Search results for: electrical percolation threshold
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2732

Search results for: electrical percolation threshold

2522 Implementation of Edge Detection Based on Autofluorescence Endoscopic Image of Field Programmable Gate Array

Authors: Hao Cheng, Zhiwu Wang, Guozheng Yan, Pingping Jiang, Shijia Qin, Shuai Kuang

Abstract:

Autofluorescence Imaging (AFI) is a technology for detecting early carcinogenesis of the gastrointestinal tract in recent years. Compared with traditional white light endoscopy (WLE), this technology greatly improves the detection accuracy of early carcinogenesis, because the colors of normal tissues are different from cancerous tissues. Thus, edge detection can distinguish them in grayscale images. In this paper, based on the traditional Sobel edge detection method, optimization has been performed on this method which considers the environment of the gastrointestinal, including adaptive threshold and morphological processing. All of the processes are implemented on our self-designed system based on the image sensor OV6930 and Field Programmable Gate Array (FPGA), The system can capture the gastrointestinal image taken by the lens in real time and detect edges. The final experiments verified the feasibility of our system and the effectiveness and accuracy of the edge detection algorithm.

Keywords: AFI, edge detection, adaptive threshold, morphological processing, OV6930, FPGA

Procedia PDF Downloads 224
2521 Experimental Investigation of Soil Corrosion and Electrical Resistance in Depth by Geoelectrical Method

Authors: Seyed Abolhassan Naeini, Maedeh Akhavan Tavakkoli

Abstract:

Determining soil engineering properties is essential for geotechnical problems. In addition to high cost, invasive soil survey methods can be time-consuming, so geophysical methods can be an excellent choice to determine soil characteristics. In this study, geoelectric investigation using the Wenner arrangement method has been used to determine the amount of soil corrosion in soil layers in a project site as a case study. This study aims to assess the degree of corrosion of soil layers to a depth of 5 meters and find the variation of soil electrical resistance versus depth. For this purpose, the desired points in the study area were marked and specified, and all withdrawals were made within the specified points. The collected data have been processed by standard and accepted methods, and the results have been presented in the form of calculation tables and curves of electrical resistivity with depth.

Keywords: Wenner array, geoelectric, soil corrosion, electrical soil resistance

Procedia PDF Downloads 86
2520 Combination of Topology and Rough Set for Analysis of Power System Control

Authors: M. Kamel El-Sayed

Abstract:

In this research, we have linked the concept of rough set and topological structure to the creation of a new topological structure that assists in the analysis of the information systems of some electrical engineering issues. We used non-specific information whose boundaries do not have an empty set in the top topological structure is rough set. It is characterized by the fact that it does not contain a large number of elements and facilitates the establishment of rules. We used this structure in reducing the specifications of electrical information systems. We have provided a detailed example of this method illustrating the steps used. This method opens the door to obtaining multiple topologies, each of which uses one of the non-defined groups (rough set) in the overall information system.

Keywords: electrical engineering, information system, rough set, rough topology, topology

Procedia PDF Downloads 447
2519 Comparison of Instantaneous Short Circuit versus Step DC Voltage to Determine PMG Inductances

Authors: Walter Evaldo Kuchenbecker, Julio Carlos Teixeira

Abstract:

Since efficiency became a challenge to reduce energy consumption of all electrical machines applications, the permanent magnet machine raises up as a better option, because its performance, robustness and simple control. Even though, the electrical machine was developed through analyses of magnetism effect, permanent magnet machines still not well dominated. As permanent magnet machines are becoming popular in most applications, the pressure to standardize this type of electrical machine increases. However, due limited domain, it is still nowadays without any standard to manufacture, test and application. In order to determine an inductance of the machine, a new method is proposed.

Keywords: permanent magnet generators (pmg), synchronous machine parameters, test procedures, inductances

Procedia PDF Downloads 293
2518 Influential Effect of Self-Healing Treatment on Water Absorption and Electrical Resistance of Normal and Light Weight Aggregate Concretes

Authors: B. Tayebani, N. Hosseinibalam, D. Mostofinejad

Abstract:

Interest in using bacteria in cement materials due to its positive influences has been increased. Cement materials such as mortar and concrete basically suffer from higher porosity and water absorption compared to other building materials such as steel materials. Because of the negative side-effects of certain chemical techniques, biological methods have been proposed as a desired and environmentally friendly strategy for reducing concrete porosity and diminishing water absorption. This paper presents the results of an experimental investigation carried out to evaluate the influence of Sporosarcina pasteurii bacteria on the behaviour of two types of concretes (light weight aggregate concrete and normal weight concrete). The resistance of specimens to water penetration by testing water absorption and evaluating the electrical resistance of those concretes was examined and compared. As a conclusion, 20% increase in electrical resistance and 10% reduction in water absorption of lightweight aggregate concrete (LWAC) and for normal concrete the results show 7% decrease in water absorption and almost 10% increase in electrical resistance.

Keywords: bacteria, biological method, normal weight concrete, lightweight aggregate concrete, water absorption, electrical resistance

Procedia PDF Downloads 169
2517 Control Methods Used to Minimize Losses in High-Speed Electrical Machines

Authors: Mohammad Hedar

Abstract:

This paper presents selected topics from the area of high-speed electrical machine control with a focus on loss minimization. It focuses on pulse amplitude modulation (PAM) set-up in order to minimize the inrush current peak. An overview of these machines and the control topologies that have been used with these machines are reported. The critical problem that happens when controlling a high-speed electrical motor is the high current peak in the start-up process, which will cause high power-losses. The main goal of this paper is to clarify how the inrush current peak can be minimized in the start-up process. PAM control method is proposed to use in the frequency inverter, simulation results for PAM & PWM control method, and steps to improve the PAM control are reported. The simulations were performed with data for PMSM (nominal speed: 25 000 min-1, power: 3.1 kW, load: 1.2 Nm).

Keywords: control topology, frequency inverter, high-speed electrical machines, PAM, power losses, PWM

Procedia PDF Downloads 113
2516 Structural, Magnetic, Electrical and Dielectric Properties of Pr0.8Na0.2MnO3 Manganite

Authors: H. Ben Khlifa, W. Cheikhrouhou, R. M'nassri

Abstract:

The Orthorhombic Pr0.8Na0.2MnO3 ceramic was prepared in Polycrystalline form by a Pechini sol–gel method and its structural, magnetic, electrical, and dielectric properties were investigated experimentally. A structural study confirms that the sample is a single phase. Magnetic measurements show that the sample is a charge ordered Manganite. The sample undergoes two successive magnetic phase transitions with the variation of temperature: a charge ordering transition occurred at TCO = 212 K followed by a Paramagnetic (PM) to ferromagnetic (FM) transition around TC = 115 K. From an electrical point of view, a saturation region was marked in the conductivity as a function of Temperature s(T) curves at a specific temperature. The dc-conductivity (sdc) reaches a maximum value at 240 K. The obtained results are in good agreement with the temperature dependence of the average normalized change (ANC). We found that the conduction mechanism was governed by small polaron hopping (SPH) in the high-temperature region and by variable range hopping (VRH) in the low-temperature region. Complex impedance analysis indicates the presence of a non-Debye relaxation phenomenon in the system. Also, the compound was modeled by an electrical equivalent circuit. Then, the contribution of the grain boundary in the transport properties was confirmed.

Keywords: manganites, preparation methods, magnetization, magnetocaloric effect, electrical and dielectric

Procedia PDF Downloads 156
2515 Electrical Degradation of GaN-based p-channel HFETs Under Dynamic Electrical Stress

Authors: Xuerui Niu, Bolin Wang, Xinchuang Zhang, Xiaohua Ma, Bin Hou, Ling Yang

Abstract:

The application of discrete GaN-based power switches requires the collaboration of silicon-based peripheral circuit structures. However, the packages and interconnection between the Si and GaN devices can introduce parasitic effects to the circuit, which has great impacts on GaN power transistors. GaN-based monolithic power integration technology is an emerging solution which can improve the stability of circuits and allow the GaN-based devices to achieve more functions. Complementary logic circuits consisting of GaN-based E-mode p-channel heterostructure field-effect transistors (p-HFETs) and E-mode n-channel HEMTs can be served as the gate drivers. E-mode p-HFETs with recessed gate have attracted increasing interest because of the low leakage current and large gate swing. However, they suffer from a poor interface between the gate dielectric and polarized nitride layers. The reliability of p-HFETs is analyzed and discussed in this work. In circuit applications, the inverter is always operated with dynamic gate voltage (VGS) rather than a constant VGS. Therefore, dynamic electrical stress has been simulated to resemble the operation conditions for E-mode p-HFETs. The dynamic electrical stress condition is as follows. VGS is a square waveform switching from -5 V to 0 V, VDS is fixed, and the source grounded. The frequency of the square waveform is 100kHz with the rising/falling time of 100 ns and duty ratio of 50%. The effective stress time is 1000s. A number of stress tests are carried out. The stress was briefly interrupted to measure the linear IDS-VGS, saturation IDS-VGS, As VGS switches from -5 V to 0 V and VDS = 0 V, devices are under negative-bias-instability (NBI) condition. Holes are trapped at the interface of oxide layer and GaN channel layer, which results in the reduction of VTH. The negative shift of VTH is serious at the first 10s and then changes slightly with the following stress time. However, different phenomenon is observed when VDS reduces to -5V. VTH shifts negatively during stress condition, and the variation in VTH increases with time, which is different from that when VDS is 0V. Two mechanisms exists in this condition. On the one hand, the electric field in the gate region is influenced by the drain voltage, so that the trapping behavior of holes in the gate region changes. The impact of the gate voltage is weakened. On the other hand, large drain voltage can induce the hot holes generation and lead to serious hot carrier stress (HCS) degradation with time. The poor-quality interface between the oxide layer and GaN channel layer at the gate region makes a major contribution to the high-density interface traps, which will greatly influence the reliability of devices. These results emphasize that the improved etching and pretreatment processes needs to be developed so that high-performance GaN complementary logics with enhanced stability can be achieved.

Keywords: GaN-based E-mode p-HFETs, dynamic electric stress, threshold voltage, monolithic power integration technology

Procedia PDF Downloads 79
2514 Electrical Resistivity of Solid and Liquid Pt: Insight into Electrical Resistivity of ε-Fe

Authors: Innocent C. Ezenwa, Takashi Yoshino

Abstract:

Knowledge of the transport properties of Fe and its alloys at extreme high pressure (P), temperature (T) conditions are essential for understanding the generation and sustainability of the magnetic field of the rocky planets with a metallic core. Since Pt, an unfilled d-band late transition metal with an electronic structure of Xe4f¹⁴5d⁹6s¹, is paramagnetic and remains close-packed structure at ambient conditions and high P-T, it is expected that its transport properties at these conditions would be similar to those of ε-Fe. We investigated the T-dependent electrical resistivity of solid and liquid Pt up to 8 GPa and found it constant along its melting curve both on the liquid and solid sides in agreement with theoretical prediction and experimental results estimated from thermal conductivity measurements. Our results suggest that the T-dependent resistivity of ε-Fe is linear and would not saturate at high P, T conditions. This, in turn, suggests that the thermal conductivity of liquid Fe at Earth’s core conditions may not be as high as previously suggested by models employing saturation resistivity. Hence, thermal convection could have powered the geodynamo before the birth of the inner core. The electrical resistivity and thermal conductivity on the liquid and solid sides of the inner core boundary of the Earth would be significantly different in values.

Keywords: electrical resistivity, thermal conductivity, transport properties, geodynamo and geomagnetic field

Procedia PDF Downloads 132
2513 A Guide to User-Friendly Bash Prompt: Adding Natural Language Processing Plus Bash Explanation to the Command Interface

Authors: Teh Kean Kheng, Low Soon Yee, Burra Venkata Durga Kumar

Abstract:

In 2022, as the future world becomes increasingly computer-related, more individuals are attempting to study coding for themselves or in school. This is because they have discovered the value of learning code and the benefits it will provide them. But learning coding is difficult for most people. Even senior programmers that have experience for a decade year still need help from the online source while coding. The reason causing this is that coding is not like talking to other people; it has the specific syntax to make the computer understand what we want it to do, so coding will be hard for normal people if they don’t have contact in this field before. Coding is hard. If a user wants to learn bash code with bash prompt, it will be harder because if we look at the bash prompt, we will find that it is just an empty box and waiting for a user to tell the computer what we want to do, if we don’t refer to the internet, we will not know what we can do with the prompt. From here, we can conclude that the bash prompt is not user-friendly for new users who are learning bash code. Our goal in writing this paper is to give an idea to implement a user-friendly Bash prompt in Ubuntu OS using Artificial Intelligent (AI) to lower the threshold of learning in Bash code, to make the user use their own words and concept to write and learn Bash code.

Keywords: user-friendly, bash code, artificial intelligence, threshold, semantic similarity, lexical similarity

Procedia PDF Downloads 131
2512 Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data

Authors: M. Kharrat, G. Moreau, Z. Aboura

Abstract:

The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.

Keywords: acoustic emission, classifier, damage mechanisms, first damage threshold, interlock composite materials, pattern recognition

Procedia PDF Downloads 151
2511 Flood Monitoring in the Vietnamese Mekong Delta Using Sentinel-1 SAR with Global Flood Mapper

Authors: Ahmed S. Afifi, Ahmed Magdy

Abstract:

Satellite monitoring is an essential tool to study, understand, and map large-scale environmental changes that affect humans, climate, and biodiversity. The Sentinel-1 Synthetic Aperture Radar (SAR) instrument provides a high collection of data in all-weather, short revisit time, and high spatial resolution that can be used effectively in flood management. Floods occur when an overflow of water submerges dry land that requires to be distinguished from flooded areas. In this study, we use global flood mapper (GFM), a new google earth engine application that allows users to quickly map floods using Sentinel-1 SAR. The GFM enables the users to adjust manually the flood map parameters, e.g., the threshold for Z-value for VV and VH bands and the elevation and slope mask threshold. The composite R:G:B image results by coupling the bands of Sentinel-1 (VH:VV:VH) reduces false classification to a large extent compared to using one separate band (e.g., VH polarization band). The flood mapping algorithm in the GFM and the Otsu thresholding are compared with Sentinel-2 optical data. And the results show that the GFM algorithm can overcome the misclassification of a flooded area in An Giang, Vietnam.

Keywords: SAR backscattering, Sentinel-1, flood mapping, disaster

Procedia PDF Downloads 95
2510 Statistical Inferences for GQARCH-It\^{o} - Jumps Model Based on The Realized Range Volatility

Authors: Fu Jinyu, Lin Jinguan

Abstract:

This paper introduces a novel approach that unifies two types of models: one is the continuous-time jump-diffusion used to model high-frequency data, and the other is discrete-time GQARCH employed to model low-frequency financial data by embedding the discrete GQARCH structure with jumps in the instantaneous volatility process. This model is named “GQARCH-It\^{o} -Jumps mode.” We adopt the realized range-based threshold estimation for high-frequency financial data rather than the realized return-based volatility estimators, which entail the loss of intra-day information of the price movement. Meanwhile, a quasi-likelihood function for the low-frequency GQARCH structure with jumps is developed for the parametric estimate. The asymptotic theories are mainly established for the proposed estimators in the case of finite activity jumps. Moreover, simulation studies are implemented to check the finite sample performance of the proposed methodology. Specifically, it is demonstrated that how our proposed approaches can be practically used on some financial data.

Keywords: It\^{o} process, GQARCH, leverage effects, threshold, realized range-based volatility estimator, quasi-maximum likelihood estimate

Procedia PDF Downloads 145
2509 Nano-Filled Matrix Reinforced by Woven Carbon Fibers Used as a Sensor

Authors: K. Hamdi, Z. Aboura, W. Harizi, K. Khellil

Abstract:

Improving the electrical properties of organic matrix composites has been investigated in several studies. Thus, to extend the use of composites in more varied application, one of the actual barrier is their poor electrical conductivities. In the case of carbon fiber composites, organic matrix are in charge of the insulating properties of the resulting composite. However, studying the properties of continuous carbon fiber nano-filled composites is less investigated. This work tends to characterize the effect of carbon black nano-fillers on the properties of the woven carbon fiber composites. First of all, SEM observations were performed to localize the nano-particles. It showed that particles penetrated on the fiber zone (figure1). In fact, by reaching the fiber zone, the carbon black nano-fillers created network connectivity between fibers which means an easy pathway for the current. It explains the noticed improvement of the electrical conductivity of the composites by adding carbon black. This test was performed with the four points electrical circuit. It shows that electrical conductivity of 'neat' matrix composite passed from 80S/cm to 150S/cm by adding 9wt% of carbon black and to 250S/cm by adding 17wt% of the same nano-filler. Thanks to these results, the use of this composite as a strain gauge might be possible. By the way, the study of the influence of a mechanical excitation (flexion, tensile) on the electrical properties of the composite by recording the variance of an electrical current passing through the material during the mechanical testing is possible. Three different configuration were performed depending on the rate of carbon black used as nano-filler. These investigation could lead to develop an auto-instrumented material.

Keywords: carbon fibers composites, nano-fillers, strain-sensors, auto-instrumented

Procedia PDF Downloads 400
2508 A Systems-Level Approach towards Transition to Electrical Vehicles

Authors: Mayuri Roy Choudhury, Deepti Paul

Abstract:

Many states in the United States are aiming for high renewable energy targets by the year 2045. In order to achieve this goal, they must do transition to Electrical Vehicles (EVS). We first applied the Multi-Level perspective framework to describe the inter-disciplinary complexities associated with the transition to EVs. Thereafter we addressed these complexities by creating an inter-disciplinary policy framework that uses data science algorithms to create evidence-based policies in favor of EVs. Our policy framework uses a systems level approach as it addresses transitions to EVs from a technology, economic, business and social perspective. By Systems-Level we mean approaching a problem from a multi-disciplinary perspective. Our systems-level approach could be a beneficial decision-making tool to a diverse number of stakeholders such as engineers, entrepreneurs, researchers, and policymakers. In addition, it will add value to the literature of electrical vehicles, sustainable energy, energy economics, and management as well as efficient policymaking.

Keywords: transition, electrical vehicles, systems-level, algorithms

Procedia PDF Downloads 218
2507 Optimizing Power in Sequential Circuits by Reducing Leakage Current Using Enhanced Multi Threshold CMOS

Authors: Patikineti Sreenivasulu, K. srinivasa Rao, A. Vinaya Babu

Abstract:

The demand for portability, performance and high functional integration density of digital devices leads to the scaling of complementary metal oxide semiconductor (CMOS) devices inevitable. The increase in power consumption, coupled with the increasing demand for portable/hand-held electronics, has made power consumption a dominant concern in the design of VLSI circuits today. MTCMOS technology provides low leakage and high performance operation by utilizing high speed, low Vt (LVT) transistors for logic cells and low leakage, high Vt (HVT) devices as sleep transistors. Sleep transistors disconnect logic cells from the supply and/or ground to reduce the leakage in the sleep mode. In this technology, energy consumption while doing the mode transition and minimum time required to turn ON the circuit upon receiving the wake up signal are issues to be considered because these can adversely impact the performance of VLSI circuit. In this paper we are introducing an enhancing method of MTCMOS technology to optimize the power in MTCMOS sequential circuits.

Keywords: power consumption, ultra-low power, leakage, sub threshold, MTCMOS

Procedia PDF Downloads 395
2506 Automatic Diagnosis of Electrical Equipment Using Infrared Thermography

Authors: Y. Laib Dit Leksir, S. Bouhouche

Abstract:

Analysis and processing of data bases resulting from infrared thermal measurements made on the electrical installation requires the development of new tools in order to obtain correct and additional information to the visual inspections. Consequently, the methods based on the capture of infrared digital images show a great potential and are employed increasingly in various fields. Although, there is an enormous need for the development of effective techniques to analyse these data base in order to extract relevant information relating to the state of the equipments. Our goal consists in introducing recent techniques of modeling based on new methods, image and signal processing to develop mathematical models in this field. The aim of this work is to capture the anomalies existing in electrical equipments during an inspection of some machines using A40 Flir camera. After, we use binarisation techniques in order to select the region of interest and we make comparison between these methods of thermal images obtained to choose the best one.

Keywords: infrared thermography, defect detection, troubleshooting, electrical equipment

Procedia PDF Downloads 468
2505 Estimation of Aquifer Parameters Using Vertical Electrical Sounding in Ochudo City, Abakaliki Urban Nigeria

Authors: Moses. O. Eyankware, Benard I. Odoh, Omoleomo O. Omo-Irabor, Alex O. I. Selemo

Abstract:

Knowledge of hydraulic conductivity and transmissivity is essential for the determination of natural water flow through an aquifer. These parameters are commonly estimated from the analysis of electrical conductivity, soil properties and fluid flow data. In order to achieve a faster and cost effective analysis of aquifer parameters in Ochudo City in Abakaliki, this study relied on non-invasive geophysical methods. As part of this approach, Vertical Electrical Sounding (VES) was conducted at 20 sites in the study area for the identification of the vertical variation in subsurface lithology and for the characterization of the groundwater system. The area variously consists of between five to seven geoelectric layers of different thicknesses. Depth to aquifer ranges from 9.94 m-134.0 m while the thickness of the identified aquifer varies between 8.43 m and 44.31 m. Based on the electrical conductivity values of water samples collected from two boreholes and two hand-dug wells within the study area, the hydraulic conductivity was determined to range from 0.10 to 0.433 m/day. The estimated thickness of the aquifer and calculated hydraulic conductivity were used to derive the aquifer transmissivity. The results indicate that this parameter ranges from 1.58-7.56 m²/day with a formation factor of between 0.31-3.6.

Keywords: Asu river group, transmissivity, hydraulic conductivity, abakaliki, vertical electrical sounding (VES)

Procedia PDF Downloads 385
2504 Combining Chiller and Variable Frequency Drives

Authors: Nasir Khalid, S. Thirumalaichelvam

Abstract:

In most buildings, according to US Department of Energy Data Book, the electrical consumption attributable to centralized heating and ventilation of air- condition (HVAC) component can be as high as 40-60% of the total electricity consumption for an entire building. To provide efficient energy management for the market today, researchers are finding new ways to develop a system that can save electrical consumption of buildings even more. In this concept paper, a system known as Intelligent Chiller Energy Efficiency (iCEE) System is being developed that is capable of saving up to 25% from the chiller’s existing electrical energy consumption. In variable frequency drives (VFDs), research has found significant savings up to 30% of electrical energy consumption. Together with the VFDs at specific Air Handling Unit (AHU) of HVAC component, this system will save even more electrical energy consumption. The iCEE System is compatible with any make, model or age of centrifugal, rotary or reciprocating chiller air-conditioning systems which are electrically driven. The iCEE system uses engineering principles of efficiency analysis, enthalpy analysis, heat transfer, mathematical prediction, modified genetic algorithm, psychometrics analysis, and optimization formulation to achieve true and tangible energy savings for consumers.

Keywords: variable frequency drives, adjustable speed drives, ac drives, chiller energy system

Procedia PDF Downloads 552
2503 Automated Ultrasound Carotid Artery Image Segmentation Using Curvelet Threshold Decomposition

Authors: Latha Subbiah, Dhanalakshmi Samiappan

Abstract:

In this paper, we propose denoising Common Carotid Artery (CCA) B mode ultrasound images by a decomposition approach to curvelet thresholding and automatic segmentation of the intima media thickness and adventitia boundary. By decomposition, the local geometry of the image, its direction of gradients are well preserved. The components are combined into a single vector valued function, thus removes noise patches. Double threshold is applied to inherently remove speckle noise in the image. The denoised image is segmented by active contour without specifying seed points. Combined with level set theory, they provide sub regions with continuous boundaries. The deformable contours match to the shapes and motion of objects in the images. A curve or a surface under constraints is developed from the image with the goal that it is pulled into the necessary features of the image. Region based and boundary based information are integrated to achieve the contour. The method treats the multiplicative speckle noise in objective and subjective quality measurements and thus leads to better-segmented results. The proposed denoising method gives better performance metrics compared with other state of art denoising algorithms.

Keywords: curvelet, decomposition, levelset, ultrasound

Procedia PDF Downloads 332
2502 Resistive Switching Characteristics of Resistive Random Access Memory Devices after Furnace Annealing Processes

Authors: Chi-Yan Chu, Kai-Chi Chuang, Huang-Chung Cheng

Abstract:

In this study, the RRAM devices with the TiN/Ti/HfOx/TiN structure were fabricated, then the electrical characteristics of the devices without annealing and after 400 °C and 500 °C of the furnace annealing (FA) temperature processes were compared. The RRAM devices after the FA’s 400 °C showed the lower forming, set and reset voltages than the other devices without annealing. However, the RRAM devices after the FA’s 500 °C did not show any electrical characteristics because the TiN/Ti/HfOx/TiN device was oxidized, as shown in the XPS analysis. From these results, the RRAM devices after the FA’s 400 °C showed the best electrical characteristics.

Keywords: RRAM, furnace annealing (FA), forming, set and reset voltages, XPS

Procedia PDF Downloads 365
2501 Effects of Biocompatible Substrates on the Electrical Properties of Graphene

Authors: M. Simchi, M. Amiri, E. Rezvani, I. Mirzaei, M. Berahman, A. Simchi, M. Fardmanesh

Abstract:

Graphene is a single-atomic two-dimensional crystal of carbon atoms that has considerable properties due to its unique structure and physics with applications in different fields. Graphene has sensitive electrical properties due to its atomic-thin structure. Along with the substrate materials and their influence on the transport properties in graphene, design and fabrication of graphene-based devices for biomedical and biosensor applications are challenging. In this work, large-area high-quality graphene nanosheets were prepared by low pressure chemical vapor deposition using methane gas as carbon source on copper foil and transferred on the biocompatible substrates. Through deposition of titanium and gold contacts, current-voltage response of the transferred graphene on four biocompatible substrates, including PDMS, SU-8, Nitrocellulose, and Kapton (Fig. 2) were experimentally determined. The considerable effect of the substrate type on the electrical properties of graphene is shown. The sheet resistance of graphene is changed from 0.34 to 14.5 kΩ/sq, depending on the substrate.

Keywords: biocompatible substrates, electrical properties, graphene, sheet resistance

Procedia PDF Downloads 126
2500 Automatic Integrated Inverter Type Smart Device for Safe Kitchen

Authors: K. M. Jananni, R. Nandini

Abstract:

The proposed wireless, inverter type design of a LPG leakage monitoring system aims to provide a smart and safe kitchen. The system detects the LPG gas leak using Nano-sensors and alerts the concerned individual through GSM system. The system uses two sensors, one attached to the chimney and other to the regulator of the LPG cylinder. Upon a leakage being detected, the sensor at the regulator actuates the system to cut off the gas supply immediately using a solenoid control valve. The sensor at the chimney checks for the permissible level of LPG mix in the air and when the level exceeds the threshold, the system sends an automatic SMS to the numbers saved. Further the sensor actuates the mini suction system fixed at the chimney within 20 seconds of a leakage to suck out the gas until the level falls well below the threshold. As a safety measure, an automatic window opening and alarm feature is also incorporated into the system. The key feature of this design is that the system is provided with a special inverter designed to make the device function effectively even during power failures. In this paper, utilization of sensors in the kitchen area is discussed and this gives the proposed architecture for real time field monitoring with a PIC Micro-controller.

Keywords: nano sensors, global system for mobile communication, GSM, micro controller, inverter

Procedia PDF Downloads 467
2499 Microstructure, Mechanical, Electrical and Thermal Properties of the Al-Si-Ni Ternary Alloy

Authors: Aynur Aker, Hasan Kaya

Abstract:

In recent years, the use of the aluminum based alloys in the industry and technology are increasing. Alloying elements in aluminum have further been improving the strength and stiffness properties that provide superior compared to other metals. In this study, investigation of physical properties (microstructure, microhardness, tensile strength, electrical conductivity and thermal properties) in the Al-12.6wt.%Si-%2wt.Ni ternary alloy were investigated. Al-Si-Ni alloy was prepared in a graphite crucible under vacuum atmosphere. The samples were directionally solidified upwards with different growth rate (V) at constant temperature gradient G (7.73 K/mm). The microstructures (flake spacings, λ), microhardness (HV), ultimate tensile strength, electrical resistivity and thermal properties enthalpy of fusion and specific heat and melting temperature) of the samples were measured. Influence of the growth rate and flake spacings on microhardness, ultimate tensile strength and electrical resistivity were investigated and relationships between them were experimentally obtained by using regression analysis. According to results, λ values decrease with increasing V, but microhardness, ultimate tensile strength, electrical resistivity values increase with increasing V. Variations of electrical resistivity for cast samples with the temperature in the range of 300-1200 K were also measured by using a standard dc four-point probe technique. The enthalpy of fusion and specific heat for the same alloy was also determined by means of differential scanning calorimeter (DSC) from heating trace during the transformation from liquid to solid. The results obtained in this work were compared with the previous similar experimental results obtained for binary and ternary alloys.

Keywords: electrical resistivity, enthalpy, microhardness, solidification, tensile stress

Procedia PDF Downloads 368
2498 Epidemiological Analysis of Measles Outbreak in North-Kazakhstan Region of the Republic of Kazakhstan

Authors: Fatima Meirkhankyzy Shaizadina, Alua Oralovna Omarova, Praskovya Mikhailovna Britskaya, Nessipkul Oryntayevna Alysheva

Abstract:

In recent years in the Republic of Kazakhstan there have been registered outbreaks of measles among the population. The objective of work was the analysis of outbreak of measles in 2014 among the population of North-Kazakhstan region of the Republic of Kazakhstan. For the analysis of the measles outbreak descriptive and analytical research, techniques were used and threshold levels of morbidity were calculated. The increase of incidence was noted from March to July. The peak was registered in May and made 9.0 per 100000 population. High rates were registered in April – 5.7 per 100000 population, and in June and July they made 5.7 and 3.1 respectively. Duration of the period of increase made 5 months. The analysis of monthly incidence of measles revealed spring and summer seasonality. Across the territory it was established that 69.2% of cases were registered in the city, 29.1% in rural areas and 1.7% of cases were brought in from other regions of Kazakhstan. The registered cases and threshold values of measles during the outbreak revealed that from 12 to 24 week, and also during the 40th week the cases exceeding the threshold levels are registered. Thus, for example, for the analyzed 1 week the number of the revealed patients made 4, which exceeds the calculated threshold value (3) by 33.3%. The data exceeding the threshold values confirm the emergence of a disease outbreak or the beginning of epidemic rise in morbidity. Epidemic rise in incidence of the population of North-Kazakhstan region was observed throughout 2014. The risk group includes 0-4 year-old children, who made 22.7%, 15-19 year-olds – 25.6%, 20-24 year-olds – 20.9%. The analysis of measles cases registration by gender revealed that women are registered 1.1 times more often than men. The ratio of women to men made 1:0.87. In social and professional groups often ill are unorganized children – 23.3% and students – 19.8%. Studying clinical manifestations of measles in the hospitalized patients, the typical beginning of a disease with expressed intoxication symptoms – weakness, sickliness was established. In individual cases expressed intoxication symptoms, hemorrhagic and dyspeptic syndromes, complications in the form of overlay of a secondary bacterial infection, which defined high severity of the illness, were registered both in adults and in children. The average duration of stay of patients in the hospital made 6.9 days. The average duration of time between date of getting the disease and date of delivery of health care made 3.6 days. Thus, the analysis of monthly incidence of measles revealed spring and summer seasonality, the peak of which was registered in May. Urban dwellers are ill more often (69.2%), while in rural areas people are ill more rarely (29.1%). Throughout 2014 an epidemic rise in incidence of the population of North-Kazakhstan region was observed. Risk group includes: children under 4 – 22.7%, 15-19 year-olds – 25.6%, 20-24 year-olds – 20.9%. The ratio of women and men made 1:0.87. The typical beginning of a disease in all hospitalized with the expressed intoxication symptoms – weakness, sickliness was established.

Keywords: epidemiological analysis, measles, morbidity, outbreak

Procedia PDF Downloads 213
2497 Measuring of the Volume Ratio of Two Immiscible Liquids Using Electrical Impedance Tomography

Authors: Jiri Primas, Michal Malik, Darina Jasikova, Michal Kotek, Vaclav Kopecky

Abstract:

Authors of this paper discuss the measuring of volume ratio of two immiscible liquids in the homogenous mixture using the industrial Electrical Impedance Tomography (EIT) system ITS p2+. In the first part of the paper, the principle of EIT and the basic theory of conductivity of mixture of two components are stated. In the next part, the experiment with water and olive oil mixed with Rushton turbine is described, and the measured results are used to verify the theory. In the conclusion, the results are discussed in detail, and the accuracy of the measuring method and its advantages are also mentioned.

Keywords: conductivity, electrical impedance tomography, homogenous mixture, mixing process

Procedia PDF Downloads 391
2496 Preparation and Study Corrosion and Electrical Resistivity of Al-Ni-Cr Alloy

Authors: Khalid H. Abass

Abstract:

Al-Ni-Cr alloy contains different ratios of Ni and Cr was prepared by mixing Al, Ni and Cr at 800oC under an argon atmosphere. The prepared alloys were heated for 1300 hr to 560oC, and then cooled rapidly by water at the ambient temperature. Surface morphology for alloys is studied by scanning electron microscope (SEM). The resultant homogeneous surface is a result of heat treatment. The X-ray diffraction patterns showed (111), (200), and (220) diffraction lines from cubic Al crystal structure, and suggested that the intensity of peak (111) orientation is predominant. Three binary phases were observed and grown in alloys: Al3Ni (Orthorhombic, a = 6.598Ǻ, b = 7.352 Ǻ, c = 4.802 Ǻ), Cr9Al17 (Rhombohedra, a = 12.910 Ǻ, c = 15.677), and Ni2Cr3 (Tetragonal, a = 8.82 Ǻ, c = 4.58 Ǻ). The average crystallite sizes of the prepared samples were found to be from 3000 to 3094 nm by SEM, which is much smaller than that estimated from XRD data. Corrosion resistance increases with increasing Ni-Cr content in Al alloys. The electrical volume resistivity decreased with increasing Ni-Cr content at low frequency. This behavior can be seen generally at 50Hz, where the electrical volume resistivity reached the value of 3.98×10-8Ω.cm for the ratio Al-1.8 at.%Ni-0.18at.%Cr.

Keywords: Al-Ni-Cr alloy, corrosion current, electrical volume resistivity, binary phase, homogeneous surface

Procedia PDF Downloads 384
2495 Contribution of Hydrogen Peroxide in the Selective Aspect of Prostate Cancer Treatment by Cold Atmospheric Plasma

Authors: Maxime Moreau, Silvère Baron, Jean-Marc Lobaccaro, Karine Charlet, Sébastien Menecier, Frédéric Perisse

Abstract:

Cold Atmospheric Plasma (CAP) is an ionized gas generated at atmospheric pressure with the temperature of heavy particles (molecules, ions, atoms) close to the room temperature. Recent studies have shown that both in-vitro and in-vivo plasma exposition to many cancer cell lines are efficient to induce the apoptotic way of cell death. In some other works, normal cell lines seem to be less impacted by plasma than cancer cell lines. This is called selectivity of plasma. It is highly likely that the generated RNOS (Reactive Nitrogen Oxygen Species) in the plasma jet, but also in the medium, play a key-role in this selectivity. In this study, two CAP devices will be compared to electrical power, chemical species composition and their efficiency to kill cancer cells. A particular focus on the action of hydrogen peroxide will be made. The experiments will take place as described next for both devices: electrical and spectroscopic characterization for different voltages, plasma treatment of normal and cancer cells to compare the CAP efficiency between cell lines and to show that death is induced by an oxidative stress. To enlighten the importance of hydrogen peroxide, an inhibitor of H2O2 will be added in cell culture medium before treatment and a comparison will be made between the results of cell viability in this case and those from a simple plasma exposition. Besides, H2O2 production will be measured by only treating medium with plasma. Cell lines will also be exposed to different concentrations of hydrogen peroxide in order to characterize the cytotoxic threshold for cells and to make a comparison with the quantity of H2O2 produced by CAP devices. Finally, the activity of catalase for different cell lines will be quantified. This enzyme is an important antioxidant agent against hydrogen peroxide. A correlation between cells response to plasma exposition and this activity could be a strong argument in favor of the predominant role of H2O2 to explain the selectivity of plasma cancer treatment by cold atmospheric plasma.

Keywords: cold atmospheric plasma, hydrogen peroxide, prostate cancer, selectivity

Procedia PDF Downloads 139
2494 Delineation of Soil Physical Properties Using Electrical Conductivity, Case Study: Volcanic Soil Simulation Model

Authors: Twin Aji Kusumagiani, Eleonora Agustine, Dini Fitriani

Abstract:

The value changes of soil physical properties in the agricultural area are giving impacts on soil fertility. This can be caused by excessive usage of inorganic fertilizers and imbalances on organic fertilization. Soil physical parameters that can be measured include soil electrical conductivity, water content volume, soil porosity, dielectric permittivity, etc. This study used the electrical conductivity and volume water content as the measured physical parameters. The study was conducted on volcanic soil obtained from agricultural land conditioned with NPK fertilizer and salt in a certain amount. The dimension of the conditioned soil being used is 1 x 1 x 0.5 meters. By using this method, we can delineate the soil electrical conductivity value of land due to changes in the provision of inorganic NPK fertilizer and the salinity in the soil. Zone with the additional 1 kg of salt has the dimension of 60 cm in width, 20 cm in depth and 1 cm in thickness while zone with the additional of 10 kg NPK fertilizer has the dimensions of 70 cm in width, 20 cm in depth and 3 cm in thickness. This salt addition resulted in EC values changes from the original condition. Changes of the EC value tend to occur at a depth of 20 to 40 cm on the line 1B at 9:45 dS/cm and line 1C of 9.35 dS/cm and tend to have the direction to the Northeast.

Keywords: EC, electrical conductivity, VWC, volume water content, NPK fertilizer, salt, volcanic soil

Procedia PDF Downloads 304
2493 A Clinician’s Perspective on Electroencephalography Annotation and Analysis for Driver Drowsiness Estimation

Authors: Ruxandra Aursulesei, David O’Callaghan, Cian Ryan, Diarmaid O’Cualain, Viktor Varkarakis, Alina Sultana, Joseph Lemley

Abstract:

Human errors caused by drowsiness are among the leading causes of road accidents. Neurobiological research gives information about the electrical signals emitted by neurons firing within the brain. Electrical signal frequencies can be determined by attaching bio-sensors to the head surface. By observing the electrical impulses and the rhythmic interaction of neurons with each other, we can predict the mental state of a person. In this paper, we aim to better understand intersubject and intrasubject variability in terms of electrophysiological patterns that occur at the onset of drowsiness and their evolution with the decreasing of vigilance. The purpose is to lay the foundations for an algorithm that detects the onset of drowsiness before the physical signs become apparent.

Keywords: electroencephalography, drowsiness, ADAS, annotations, clinician

Procedia PDF Downloads 101