses for sustainable chickpea production. Our aim was to identify the genes that are involved in the defence mechanism against heavy metal toxicity in chickpea and establish the biological network of heavy metal toxicity in chickpea. ICC4958 variety of chick pea was taken and grown in normal condition and 150µM concentration of different heavy metal salt like CdCl₂, K₂Cr2O₇, NaAsO₂. At 15th day leave samples were collected and stored in RNA Later solution microarray was performed for checking out differential gene expression pattern. Our studies revealed that 111 common genes that involved in defense mechanism were up regulated and 41 genes were commonly down regulated during treatment of 150µM concentration of CdCl₂, K₂Cr₂O₇, and NaAsO₂. Biological network study shows that the genes which are differentially expressed are highly connected and having high betweenness and centrality.Keywords: abiotic stress, biological network, chickpea, microarray
Procedia PDF Downloads 1974949 Establishing Community-Based Pro-Biodiversity Enterprise in the Philippines: A Climate Change Adaptation Strategy towards Agro-Biodiversity Conservation and Local Green Economic Development
Authors: Dina Magnaye
Abstract:
In the Philippines, the performance of the agricultural sector is gauged through crop productivity and returns from farm production rather than the biodiversity in the agricultural ecosystem. Agricultural development hinges on the overall goal of increasing productivity through intensive agriculture, monoculture system, utilization of high yielding varieties in plants, and genetic upgrading in animals. This merits an analysis of the role of agro-biodiversity in terms of increasing productivity, food security and economic returns from community-based pro-biodiversity enterprises. These enterprises conserve biodiversity while equitably sharing production income in the utilization of biological resources. The study aims to determine how community-based pro-biodiversity enterprises become instrumental in local climate change adaptation and agro-biodiversity conservation as input to local green economic development planning. It also involves an assessment of the role of agrobiodiversity in terms of increasing productivity, food security and economic returns from community-based pro-biodiversity enterprises. The perceptions of the local community members both in urban and upland rural areas on community-based pro-biodiversity enterprises were evaluated. These served as a basis in developing a planning modality that can be mainstreamed in the management of local green economic enterprises to benefit the environment, provide local income opportunities, conserve species diversity, and sustain environment-friendly farming systems and practices. The interviews conducted with organic farmer-owners, entrepreneur-organic farmers, and organic farm workers revealed that pro-biodiversity enterprise such as organic farming involved the cyclic use of natural resources within the carrying capacity of a farm; recognition of the value of tradition and culture especially in the upland rural area; enhancement of socio-economic capacity; conservation of ecosystems in harmony with nature; and climate change mitigation. The suggested planning modality for community-based pro-biodiversity enterprises for a green economy encompasses four (4) phases to include community resource or capital asset profiling; stakeholder vision development; strategy formulation for sustained enterprises; and monitoring and evaluation.Keywords: agro-biodiversity, agro-biodiversity conservation, local green economy, organic farming, pro-biodiversity enterprise
Procedia PDF Downloads 3624948 An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks
Authors: Danilo López, Edwin Rivas, Leyla López
Abstract:
This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made.Keywords: cognitive radio, base station, best effort, MLPNN, prediction, real time
Procedia PDF Downloads 3314947 Geothermal Resources to Ensure Energy Security During Climate Change
Authors: Debasmita Misra, Arthur Nash
Abstract:
Energy security and sufficiency enables the economic development and welfare of a nation or a society. Currently, the global energy system is dominated by fossil fuels, which is a non-renewable energy resource, which renders vulnerability to energy security. Hence, many nations have begun augmenting their energy system with renewable energy resources, such as solar, wind, biomass and hydro. However, with climate change, how sustainable are some of the renewable energy resources in the future is a matter of concern. Geothermal energy resources have been underexplored or underexploited in global renewable energy production and security, although it is gaining attractiveness as a renewable energy resource. The question is, whether geothermal energy resources are more sustainable than other renewable energy resources. High-temperature reservoirs (> 220 °F) can produce electricity from flash/dry steam plants as well as binary cycle production facilities. Most of the world’s high enthalpy geothermal resources are within the seismo-tectonic belt. However, exploration for geothermal energy is of great importance in conventional geothermal systems in order to improve its economic viability. In recent years, there has been an increase in the use and development of several exploration methods for geo-thermal resources, such as seismic or electromagnetic methods. The thermal infrared band of the Landsat can reflect land surface temperature difference, so the ETM+ data with specific grey stretch enhancement has been used to explore underground heat water. Another way of exploring for potential power is utilizing fairway play analysis for sites without surface expression and in rift zones. Utilizing this type of analysis can improve the success rate of project development by reducing exploration costs. Identifying the basin distribution of geologic factors that control the geothermal environment would help in identifying the control of resource concentration aside from the heat flow, thus improving the probability of success. The first step is compiling existing geophysical data. This leads to constructing conceptual models of potential geothermal concentrations which can then be utilized in creating a geodatabase to analyze risk maps. Geospatial analysis and other GIS tools can be used in such efforts to produce spatial distribution maps. The goal of this paper is to discuss how climate change may impact renewable energy resources and how could a synthesized analysis be developed for geothermal resources to ensure sustainable and cost effective exploitation of the resource.Keywords: exploration, geothermal, renewable energy, sustainable
Procedia PDF Downloads 1544946 Effectiveness Assessment of a Brazilian Larvicide on Aedes Control
Authors: Josiane N. Muller, Allan K. R. Galardo, Tatiane A. Barbosa, Evan P. Ferro, Wellington M. Dos Santos, Ana Paula S. A. Correa, Edinaldo C. Rego, Jose B. P. Lima
Abstract:
The susceptibility status of an insect population to any larvicide depends on several factors such includes genetic constitution, environmental conditions and others. The mosquito Aedes aegypti is the primary vector of three important viral diseases, Zika, Dengue, and Chikungunya. The frequent outbreaks of those diseases in different parts of Brazil demonstrate the importance of testing the susceptibility of vectors in different environments. Since the control of this mosquito leads to the control of disease, alternatives for vector control that value the different Brazilian environmental conditions are needed for effective actions. The aim of this study was to evaluate a new commercial formulation of Bacillus thuringiensis israelenses (DengueTech: Brazilian innovative technology) in the Brazilian Legal Amazon considering the climate conditions. Semi-field tests were conducted in the Institute of Scientific and Technological Research of the State of Amapa in two different environments, one in a shaded area and the other exposed to sunlight. The mosquito larvae were exposed to larvicide concentration and a control; each group was tested in three containers of 40 liters each. To assess persistence 50 third instar larvae of Aedes aegypti laboratory lineages (Rockefeller) and 50 larvae of Aedes aegypti collected in the municipality of Macapa, Brazil’s Amapa state, were added weekly and after 24 hours the mortality was assessed. In total 16 tests were performed, where 12 were done with replacement of water (1/5 of the volume, three times per week). The effectiveness of the product was determined through mortality of ≥ 80%, as recommend by the World Health Organization. The results demonstrated that high-water temperatures (26-35 °C) on the containers influenced the residual time of the product, where the maximum effect achieved was 21 days in the shaded area; and no effectiveness of 60 days was found in any of the tests, as expected according to the larvicide company. The test with and without water replacement did not present significant differences in the mortality rate. Considering the different environments and climate, these results stimulate the need to test larvicide and its effectiveness in specific environmental settings in order to identify the parameters required for better results. Thus, we see the importance of semi-field researches considering the local climate conditions for a successful control of Aedes aegypti.Keywords: Aedes aegypti, bioassay, larvicida, vector control
Procedia PDF Downloads 1294945 Attention-based Adaptive Convolution with Progressive Learning in Speech Enhancement
Authors: Tian Lan, Yixiang Wang, Wenxin Tai, Yilan Lyu, Zufeng Wu
Abstract:
The monaural speech enhancement task in the time-frequencydomain has a myriad of approaches, with the stacked con-volutional neural network (CNN) demonstrating superiorability in feature extraction and selection. However, usingstacked single convolutions method limits feature represen-tation capability and generalization ability. In order to solvethe aforementioned problem, we propose an attention-basedadaptive convolutional network that integrates the multi-scale convolutional operations into a operation-specific blockvia input dependent attention to adapt to complex auditoryscenes. In addition, we introduce a two-stage progressivelearning method to enlarge the receptive field without a dra-matic increase in computation burden. We conduct a series ofexperiments based on the TIMIT corpus, and the experimen-tal results prove that our proposed model is better than thestate-of-art models on all metrics.Keywords: speech enhancement, adaptive convolu-tion, progressive learning, time-frequency domain
Procedia PDF Downloads 1234944 Estimation of Endogenous Brain Noise from Brain Response to Flickering Visual Stimulation Magnetoencephalography Visual Perception Speed
Authors: Alexander N. Pisarchik, Parth Chholak
Abstract:
Intrinsic brain noise was estimated via magneto-encephalograms (MEG) recorded during perception of flickering visual stimuli with frequencies of 6.67 and 8.57 Hz. First, we measured the mean phase difference between the flicker signal and steady-state event-related field (SSERF) in the occipital area where the brain response at the flicker frequencies and their harmonics appeared in the power spectrum. Then, we calculated the probability distribution of the phase fluctuations in the regions of frequency locking and computed its kurtosis. Since kurtosis is a measure of the distribution’s sharpness, we suppose that inverse kurtosis is related to intrinsic brain noise. In our experiments, the kurtosis value varied among subjects from K = 3 to K = 5 for 6.67 Hz and from 2.6 to 4 for 8.57 Hz. The majority of subjects demonstrated leptokurtic kurtosis (K < 3), i.e., the distribution tails approached zero more slowly than Gaussian. In addition, we found a strong correlation between kurtosis and brain complexity measured as the correlation dimension, so that the MEGs of subjects with higher kurtosis exhibited lower complexity. The obtained results are discussed in the framework of nonlinear dynamics and complex network theories. Specifically, in a network of coupled oscillators, phase synchronization is mainly determined by two antagonistic factors, noise, and the coupling strength. While noise worsens phase synchronization, the coupling improves it. If we assume that each neuron and each synapse contribute to brain noise, the larger neuronal network should have stronger noise, and therefore phase synchronization should be worse, that results in smaller kurtosis. The described method for brain noise estimation can be useful for diagnostics of some brain pathologies associated with abnormal brain noise.Keywords: brain, flickering, magnetoencephalography, MEG, visual perception, perception time
Procedia PDF Downloads 1484943 The Friendship Network Stability of Preschool Children during One Pedagogical Season
Authors: Yili Wang, Jarmo Kinos, Tuire Palonen, Tarja-Riitta Hurme
Abstract:
This longitudinal study aims to examine how five- and six-year-old children’s peer relationships are formed and fostered during one preschool year in a southwestern Finnish preschool. All 16 kindergarteners participated in the study (at dyad level N=240; i.e., 16 x 15 relationships among the children). The children were divided into four daily groups, based on the table order during the daily routines, and four intervention groups, based on the teachers’ pedagogical plan. During the intervention, one iPad was given to each group in order to stimulate interaction among peers and, thus, enable the children to form new peer relationships. In the data gathering, sociometric nomination techniques were used to investigate the nature (i.e., stability and mutuality) of the peer relationships. The data was collected five times during the year to see what kind of peer relationship changes occurred at the dyad level and the group level, i.e., in establishing and losing friendship ties among the children. Social network analyses were used to analyze the data. The results indicate that the children’s preference for gender segregation was strong compared to age preference and intervention. In all, the number of reciprocal friendship ties and the mutual absence of friendship ties increased towards the end of the year, whereas the number of unilateral friendship ties decreased. This indicates that children’s nominations narrow down; thus, the group structure becomes more crystalized. Instead of extending their friendship networks, children seek stable and mutual relationships with their peers in their middle childhood years. The intervention only had a slightly negative influence on children’s peer relationships.Keywords: intervention study, peer relationship, preschool education, social network analysis, sociometric ratings
Procedia PDF Downloads 2734942 The Interaction of Climate Change and Human Health in Italy
Authors: Vito Telesca, Giuseppina A. Giorgio, M. Ragosta
Abstract:
The effects of extreme heat events are increasing in recent years. Humans are forced to adjust themselves to adverse climatic conditions. The impact of weather on human health has become public health significance, especially in light of climate change and rising frequency of devasting weather events (e.g., heat waves and floods). The interest of scientific community is widely known. In particular, the associations between temperature and mortality are well studied. Weather conditions are natural factors that affect the human organism. Recent works show that the temperature threshold at which an impact is seen varies by geographic area and season. These results suggest heat warning criteria should consider local thresholds to account for acclimation to local climatology as well as the seasonal timing of a forecasted heat wave. Therefore, it is very important the problem called ‘local warming’. This is preventable with adequate warning tools and effective emergency planning. Since climate change has the potential to increase the frequency of these types of events, improved heat warning systems are urgently needed. This would require a better knowledge of the full impact of extreme heat on morbidity and mortality. The majority of researchers who analyze the associations between human health and weather variables, investigate the effect of air temperature and bioclimatic indices. These indices combine air temperature, relative humidity, and wind speed and are very important to determine the human thermal comfort. Health impact studies of weather events showed that the prevention is an essential element to dramatically reduce the impact of heat waves. The summer Italian of 2012 was characterized with high average temperatures (con un +2.3°C in reference to the period 1971-2000), enough to be considered as the second hottest summer since 1800. Italy was the first among countries in Europe which adopted tools for to predict these phenomena with 72 hours in advance (Heat Health Watch Warning System - HHWWS). Furthermore, in Italy heat alert criteria relies on the different Indexes, for example Apparent temperature, Scharlau index, Thermohygrometric Index, etc. This study examines the importance of developing public health policies that protect the most vulnerable people (such as the elderly) to extreme temperatures, highlighting the factors that confer susceptibility.Keywords: heat waves, Italy, local warming, temperature
Procedia PDF Downloads 2434941 Generalized Rough Sets Applied to Graphs Related to Urban Problems
Authors: Mihai Rebenciuc, Simona Mihaela Bibic
Abstract:
Branch of modern mathematics, graphs represent instruments for optimization and solving practical applications in various fields such as economic networks, engineering, network optimization, the geometry of social action, generally, complex systems including contemporary urban problems (path or transport efficiencies, biourbanism, & c.). In this paper is studied the interconnection of some urban network, which can lead to a simulation problem of a digraph through another digraph. The simulation is made univoc or more general multivoc. The concepts of fragment and atom are very useful in the study of connectivity in the digraph that is simulation - including an alternative evaluation of k- connectivity. Rough set approach in (bi)digraph which is proposed in premier in this paper contribute to improved significantly the evaluation of k-connectivity. This rough set approach is based on generalized rough sets - basic facts are presented in this paper.Keywords: (bi)digraphs, rough set theory, systems of interacting agents, complex systems
Procedia PDF Downloads 2434940 Fake Accounts Detection in Twitter Based on Minimum Weighted Feature Set
Authors: Ahmed ElAzab, Amira M. Idrees, Mahmoud A. Mahmoud, Hesham Hefny
Abstract:
Social networking sites such as Twitter and Facebook attracts over 500 million users across the world, for those users, their social life, even their practical life, has become interrelated. Their interaction with social networking has affected their life forever. Accordingly, social networking sites have become among the main channels that are responsible for vast dissemination of different kinds of information during real time events. This popularity in Social networking has led to different problems including the possibility of exposing incorrect information to their users through fake accounts which results to the spread of malicious content during life events. This situation can result to a huge damage in the real world to the society in general including citizens, business entities, and others. In this paper, we present a classification method for detecting fake accounts on Twitter. The study determines the minimized set of the main factors that influence the detection of the fake accounts on Twitter, then the determined factors have been applied using different classification techniques, a comparison of the results for these techniques has been performed and the most accurate algorithm is selected according to the accuracy of the results. The study has been compared with different recent research in the same area, this comparison has proved the accuracy of the proposed study. We claim that this study can be continuously applied on Twitter social network to automatically detect the fake accounts, moreover, the study can be applied on different Social network sites such as Facebook with minor changes according to the nature of the social network which are discussed in this paper.Keywords: fake accounts detection, classification algorithms, twitter accounts analysis, features based techniques
Procedia PDF Downloads 4174939 Biomimetic Architecture from the Inspiration by Nature to the Innovation of the Saharan Architecture
Authors: Yassine Mohammed Benyoucef, Razin Andery Dionisovich
Abstract:
Biomimicry is an old approach, but in the scientific conceptualization is new, as an approach of innovation based on the emulation of Nature, in recent years, this approach brings many potential theories and innovations in the architecture field. Indeed, these innovations have changed our view towards other Natural organisms also to the design processes in architecture, now the use of the biomimicry approach allows the application of a great sustainable development. The Sahara area is heading towards a sustainable policy with the desire to develop this rich context in terms of architecture, because of the rapid evolution of the architectural and urban concepts and the technology acceleration in one side, and under the pressure of the architectural crisis and the accelerated urbanization in the Saharan cities on the other side, the imperatives of sustainable development, ecology, climate adaptation, energy needs, are strongly imposed. Besides that, the new architectural and urban projects in the Saharan cities are not reliable in terms of energy efficiency and design and relationship with the environment. This article discusses the using of biomimetic strategy in the sustainable development of Saharan architecture. The aim of the article is to present a synthesis of biomimicry approach and propose the biomimicry as a solution for the development of Saharan architecture which can use this approach as a sustainable and innovation strategy. The biomimicry is the solution for effective strategies of development and can have a great potential point to meet the current challenges of designing efficient for forms or structures, energy efficiency, and climate issues. Moreover, the Sahara can be a favorable soil for great changes, the use of this approach is the key for the most optimal strategies and sustainable development of the Saharan architecture.Keywords: biomimicry, Sahara, architecture, nature, innovation, technology
Procedia PDF Downloads 1944938 Addressing Coastal Community Vulnerabilities with Alternative Marine Energy Projects
Authors: Danielle Preziuso, Kamila Kazimierczuk, Annalise Stein, Bethel Tarekegne
Abstract:
Coastal communities experience a variety of distinct socioeconomic, technical, and environmental vulnerabilities, all of which accrue heightened risk with increasingly frequent and severe climate change impacts. Marine renewable energy (MRE) offers a potential solution for mitigating coastal community vulnerabilities, especially water-energy dependencies while delivering promising co-benefits such as increased resilience and more sustainable energy outcomes. This paper explores coastal community vulnerabilities and service dependencies based on the local drivers that create them, with attention to climate change impacts and how they catalyze water-energy unmet needs in these communities. We examine the vulnerabilities through the lens of coastal Tribal communities (i.e., the Makah Tribe, the Kenaitze Tribe, Quinault Nation), as indigenous communities often face compounded impacts of technical, economic, and environmental vulnerabilities due to their underlying socio-demographic inequalities. We offer an environmental and energy justice indicators framework to understand how these vulnerabilities disproportionately manifest and impact the most vulnerable community members, and we subsequently utilize the framework to inform a weighted decision matrix tool that compares the viability of MRE-based alternative energy futures in addressing these vulnerabilities. The framework and complementary tool highlight opportunities for future MRE research and pilot demonstrations that directly respond to the vulnerabilities of coastal communities.Keywords: coastal communities, decision matrix, energy equity, energy vulnerability, marine energy, service dependency
Procedia PDF Downloads 784937 Lacustrine Sediments of the Poljanska Locality in the Miocene Climatic Optimum North Croatian Basin, Croatia
Authors: Marijan KovačIć, Davor Pavelić, Darko Tibljaš, Ivo Galić, Frane Marković, Ivica PavičIć
Abstract:
The North Croatian Basin (NCB) occupies the southwestern part of the Pannonian Basin System and belongs to the Central Paratethys realm. In a quarry near the village of Poljanska, on the southern slopes of Mt. Papuk in eastern Croatia, a 40-meter-thick section is exposed, consisting of well-bedded, mixed, carbonate-siliciclastic deposits with occurrences of pyroclastics. Sedimentological investigation indicates that a salina lake developed in the central NCB during the late early Miocene. Field studies and mineralogical and petrological analyses indicate that alternations of laminated crypto- characterize the lower part of the section to microcrystalline dolomite and analcimolite (sedimentary rocks composed essentially of authigenic analcime) associated with tuffites and marls. The pyroclastic material is a product of volcanic activity at the end of the early Miocene, while the formation of analcime, the zeolite group mineral, is a result of an alteration of pyroclastic material in an alkaline lacustrine environment. These sediments were deposited in a shallow, hydrologically closed lake that was controlled by an arid climate during the first phase of its development. The middle part of the section consists of dolomites interbedded with analcimolites and sandstones. The sandstone beds are a result of the increased supply of clastic material derived from the locally uplifted metamorphic and granitoid basement. The emplacement of sandstones and dolomites reflects a distinct alternation of hydrologically open and closed lacustrine environments controlled by the frequent alternation of humid and arid climates, representing the second phase of lake development. The siliciclastics of the third phase of lake development were deposited during the Middle Miocene in a hydrologically mostly open lake. All lacustrine deposition coincides with the Miocene Climatic Optimum, which was characterized by a hot and warm climate. The sedimentological data confirm the mostly wet conditions previously identified by paleobotanical studies in the region. The exception is the relatively long interval of arid climate in the late early Miocene that controlled the first phase of lake evolution, i.e., the salina-type lake.Keywords: early Miocene, Pannonian basin System, pyroclastics, salina-type lake
Procedia PDF Downloads 214