Search results for: reentrant phase transition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5944

Search results for: reentrant phase transition

5734 Kiira EV Project Transition from Student to Professional Team through Project-Based Skills Development

Authors: Doreen Orishaba, Paul Isaac Musasizi, Richard Madanda, Sandy Stevens Tickodri-Togboa

Abstract:

The world of academia tends to be a very insular place. Consequently, scholars who successfully completed their undergraduate and graduate studies are unpleasantly surprised at how challenging the transition to corporate life can get. This is a global trend even as the students who juggle work with attending some of the most demanding and best graduate programs may not easily adjust to and confirm to the professionalism required for corporate management of the industry. This paper explores the trends in the transition of Kiira EV Project from a predominantly student team to a professional team of a national pride program through mentorship and apprenticeship. The core disciplines within the Kiira EV Project include Electrical and Electronics Engineering, Mechanical Engineering, and Industrial Design.

Keywords: mentorship, apprenticeship, professional, development

Procedia PDF Downloads 423
5733 Microscopic and Mesoscopic Deformation Behaviors of Mg-2Gd Alloy with or without Li Addition

Authors: Jing Li, Li Jin, Fulin Wang, Jie Dong, Wenjiang Ding

Abstract:

Mg-Li dual-phase alloy exhibits better combination of yield strength and elongation than the Mg single-phase alloy. To exploit its deformation behavior, the deformation mechanisms of Mg-2Gd alloy with or without Li addition, i.e., Mg-6Li-2Gd and Mg-2Gd alloy, have been studied at both microscale and mesoscale. EBSD-assisted slip trace, twin trace, and texture evolution analysis show that the α-Mg phase of Mg-6Li-2Gd alloy exhibits different microscopic deformation mechanisms with the Mg-2Gd alloy, i.e., mainly prismatic slip in the former one, while basal slip, prismatic slip and extension twin in the latter one. Further Schmid factor analysis results attribute this different intra-phase deformation mechanisms to the higher critical resolved shear stress (CRSS) value of extension twin and lower ratio of CRSSprismatic /CRSSbasal in the α-Mg phase of Mg-6Li-2Gd alloy. Additionally, Li addition can induce dual-phase microstructure in the Mg-6Li-2Gd alloy, leading to the formation of hetero-deformation induced (HDI) stress at the mesoscale. This can be evidenced by the hysteresis loops appearing during the loading-unloading-reloading (LUR) tensile tests and the activation of multiple slip activity in the α-Mg phase neighboring β-Li phase. The Mg-6Li-2Gd alloy shows higher yield strength is due to the harder α-Mg phase arising from solid solution hardening of Li addition, as well asthe strengthening of soft β-Li phase by the HDI stress during yield stage. Since the strain hardening rate of Mg-6Li-2Gd alloy is lower than that of Mg-2Gd alloy after ~2% strain, which is partly due to the weak contribution of HDI stress, Mg-6Li-2Gd alloy shows no obvious increase of uniform elongation than the Mg-2Gd alloy.But since the β-Li phase is effective in blunting the crack tips, the Mg-6Li-2Gd alloy shows ununiform elongation, which, thus, leads to the higher total elongation than the Mg-2Gd alloy.

Keywords: Mg-Li-Gd dual-phase alloy, phase boundary, HDI stress, dislocation slip activity, mechanical properties

Procedia PDF Downloads 210
5732 Social Aspect in Energy Transition in Frankfurt (Main)

Authors: M. Mokrzecka, A. Aly, A. K. Obwona, Piotrowska M., Richardson S.

Abstract:

Frankfurt am Main, the fifth largest city in Germany, ranked 15th by the Global Financial Centers Index in 2014, and a finalist of European Green Capital 2014, is a crucial player in German Environmental Policy. In 2012 the city authorities agreed a target to reduce the city’s energy consumption by 50%, and fully switch to renewable energy by the year 2050. To achieve this goal, the Municipality of Frankfurt has begun preparing the Master plan, which will be introduced to public by the end of 2015. Transitions theory tells, that to address challenges as complex as Climate Change and the Energiewende, the development of new technologies and systems is not sufficient. Transition by definition is a process, and in such a large scale (city and region transition) can be fulfilled only, when operates within a broad socio – technical system. Thus, the Authors believe that only by close cooperation with citizens, as well as different stakeholders, can the Transition in Frankfurt be successful. The city therefore needs a strategy which will ensure the engagement, sense of ownership and broad support within Frankfurt society for the aims of the Master plan. This paper presents a proposal for how the city can achieve this based therefore, on fostering the citizens’ engagement through a comprehensive, innovative communication strategy. The proposal was originally developed by the authors as a winning submission for the Climate-KIC Transitions PhD Summer School 2014..

Keywords: city development, communication strategies, social transition, sustainability

Procedia PDF Downloads 320
5731 Dependence of the Structural, Electrical and Magnetic Properties of YBa2Cu3O7−δ Bulk Superconductor on the Sm Doping

Authors: Raheleh Hajilou

Abstract:

In this study, we report the synthesis and characterization of YBa2Cu3O7-δ (YBCO) high-temperature superconductor prepared by solid-state method and doped with Sm in different weight percentages, 0, 0.01, 0.02 and 0.05 wt. The result of X-ray diffraction (XRD) analysis conforms to the formation of an orthorhombic phase of superconductivity in our samples. This is an important finding and indicates that the samples may exhibit superconductivity properties at certain conditions. Our results unequivocally point to a different structural order or disorder in SM/Y samples as compared to Sm based samples. We suggest that different site preferences of oxygen vacancies, predominantly created in CuO2 planes (CuO chains) of Y and Sm-based samples, might be responsible for the observed difference in the behavior. This contention is supported by a host of other considerations and experimental observations. The study investigated the effects of Sm doping on the YBCO system on various properties such as structural, critical temperature (Tc), scanning electron microscope (SEM), irresistibility line(IL), critical current density, jc, and flux line pinning force. It Seems the sample x=0.05 undergoes an insulator transition, which suppresses its superconducting transition temperature (Tc). Additionally, magnetization was measured as a function of temperature (M-T) and magnetic loops (M-H) at constant temperatures of 10. 20, 30, 40, 50 and 60K up to 10KG.

Keywords: high-Tc superconductors, Scanning electron microscopy, X-ray scattering, Irreversibility line

Procedia PDF Downloads 23
5730 Development of a Nano-Alumina-Zirconia Composite Catalyst as an Active Thin Film in Biodiesel Production

Authors: N. Marzban, J. K. Heydarzadeh M. Pourmohammadbagher, M. H. Hatami, A. Samia

Abstract:

A nano-alumina-zirconia composite catalyst was synthesized by a simple aqueous sol-gel method using AlCl3.6H2O and ZrCl4 as precursors. Thermal decomposition of the precursor and subsequent formation of γ-Al2O3 and t-Zr were investigated by thermal analysis. XRD analysis showed that γ-Al2O3 and t-ZrO2 phases were formed at 700 °C. FT-IR analysis also indicated that the phase transition to γ-Al2O3 occurred in corroboration with X-ray studies. TEM analysis of the calcined powder revealed that spherical particles were in the range of 8-12 nm. The nano-alumina-zirconia composite particles were mesoporous and uniformly distributed in their crystalline phase. In order to measure the catalytic activity, esterification reaction was carried out. Biodiesel, as a renewable fuel, was formed in a continuous packed column reactor. Free fatty acid (FFA) was esterified with ethanol in a heterogeneous catalytic reactor. It was found that the synthesized γ-Al2O3/ZrO2 composite had the potential to be used as a heterogeneous base catalyst for biodiesel production processes.

Keywords: nano alumina-zirconia, composite catalyst, thin film, biodiesel

Procedia PDF Downloads 235
5729 Recovery of Value-Added Whey Proteins from Dairy Effluent Using Aqueous Two-Phase System

Authors: Perumalsamy Muthiah, Murugesan Thanapalan

Abstract:

The remains of cheese production contain nutritional value added proteins viz., α-Lactalbumin, β-Lactoglobulin representing 80- 90% of the total volume of milk entering the process. Although several possibilities for cheese-whey exploitation have been assayed, approximately half of world cheese-whey production is not treated but is discarded as effluent. It is necessary to develop an effective and environmentally benign extraction process for the recovery of value added cheese whey proteins. Recently aqueous two phase system (ATPS) have emerged as potential separation process, particularly in the field of biotechnology due to the mild conditions of the process, short processing time, and ease of scale-up. In order to design an ATPS process for the recovery of cheese whey proteins, development of phase diagram and the effect of system parameters such as pH, types and the concentrations of the phase forming components, temperature, etc., on the partitioning of proteins were addressed in order to maximize the recovery of proteins. Some of the practical problems encountered in the application of aqueous two-phase systems for the recovery of Cheese whey proteins were also discussed.

Keywords: aqueous two-phase system, phase diagram, extraction, cheese whey

Procedia PDF Downloads 412
5728 Presenting a Model Based on Artificial Neural Networks to Predict the Execution Time of Design Projects

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

After feasibility study the design phase is started and the rest of other phases are highly dependent on this phase. forecasting the duration of design phase could do a miracle and would save a lot of time. This study provides a fast and accurate Machine learning (ML) and optimization framework, which allows a quick duration estimation of project design phase, hence improving operational efficiency and competitiveness of a design construction company. 3 data sets of three years composed of daily time spent for different design projects are used to train and validate the ML models to perform multiple projects. Our study concluded that Artificial Neural Network (ANN) performed an accuracy of 0.94.

Keywords: time estimation, machine learning, Artificial neural network, project design phase

Procedia PDF Downloads 102
5727 Self-Assembly of TaC@Ta Core-Shell-Like Nanocomposite Film via Solid-State Dewetting: Toward Superior Wear and Corrosion Resistance

Authors: Ping Ren, Mao Wen, Kan Zhang, Weitao Zheng

Abstract:

The improvement of comprehensive properties including hardness, toughness, wear, and corrosion resistance in the transition metal carbides/nitrides TMCN films, especially avoiding the trade-off between hardness and toughness, is strongly required to adapt to various applications. Although incorporating ductile metal DM phase into the TMCN via thermally-induced phase separation has been emerged as an effective approach to toughen TMCN-based films, the DM is just limited to some soft ductile metal (i.e. Cu, Ag, Au immiscibility with the TMCN. Moreover, hardness is highly sensitive to soft DM content and can be significantly worsened. Hence, a novel preparation method should be attempted to broaden the DM selection and assemble much more ordered nanocomposite structure for improving the comprehensive properties. Here, we provide a new strategy, by activating solid-state dewetting during layered deposition, to accomplish the self-assembly of ordered TaC@Ta core-shell-like nanocomposite film consisting of TaC nanocrystalline encapsulated with thin pseudocrystal Ta tissue. That results in the superhard (~45.1 GPa) dominated by Orowan strengthening mechanism and high toughness attributed to indenter-induced phase transformation from the pseudocrystal to body-centered cubic Ta, together with the drastically enhanced wear and corrosion resistance. Furthermore, very thin pseudocrystal Ta encapsulated layer (~1.5 nm) in the TaC@Ta core-shell-like structure helps for promoting the formation of lubricious TaOₓ Magnéli phase during sliding, thereby further dropping the coefficient of friction. Apparently, solid-state dewetting may provide a new route to construct ordered TMC(N)@TM core-shell-like nanocomposite capable of combining superhard, high toughness, low friction, superior wear with corrosion resistance.

Keywords: corrosion, nanocomposite film, solid-state dewetting, tribology

Procedia PDF Downloads 138
5726 Ultrasonic Spectroscopy of Polymer Based PVDF-TrFE Composites with CNT Fillers

Authors: J. Belovickis, V. Samulionis, J. Banys, M. V. Silibin, A. V. Solnyshkin, A. V. Sysa

Abstract:

Ferroelectric polymers exhibit good flexibility, processability and low cost of production. Doping of ferroelectric polymers with nanofillers may modify its dielectric, elastic or piezoelectric properties. Carbon nanotubes are one of the ingredients that can improve the mechanical properties of polymer based composites. In this work, we report on both the ultrasonic and the dielectric properties of the copolymer polyvinylidene fluoride/tetrafluoroethylene (P(VDF-TrFE)) of the composition 70/30 mol% with various concentrations of carbon nanotubes (CNT). Experimental study of ultrasonic wave attenuation and velocity in these composites has been performed over wide temperature range (100 K – 410 K) using an ultrasonic automatic pulse-echo tecnique. The temperature dependences of ultrasonic velocity and attenuation showed anomalies attributed to the glass transition and paraelectric-ferroelectric phase transition. Our investigations showed mechanical losses to be dependent on the volume fraction of the CNTs within the composites. The existence of broad hysteresis of the ultrasonic wave attenuation and velocity within the nanocomposites is presented between cooling and heating cycles. By the means of dielectric spectroscopy, it is shown that the dielectric properties may be tuned by varying the volume fraction of the CNT fillers.

Keywords: carbon nanotubes, polymer composites, PVDF-TrFE, ultrasonic spectroscopy

Procedia PDF Downloads 345
5725 Ground State Phases in Two-Mode Quantum Rabi Models

Authors: Suren Chilingaryan

Abstract:

We study two models describing a single two-level system coupled to two boson field modes in either a parallel or orthogonal setup. Both models may be feasible for experimental realization through Raman adiabatic driving in cavity QED. We study their ground state configurations; that is, we find the quantum precursors of the corresponding semi-classical phase transitions. We found that the ground state configurations of both models present the same critical coupling as the quantum Rabi model. Around this critical coupling, the ground state goes from the so-called normal configuration with no excitation, the qubit in the ground state and the fields in the quantum vacuum state, to a ground state with excitations, the qubit in a superposition of ground and excited state, while the fields are not in the vacuum anymore, for the first model. The second model shows a more complex ground state configuration landscape where we find the normal configuration mentioned above, two single-mode configurations, where just one of the fields and the qubit are excited, and a dual-mode configuration, where both fields and the qubit are excited.

Keywords: quantum optics, quantum phase transition, cavity QED, circuit QED

Procedia PDF Downloads 372
5724 The Role of Uncertainty in the Integration of Environmental Parameters in Energy System Modeling

Authors: Alexander de Tomás, Miquel Sierra, Stefan Pfenninger, Francesco Lombardi, Ines Campos, Cristina Madrid

Abstract:

Environmental parameters are key in the definition of sustainable energy systems yet excluded from most energy system optimization models. Still, decision-making may be misleading without considering them. Environmental analyses of the energy transition are a key part of industrial ecology but often are performed without any input from the users of the information. This work assesses the systemic impacts of energy transition pathways in Portugal. Using the Calliope energy modeling framework, 250+ optimized energy system pathways are generated. A Delphi study helps to identify the relevant criteria for the stakeholders as regards the environmental assessment, which is performed with ENBIOS, a python package that integrates life cycle assessment (LCA) with a metabolic analysis based on complex relations. Furthermore, this study focuses on how the uncertainty propagates through the model’s consortium. With the aim of doing so, a soft link between the Calliope/ENBIOS cascade and Brightway’s data capabilities is built to perform Monte Carlo simulations. These findings highlight the relevance of including uncertainty analysis as a range of values rather than informing energy transition results with a single value.

Keywords: energy transition, energy modeling, uncertainty, sustainability

Procedia PDF Downloads 86
5723 Optical Properties of Tetrahydrofuran Clathrate Hydrates at Terahertz Frequencies

Authors: Hyery Kang, Dong-Yeun Koh, Yun-Ho Ahn, Huen Lee

Abstract:

Terahertz time-domain spectroscopy (THz-TDS) was used to observe the THF clathrate hydrate system with dosage of polyvinylpyrrolidone (PVP) with three different average molecular weights (10,000 g/mol, 40,000 g/mol, 360,000 g/mol). Distinct footprints of phase transition in the THz region (0.4 - 2.2 THz) were analyzed and absorption coefficients and complex refractive indices are obtained and compared in the temperature range of 253 K to 288 K. Along with the optical properties, ring breathing and stretching modes for different molecular weights of PVP in THF hydrate are analyzed by Raman spectroscopy.

Keywords: clathrate hydrate, terahertz, polyvinylpyrrolidone (PVP), THz-TDS, inhibitor

Procedia PDF Downloads 383
5722 Cable De-Commissioning of Legacy Accelerators at CERN

Authors: Adya Uluwita, Fernando Pedrosa, Georgi Georgiev, Christian Bernard, Raoul Masterson

Abstract:

CERN is an international organisation funded by 23 countries that provide the particle physics community with excellence in particle accelerators and other related facilities. Founded in 1954, CERN has a wide range of accelerators that allow groundbreaking science to be conducted. Accelerators bring particles to high levels of energy and make them collide with each other or with fixed targets, creating specific conditions that are of high interest to physicists. A chain of accelerators is used to ramp up the energy of particles and eventually inject them into the largest and most recent one: the Large Hadron Collider (LHC). Among this chain of machines is, for instance the Proton Synchrotron, which was started in 1959 and is still in operation. These machines, called "injectors”, keep evolving over time, as well as the related infrastructure. Massive decommissioning of obsolete cables started in 2015 at CERN in the frame of the so-called "injectors de-cabling project phase 1". Its goal was to replace aging cables and remove unused ones, freeing space for new cables necessary for upgrades and consolidation campaigns. To proceed with the de-cabling, a project co-ordination team was assembled. The start of this project led to the investigation of legacy cables throughout the organisation. The identification of cables stacked over half a century proved to be arduous. Phase 1 of the injectors de-cabling was implemented for 3 years with success after overcoming some difficulties. Phase 2, started 3 years later, focused on improving safety and structure with the introduction of a quality assurance procedure. This paper discusses the implementation of this quality assurance procedure throughout phase 2 of the project and the transition between the two phases. Over hundreds of kilometres of cable were removed in the injectors complex at CERN from 2015 to 2023.

Keywords: CERN, de-cabling, injectors, quality assurance procedure

Procedia PDF Downloads 102
5721 A Numerical Investigation of Lamb Wave Damage Diagnosis for Composite Delamination Using Instantaneous Phase

Authors: Haode Huo, Jingjing He, Rui Kang, Xuefei Guan

Abstract:

This paper presents a study of Lamb wave damage diagnosis of composite delamination using instantaneous phase data. Numerical experiments are performed using the finite element method. Different sizes of delamination damages are modeled using finite element package ABAQUS. Lamb wave excitation and responses data are obtained using a pitch-catch configuration. Empirical mode decomposition is employed to extract the intrinsic mode functions (IMF). Hilbert–Huang Transform is applied to each of the resulting IMFs to obtain the instantaneous phase information. The baseline data for healthy plates are also generated using the same procedure. The size of delamination is correlated with the instantaneous phase change for damage diagnosis. It is observed that the unwrapped instantaneous phase of shows a consistent behavior with the increasing delamination size.

Keywords: delamination, lamb wave, finite element method, EMD, instantaneous phase

Procedia PDF Downloads 322
5720 Classification of State Transition by Using a Microwave Doppler Sensor for Wandering Detection

Authors: K. Shiba, T. Kaburagi, Y. Kurihara

Abstract:

With global aging, people who require care, such as people with dementia (PwD), are increasing within many developed countries. And PwDs may wander and unconsciously set foot outdoors, it may lead serious accidents, such as, traffic accidents. Here, round-the-clock monitoring by caregivers is necessary, which can be a burden for the caregivers. Therefore, an automatic wandering detection system is required when an elderly person wanders outdoors, in which case the detection system transmits a ‘moving’ followed by an ‘absence’ state. In this paper, we focus on the transition from the ‘resting’ to the ‘absence’ state, via the ‘moving’ state as one of the wandering transitions. To capture the transition of the three states, our method based on the hidden Markov model (HMM) is built. Using our method, the restraint where the ‘resting’ state and ‘absence’ state cannot be transmitted to each other is applied. To validate our method, we conducted the experiment with 10 subjects. Our results show that the method can classify three states with 0.92 accuracy.

Keywords: wander, microwave Doppler sensor, respiratory frequency band, the state transition, hidden Markov model (HMM).

Procedia PDF Downloads 187
5719 The Inversion of Helical Twist Sense in Liquid Crystal by Spectroscopy Methods

Authors: Anna Drzewicz, Marzena Tykarska

Abstract:

The chiral liquid crystal phases form the helicoidal structure, which is characterized by the helical pitch and the helical twist sense. In anticlinic smectic phase with antiferroelectric properties three types of helix temperature dependence have been obtained: increased helical pitch with temperature and right-handed helix, decreased helical pitch with temperature and left-handed helix and the inversion of both. The change of helical twist sense may be observed during the transition from one liquid crystal phase to another or within one phase for the same substance. According to Gray and McDonnell theory, the helical handedness depends on the absolute configuration of the assymetric carbon atom and its position related to the rigid core of the molecule. However, this theory does not explain the inversion of helical twist sense phenomenon. It is supposed, that it may be caused by the presence of different conformers with opposite handendess, which concentration may change with temperature. In this work, the inversion of helical twist sense in the chiral liquid crystals differing in the length of alkyl chain, in the substitution the benzene ring by fluorine atoms and in the type of helix handedness was tested by vibrational spectroscopy (infrared and raman spectroscopy) and by nuclear magnetic resonance spectroscopy. The results obtained from the vibrational spectroscopy confirm the presence of different conformers. Moreover, the analysis of nuclear magnetic resonance spectra is very useful to check, on which structural fragments the change of conformations are important for the change of helical twist sense.

Keywords: helical twist sense, liquid crystals, nuclear magnetic resonance spectroscopy, vibrational spectroscopy

Procedia PDF Downloads 286
5718 Influence of Carbon Addition on the Activity of Silica Supported Copper and Cobalt Catalysts in NO Reduction with CO

Authors: N. Stoeva, I. Spassova, R. Nickolov, M. Khristova

Abstract:

Exhaust gases from stationary and mobile combustion sources contain nitrogen oxides that cause a variety of environmentally harmful effects. The most common approach of their elimination is the catalytic reaction in the exhaust using various reduction agents such as NH3, CO and hydrocarbons. Transition metals (Co, Ni, Cu, etc.) are the most widely used as active components for deposition on various supports. However, since the interaction between different catalyst components have been extensively studied in different types of reaction systems, the possible cooperation between active components and the support material and the underlying mechanisms have not been thoroughly investigated. The support structure may affect how these materials maintain an active phase. The objective is to investigate the addition of carbonaceous materials with different nature and texture characteristics on the properties of the resulting silica-carbon support and how it influences of the catalytic properties of the supported copper and cobalt catalysts for reduction of NO with CO. The versatility of the physico-chemical properties of the composites and the supported copper and cobalt catalysts are discussed with an emphasis on the relationship of the properties with the catalytic performance. The catalysts were prepared by sol-gel process and were characterized by XRD, XPS, AAS and BET analysis. The catalytic experiments were carried out in catalytic flow apparatus with isothermal flow reactor in the temperature range 20–300оС. After the catalytic test temperature-programmed desorption (TPD) was carried out. The transient response method was used to study the interaction of the gas phase with the catalyst surface. The role of the interaction between the support and the active phase on the catalyst’s activity in the studied reaction was discussed. We suppose the carbon particles with small sizes to participate in the formation of the active sites for the reduction of NO with CO along with their effect on the kind of deposited metal oxide phase. The existence of micropore texture for some of composites also influences by mass-transfer limitations.

Keywords: catalysts, no reduction, composites, bet analysis

Procedia PDF Downloads 426
5717 Influence of Cation Substitution on Magnetic Transitions and Ordering in La2NixCo1-xMnO6 Compounds (x = 0.2 - 0.8)

Authors: Amine.Harbia, Hicham. Moutaabbidb, Yann. Le Godecb, Said. Benmokhtara, Mouhammed. Moutaabbida

Abstract:

This study explores the structural and magnetic characteristics of newly synthesized double perovskite oxides, La₂NiₓCo1-xMnO₆, with x ranging from 0.2 to 0.8. Utilizing X-ray powder diffraction and SQUID magnetometry, we analyzed the compounds that consistently exhibit a monoclinic structure with the P21/n space group at ambient temperature. it findings reveal that as Ni2+ is progressively substituted by Co2+, there is a corresponding decrease in cell parameters, attributable to the smaller ionic radius of Ni2+ (0.69 Å) compared to Co2+ (0.74 Å). The crystal structure features octahedrally coordinated (Co/Ni)2+ and Mn4+ cations with oxygen, forming (Co/Ni)O6 and MnO6 octahedra linked via oxygen atoms along different crystallographic axes. Magnetic characterization conducted over a temperature range of 2 to 300 K in both DC and AC magnetic fields, showed a predominant paramagnetic to ferromagnetic transition between 232 K and 260 K, with the Curie temperature notably increasing with higher x values. Samples with x=0.2, 0.25, and 0.5 exhibited a secondary PM-FM transition between 200 K and 208 K. Cation ordering was quantitatively assessed, indicating a higher ordering in Ni2+-rich samples (x=0.75 and 0.8) at over 96%, whereas the sample with x=0.25 showed minimal ordering. Furthermore, the out-of-phase component of the AC susceptibility displayed frequency-dependent transitions between 65 K and 110 K, suggesting the presence of superparamagnetic domains across all samples.

Keywords: double perovskite oxides, magnetic transitions, cation ordering, squid magnetometry

Procedia PDF Downloads 64
5716 Failure Mode Analysis of a Multiple Layer Explosion Bonded Cryogenic Transition Joint

Authors: Richard Colwell, Thomas Englert

Abstract:

In cryogenic liquefaction processes, brazed aluminum core heat exchangers are used to minimize surface area/volume of the exchanger. Aluminum alloy (5083-H321; UNS A95083) piping must transition to higher melting point 304L stainless steel piping outside of the heat exchanger kettle or cold box for safety reasons. Since aluminum alloys and austenitic stainless steel cannot be directly welded to together, a transition joint consisting of 5 layers of different metals explosively bonded are used. Failures of two of these joints resulted in process shut-down and loss of revenue. Failure analyses, FEA analysis, and mock-up testing were performed by multiple teams to gain a further understanding into the failure mechanisms involved.

Keywords: explosion bonding, intermetallic compound, thermal strain, titanium-nickel Interface

Procedia PDF Downloads 224
5715 On the Equalization of Nonminimum Phase Electroacoustic Systems Using Digital Inverse Filters

Authors: Avelino Marques, Diamantino Freitas

Abstract:

Some important electroacoustic systems, like loudspeaker systems, exhibit a nonminimum phase behavior that poses considerable effort when applying advanced digital signal processing techniques, such as linear equalization. In this paper, the position and the number of zeros and poles of the inverse filter, FIR type or IIR type, designed using time domain techniques, are studied, compared and related to the nonminimum phase zeros of system to be equalized. Conclusions about the impact of the position of the system non-minimum phase zeros, on the length/order of the inverse filter and on the delay of the equalized system are outlined as a guide to previously decide which type of filter will be more adequate.

Keywords: loudspeaker systems, nonminimum phase system, FIR and IIR filter, delay

Procedia PDF Downloads 84
5714 Use of Multistage Transition Regression Models for Credit Card Income Prediction

Authors: Denys Osipenko, Jonathan Crook

Abstract:

Because of the variety of the card holders’ behaviour types and income sources each consumer account can be transferred to a variety of states. Each consumer account can be inactive, transactor, revolver, delinquent, defaulted and requires an individual model for the income prediction. The estimation of transition probabilities between statuses at the account level helps to avoid the memorylessness of the Markov Chains approach. This paper investigates the transition probabilities estimation approaches to credit cards income prediction at the account level. The key question of empirical research is which approach gives more accurate results: multinomial logistic regression or multistage conditional logistic regression with binary target. Both models have shown moderate predictive power. Prediction accuracy for conditional logistic regression depends on the order of stages for the conditional binary logistic regression. On the other hand, multinomial logistic regression is easier for usage and gives integrate estimations for all states without priorities. Thus further investigations can be concentrated on alternative modeling approaches such as discrete choice models.

Keywords: multinomial regression, conditional logistic regression, credit account state, transition probability

Procedia PDF Downloads 490
5713 Level of Sustainability, Environmental Assessment and Life Cycle Assessment of Industrial Technology Research Projects in Carlos Hilado Memorial State College, Alijis Campus, Bacolod City, Negros Occidental, Philippines

Authors: Rene A. Salmingo

Abstract:

In pursuing higher educational institution’s transition to sustainable future, this research initiative was conducted. The study aimed to determine the level of sustainability, environmental impact and life cycle phase assessment of the industrial technology research projects at the Institute of Information Technology, Carlos Hilado Memorial State College (CHMSC), Alijis Campus, Bacolod City, Negros Occidental, Philippines. The research method was descriptive utilizing a researcher made questionnaire to assess the ten (10) industrial technology completed research projects. Mean was used to treat the data and instrument for Good and Scates’ validity through revisions and consultations from the environmental experts, technology specialists; and Cronbach Alpha was used to measure reliability. Results indicated that the level of sustainability and life cycle phase assessment was very high while the environmental impact of the industrial research projects was rated low. Moreover, the current research projects and environmental education courses in the college were relevant to support sustainable industrial technology research projects in the future. Hence, this research initiative will contribute to the transformation of CHMSC as a greening higher educational institution and as a center for sustainable development in the region.

Keywords: environmental impact, industrial technology research projects, life cycle phase assessment, sustainability

Procedia PDF Downloads 197
5712 Numerical Investigation of Thermally Triggered Release Kinetics of Double Emulsion for Drug Delivery Using Phase Change Material

Authors: Yong Ren, Yaping Zhang

Abstract:

A numerical model has been developed to investigate the thermally triggered release kinetics for drug delivery using phase change material as shell of microcapsules. Biocompatible material n-Eicosane is used as demonstration. PCM shell of microcapsule will remain in solid form after the drug is taken, so the drug will be encapsulated by the shell, and will not be released until the target body part of lesion is exposed to external heat source, which will thermally trigger the release kinetics, leading to solid-to-liquid phase change. The findings can lead to better understanding on the key effects influencing the phase change process for drug delivery applications. The facile approach to release drug from core/shell structure of microcapsule can be well integrated with organic solvent free fabrication of microcapsules, using double emulsion as template in microfluidic aqueous two phase system.

Keywords: phase change material, drug release kinetics, double emulsion, microfluidics

Procedia PDF Downloads 359
5711 Kaolinite-Assisted Microencapsulation of Octodecane for Thermal Energy Storage

Authors: Ting Pan, Jiacheng Wang, Pengcheng Lin, Ying Chen, Songping Mo

Abstract:

Phase change materials (PCMs) are widely used in latent heat thermal energy storage because of their good properties such as high energy storage density and constant heat-storage/release temperature. Microencapsulation techniques can prevent PCMs from leaking during the liquid-solid phase transition and enhance thermal properties. This technique has been widely applied in architectural materials, thermo-regulated textiles, aerospace fields, etc. One of the most important processes during the synthesis of microcapsules is to form a stable emulsion of the PCM core and reactant solution for the formation of the shell of the microcapsules. The use of surfactants is usually necessary for the formation of a stable emulsion system because of the difference in hydrophilia/lipophilicity of the PCM and the solvent. Unfortunately, the use of surfactants may cause pollution to the environment. In this study, modified kaolinite was used as an emulsion stabilizer for the microencapsulation of octodecane as PCM. Microcapsules were synthesized by phase inversion emulsification method, and the shell of polymethyl methacrylate (PMMA) was formed through free radical polymerization. The morphologies, crystalloid phase, and crystallization properties of microcapsules were investigated using scanning electron microscopy (SEM), X-ray diffractometer (XRD), and Fourier transforms infrared spectrometer (FTIR). The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analyzer (TG). The FT-IR, XRD results showed that the octodecane was well encapsulated in the PMMA shell. The SEM results showed that the microcapsules were spheres with an average size of about 50-100nm. The DSC results indicated that the latent heat of the microcapsules was 152.64kJ/kg and 164.23kJ/kg. The TG results confirmed that the microcapsules had good thermal stability due to the PMMA shell. Based on the results, it can be concluded that the modified kaolinite can be used as an emulsifier for the synthesis of PCM microcapsules, which is valid for reducing part of the possible pollution caused by the utilization of surfactants.

Keywords: kaolinite, microencapsulation, PCM, thermal energy storage

Procedia PDF Downloads 136
5710 Synthesis of Microencapsulated Phase Change Material for Adhesives with Thermoregulating Properties

Authors: Christin Koch, Andreas Winkel, Martin Kahlmeyer, Stefan Böhm

Abstract:

Due to environmental regulations on greenhouse gas emissions and the depletion of fossil fuels, there is an increasing interest in electric vehicles.To maximize their driving range, batteries with high storage capacities are needed. In most electric cars, rechargeable lithium-ion batteries are used because of their high energy density. However, it has to be taken into account that these batteries generate a large amount of heat during the charge and discharge processes. This leads to a decrease in a lifetime and damage to the battery cells when the temperature exceeds the defined operating range. To ensure an efficient performance of the battery cells, reliable thermal management is required. Currently, the cooling is achieved by heat sinks (e.g., cooling plates) bonded to the battery cells with a thermally conductive adhesive (TCA) that directs the heat away from the components. Especially when large amounts of heat have to be dissipated spontaneously due to peak loads, the principle of heat conduction is not sufficient, so attention must be paid to the mechanism of heat storage. An efficient method to store thermal energy is the use of phase change materials (PCM). Through an isothermal phase change, PCM can briefly absorb or release thermal energy at a constant temperature. If the phase change takes place in the transition from solid to liquid, heat is stored during melting and is released to the ambient during the freezing process upon cooling. The presented work displays the great potential of thermally conductive adhesives filled with microencapsulated PCM to limit peak temperatures in battery systems. The encapsulation of the PCM avoids the effects of aging (e.g., migration) and chemical reactions between the PCM and the adhesive matrix components. In this study, microencapsulation has been carried out by in situ polymerization. The microencapsulated PCM was characterized by FT-IR spectroscopy, and the thermal properties were measured by DSC and laser flash method. The mechanical properties, electrical and thermal conductivity, and adhesive toughness of the TCA/PCM composite were also investigated.

Keywords: phase change material, microencapsulation, adhesive bonding, thermal management

Procedia PDF Downloads 76
5709 An Analysis of The Philippines' Legal Transition from Open Dumpsites to Solid Waste Management Facilities

Authors: Mary Elenor Adagio, John Roben Ambas, Ramilyn Bertolano, Julie Ann Garcia

Abstract:

Ecological Solid Waste Management has been a long-time concern in both national and international spheres. The exponential growth of waste generation is not properly matched with a waste management system that is cost-effective. As a result, governments and their communities within inevitably resort to the old ways of opening dumpsites to serve as a giant garbage bin. However, due to the environmental and public health problems these unmanaged dumpsites caused, countries like the Philippines mandated the closure of these dumpsites and converted them into or opened new sanitary landfills. This study aims to determine how the transition from open dumpsites to Solid Waste Management Facilities improve the implementation of the Solid Waste Management Framework of the government pursuant to Republic Act 9003. To test the hypothesis that the mandatory closure of dumpsites is better in the management of wastes in local government units, a review of related literature on analysis reports, news, and case studies was conducted. The results suggest that advocating for the transition of dumpsites to sanitary landfills would not only prevent environmental risks caused by pollution but also reduce problems regarding public health. Although this transition can be effective, data also show that with a lack of funding and resources, many local government units still find it difficult to provide their solid waste management plans and to adapt to the transition to sanitary landfills.

Keywords: solid waste management, environmental law, solid waste management facilities, open dumpsites

Procedia PDF Downloads 167
5708 Photon-Electron Interaction in the Different Medium

Authors: Vahid Borji

Abstract:

The interaction between photons and particles is a common phenomenon in nature that is discussed in order to obtain information about the environment and the conditions governing the phenomena. In the astrophysics, like others, we study these interactions to get useful knowledge and can be predict aftercoming events. One of the events is the transition of photon beam through medium with special conditions, like shocked medium. In our discussion, we have studied this situation and obtained results for different conditions that transition of photon depends on the energy of photon and distributions of electrons in medium.

Keywords: cross section, astrophysics, GRB, photon

Procedia PDF Downloads 95
5707 Identification and Classification of Stakeholders in the Transition to 3D Cadastre

Authors: Qiaowen Lin

Abstract:

The 3D cadastre is an inevitable choice to meet the needs of real cadastral management. Nowadays, more attention is given to the technical aspects of 3D cadastre, resulting in the imbalance within this field. To fulfill this research gap, the stakeholder, which has been regarded as the determining factor in cadastral change has been studied. Delphi method, Michael rating, and stakeholder mapping are used to identify and classify the stakeholders in 3D cadastre. It is concluded that the project managers should pay more attention to the interesting appeal of the key stakeholders and different coping strategies should be adopted to facilitate the transition to 3D cadastre.

Keywords: stakeholders, three dimension, cadastre, transtion

Procedia PDF Downloads 292
5706 Mobile Application Tool for Individual Maintenance Users on High-Rise Residential Buildings in South Korea

Authors: H. Cha, J. Kim, D. Kim, J. Shin, K. Lee

Abstract:

Since 1980's, the rapid economic growth resulted in so many aged apartment buildings in South Korea. Nevertheless, there is insufficient maintenance practice of buildings. In this study, to facilitate the building maintenance the authors classified the building defects into three levels according to their level of performance and developed a mobile application tool based on each level's appropriate feedback. The feedback structure consisted of 'Maintenance manual phase', 'Online feedback phase', 'Repair work phase of the specialty contractors'. In order to implement each phase the authors devised the necessary database for each phase and created a prototype system that can develop on its own. The authors expect that the building users can easily maintain their buildings by using this application.

Keywords: building defect, maintenance practice, mobile application, system algorithm

Procedia PDF Downloads 194
5705 Solid-State Synthesis Approach and Optical study of Red Emitting Phosphors Li₃BaSrxCa₁₋ₓEu₂.₇Gd₀.₃(MoO₄)₈ for White LEDs

Authors: Priyansha Sharma, Sibani Mund, Sivakumar Vaidyanathan

Abstract:

Solid-state synthesis methods were used for the synthesis of pure red emissive Li¬3BaSrxCa(1-x)Eu2.7Gd0.3(MoO4)8 (x = 0.0 to 1.0) phosphors, XRD, SEM, and FTIR spectra were used to characterize the materials, and their optical properties were thoroughly investigated. PL studies were examined at different excitations 230 nm, 275nm, 465nm, and 395 nm. All the spectra show similar emissions with the highest transition at 616 nm due to ED transition. The given phosphor Li¬3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 shows the highest intensity and is thus chosen for the temperature-dependent and Quantum yield study. According to the PL investigation, the phosphor-containing Eu3+ emits red light due to the (5D0 7F2) transition. The excitation analysis shows that all of the Eu3+ activated phosphors exhibited broad absorption due to the charge transfer band, O2-Mo6+, O2-Eu3+ transition, as well as narrow absorption bands related to the Eu3+ ion's 4f-4f electronic transition. Excitation spectra show Charge transfer band at 275 nm shows the highest intensity. The primary band in the spectra refers to Eu3+ ions occupying the lattice's non-centrosymmetric location. All of the compositions are monoclinic crystal structures with space group C2/c and match with reference powder patterns. The thermal stability of the 3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 phosphor was investigated at (300 k- 500 K) as well as at low temperature from (20 K to 275 K) to be utilized for red and white LED fabrication. The Decay Lifetime of all the phosphor was measured. The best phosphor was used for White and Red LED fabrication.

Keywords: PL, phosphor, quantum yield, white LED

Procedia PDF Downloads 81