Search results for: clinical deterioration prediction
6074 Molecular Interaction of Acetylcholinesterase with Flavonoids Involved in Neurodegenerative Diseases
Authors: W. Soufi, F. Boukli Hacene, S. Ghalem
Abstract:
Alzheimer's disease (AD) is a neurodegenerative disease that leads to a progressive and permanent deterioration of nerve cells. This disease is progressively accompanied by an intellectual deterioration leading to psychological manifestations and behavioral disorders that lead to a loss of autonomy. It is the most frequent of degenerative dementia. Alzheimer's disease (AD), which affects a growing number of people, has become a major public health problem in a few years. In the context of the study of the mechanisms governing the evolution of AD disease, we have found that natural flavonoids are good acetylcholinesterase inhibitors that reduce the rate of ßA secretion in neurons. This work is to study the inhibition of acetylcholinesterase (AChE) which is an enzyme involved in Alzheimer's disease, by methods of molecular modeling. These results will probably help in the development of an effective therapeutic tool in the fight against the development of Alzheimer's disease. Our goal of the research is to study the inhibition of acetylcholinesterase (AChE) by molecular modeling methods.Keywords: Alzheimer's disease, acetylcholinesterase, flavonoids, molecular modeling
Procedia PDF Downloads 1056073 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms
Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang
Abstract:
Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.Keywords: bioassay, machine learning, preprocessing, virtual screen
Procedia PDF Downloads 2746072 Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks
Authors: Anne-Lena Kampen, Øivind Kure
Abstract:
Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.Keywords: central machine learning, embedded machine learning, energy consumption, local machine learning, wireless sensor networks, WSN
Procedia PDF Downloads 1536071 A Type-2 Fuzzy Model for Link Prediction in Social Network
Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi
Abstract:
Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.Keywords: social network, link prediction, granular computing, type-2 fuzzy sets
Procedia PDF Downloads 3266070 Diagnostic Yield of CT PA and Value of Pre Test Assessments in Predicting the Probability of Pulmonary Embolism
Authors: Shanza Akram, Sameen Toor, Heba Harb Abu Alkass, Zainab Abdulsalam Altaha, Sara Taha Abdulla, Saleem Imran
Abstract:
Acute pulmonary embolism (PE) is a common disease and can be fatal. The clinical presentation is variable and nonspecific, making accurate diagnosis difficult. Testing patients with suspected acute PE has increased dramatically. However, the overuse of some tests, particularly CT and D-dimer measurement, may not improve care while potentially leading to patient harm and unnecessary expense. CTPA is the investigation of choice for PE. Its easy availability, accuracy and ability to provide alternative diagnosis has lowered the threshold for performing it, resulting in its overuse. Guidelines have recommended the use of clinical pretest probability tools such as ‘Wells score’ to assess risk of suspected PE. Unfortunately, implementation of guidelines in clinical practice is inconsistent. This has led to low risk patients being subjected to unnecessary imaging, exposure to radiation and possible contrast related complications. Aim: To study the diagnostic yield of CT PA, clinical pretest probability of patients according to wells score and to determine whether or not there was an overuse of CTPA in our service. Methods: CT scans done on patients with suspected P.E in our hospital from 1st January 2014 to 31st December 2014 were retrospectively reviewed. Medical records were reviewed to study demographics, clinical presentation, final diagnosis, and to establish if Wells score and D-Dimer were used correctly in predicting the probability of PE and the need for subsequent CTPA. Results: 100 patients (51male) underwent CT PA in the time period. Mean age was 57 years (24-91 years). Majority of patients presented with shortness of breath (52%). Other presenting symptoms included chest pain 34%, palpitations 6%, collapse 5% and haemoptysis 5%. D Dimer test was done in 69%. Overall Wells score was low (<2) in 28 %, moderate (>2 - < 6) in 47% and high (> 6) in 15% of patients. Wells score was documented in medical notes of only 20% patients. PE was confirmed in 12% (8 male) patients. 4 had bilateral PE’s. In high-risk group (Wells > 6) (n=15), there were 5 diagnosed PEs. In moderate risk group (Wells >2 - < 6) (n=47), there were 6 and in low risk group (Wells <2) (n=28), one case of PE was confirmed. CT scans negative for PE showed pleural effusion in 30, Consolidation in 20, atelactasis in 15 and pulmonary nodule in 4 patients. 31 scans were completely normal. Conclusion: Yield of CT for pulmonary embolism was low in our cohort at 12%. A significant number of our patients who underwent CT PA had low Wells score. This suggests that CT PA is over utilized in our institution. Wells score was poorly documented in medical notes. CT-PA was able to detect alternative pulmonary abnormalities explaining the patient's clinical presentation. CT-PA requires concomitant pretest clinical probability assessment to be an effective diagnostic tool for confirming or excluding PE. . Clinicians should use validated clinical prediction rules to estimate pretest probability in patients in whom acute PE is being considered. Combining Wells scores with clinical and laboratory assessment may reduce the need for CTPA.Keywords: CT PA, D dimer, pulmonary embolism, wells score
Procedia PDF Downloads 2316069 Fast Authentication Using User Path Prediction in Wireless Broadband Networks
Authors: Gunasekaran Raja, Rajakumar Arul, Kottilingam Kottursamy, Ramkumar Jayaraman, Sathya Pavithra, Swaminathan Venkatraman
Abstract:
Wireless Interoperability for Microwave Access (WiMAX) utilizes the IEEE 802.1X mechanism for authentication. However, this mechanism incurs considerable delay during handoffs. This delay during handoffs results in service disruption which becomes a severe bottleneck. To overcome this delay, our article proposes a key caching mechanism based on user path prediction. If the user mobility follows that path, the user bypasses the normal IEEE 802.1X mechanism and establishes the necessary authentication keys directly. Through analytical and simulation modeling, we have proved that our mechanism effectively decreases the handoff delay thereby achieving fast authentication.Keywords: authentication, authorization, and accounting (AAA), handoff, mobile, user path prediction (UPP) and user pattern
Procedia PDF Downloads 4056068 Effect of Environmental Stress Factors on the Degradation of Display Glass
Authors: Jinyoung Choi, Hyun-A Kim, Sunmook Lee
Abstract:
The effects of environmental stress factors such as storage conditions on the deterioration phenomenon and the characteristic of the display glass were studied. In order to investigate the effect of chemical stress on the glass during the period of storage, the respective components of commercial glass were first identified by XRF (X-ray fluorescence). The glass was exposed in the acid, alkali, neutral environment for about one month. Thin film formed on the glass surface was analyzed by XRD (X-ray diffraction) and FT-IR (Fourier transform infrared). The degree of corrosion and the rate of deterioration of each sample were confirmed by measuring the concentrations of silicon, calcium and chromium with ICP-OES (Inductively coupled plasma-optical emission spectrometry). The optical properties of the glass surface were confirmed by SEM (Scanning electron microscope) before and after the treatment. Acknowledgement—The authors gratefully acknowledge the financial support from the Ministry of Trade, Industry and Energy (Grant Number: 10076817)Keywords: corrosion, degradation test, display glass, environmental stress factor
Procedia PDF Downloads 4596067 Prevention of Heart Failure Progression in Patients with Post-Infarction Cardiosclerosis After Coronavirus Infection
Authors: Sujayeva V. A., Karpova I. S., Koslataya O. V., Kolyadko M. G., Russkikh I. I., Vankovich E. A.
Abstract:
Objective: The goal of this study is to develop a method for the prevention of the progression of heart failure (HF) in patients with post-infarction cardiosclerosis who have suffered coronavirus infection. Methods: 135 patients with post-infarction cardiosclerosis were divided into 2 groups: Group I - patients who had suffered COVID-19 - 85 people, and Group II - patients who had not suffered COVID-19 - 50 people. Patients of group I, depending on the level of N-terminal fragment of natriuretic peptide (NTproBNP), were divided into 2 subgroups - subgroup A - with HF - 40 people, subgroup B - without HF - 45 people. All patients underwent a clinical examination, echocardiography, electrocardiotopography in 60 leads, computed angiography of the coronary arteries, heart magnetic resonance imaging, NTproBNP. Results: In the post-Covid period, in patients with post-infarction cardiosclerosis, remodeling of the left ventricle and right parts of the heart, deterioration of the systolic-diastolic function of both ventricles, increased pressure in the pulmonary artery, progression of coronary artery atherosclerosis, and an increase in the size of myocardial fibrosis were revealed. The consequence of these changes was the progression of heart failure. The developed method of medical prevention made it possible to improve the clinical course of coronary artery disease and prevent the progression of chronic heart failure in patients with post-infarction cardiosclerosis. Conclusions: In patients with post-infarction cardiosclerosis who initially had HF, after 1 year, according to laboratory and instrumental data, a slight decrease in its severity was revealed. In patients with post-infarction cardiosclerosis who did not have HF before COVID-19, HF developed 1 year after the coronavirus disease, which may be due to the identified process of myocardial fibrosis, which dictates the need to prevent the development of HF in patients with post-infarction cardiosclerosis, even those who did not initially have HF. The proposed method of medical prevention made it possible to improve the clinical course of coronary artery disease in patients with post-infarction cardiosclerosis after COVID-19, both in persons with and without HF, when included in the study. A method of medical prevention in people with post-infarction cardiosclerosis after COVID-19 infection, including spironolactone, loop diuretics, empagliflozin, sacubitril/valsartan, helped prevent the progression of HF.Keywords: elderly, myocardial infarction, COVID-19, prevention
Procedia PDF Downloads 226066 Estimation of Sediment Transport into a Reservoir Dam
Authors: Kiyoumars Roushangar, Saeid Sadaghian
Abstract:
Although accurate sediment load prediction is very important in planning, designing, operating and maintenance of water resources structures, the transport mechanism is complex, and the deterministic transport models are based on simplifying assumptions often lead to large prediction errors. In this research, firstly, two intelligent ANN methods, Radial Basis and General Regression Neural Networks, are adopted to model of total sediment load transport into Madani Dam reservoir (north of Iran) using the measured data and then applicability of the sediment transport methods developed by Engelund and Hansen, Ackers and White, Yang, and Toffaleti for predicting of sediment load discharge are evaluated. Based on comparison of the results, it is found that the GRNN model gives better estimates than the sediment rating curve and mentioned classic methods.Keywords: sediment transport, dam reservoir, RBF, GRNN, prediction
Procedia PDF Downloads 4966065 African Horse Sickness a Possible Threat to Horses in Al-Baha
Authors: Ghanem Al-Ghamdi
Abstract:
African Horse Sickness causes significant challenges to horse practitioners and owners in Africa and possibly in certain locations in the Arab Pensila. The aim of this work was to observe a hot spot of epidemic in Al-Baha, Southwestern of Saudi Arabia that could be AHS. A five year-old horse farm that had eight horses with no history of clinical problems was visited in late October 2014. In August 2014, horses showed clinical signs of severe pain, congestion of mucus membranes, foam oozing of the nose, recumbency, difficult breath and ultimately death. The course of the disease averaged 2 days. The farm had no previous history of this episode. Other animals including camel, sheep reside the same farm sharing feeding and water sources however no obvious similar clinical problems were noticed among the two species. Five horses showed the clinical disease and all horses were lost. Veterinary help was not available for diagnosis or treatment. A follow up visit to the farm after one year indicated that the three remaining horses were healthy but were relocated to a different facility out the Al-Baha Region. The most likely cause of such clinical problem is African Horse Sickness, however clinical exam and sampling of other horses in the region is absolute must as well as examining arthropods.Keywords: African horse sickness, horses, Al-Baha, Saudi Arabia
Procedia PDF Downloads 3496064 Trabecular Bone Radiograph Characterization Using Fractal, Multifractal Analysis and SVM Classifier
Authors: I. Slim, H. Akkari, A. Ben Abdallah, I. Bhouri, M. Hedi Bedoui
Abstract:
Osteoporosis is a common disease characterized by low bone mass and deterioration of micro-architectural bone tissue, which provokes an increased risk of fracture. This work treats the texture characterization of trabecular bone radiographs. The aim was to analyze according to clinical research a group of 174 subjects: 87 osteoporotic patients (OP) with various bone fracture types and 87 control cases (CC). To characterize osteoporosis, Fractal and MultiFractal (MF) methods were applied to images for features (attributes) extraction. In order to improve the results, a new method of MF spectrum based on the q-stucture function calculation was proposed and a combination of Fractal and MF attributes was used. The Support Vector Machines (SVM) was applied as a classifier to distinguish between OP patients and CC subjects. The features fusion (fractal and MF) allowed a good discrimination between the two groups with an accuracy rate of 96.22%.Keywords: fractal, micro-architecture analysis, multifractal, osteoporosis, SVM
Procedia PDF Downloads 3926063 Protein Tertiary Structure Prediction by a Multiobjective Optimization and Neural Network Approach
Authors: Alexandre Barbosa de Almeida, Telma Woerle de Lima Soares
Abstract:
Protein structure prediction is a challenging task in the bioinformatics field. The biological function of all proteins majorly relies on the shape of their three-dimensional conformational structure, but less than 1% of all known proteins in the world have their structure solved. This work proposes a deep learning model to address this problem, attempting to predict some aspects of the protein conformations. Throughout a process of multiobjective dominance, a recurrent neural network was trained to abstract the particular bias of each individual multiobjective algorithm, generating a heuristic that could be useful to predict some of the relevant aspects of the three-dimensional conformation process formation, known as protein folding.Keywords: Ab initio heuristic modeling, multiobjective optimization, protein structure prediction, recurrent neural network
Procedia PDF Downloads 2056062 Review: Wavelet New Tool for Path Loss Prediction
Authors: Danladi Ali, Abdullahi Mukaila
Abstract:
In this work, GSM signal strength (power) was monitored in an indoor environment. Samples of the GSM signal strength was measured on mobile equipment (ME). One-dimensional multilevel wavelet is used to predict the fading phenomenon of the GSM signal measured and neural network clustering to determine the average power received in the study area. The wavelet prediction revealed that the GSM signal is attenuated due to the fast fading phenomenon which fades about 7 times faster than the radio wavelength while the neural network clustering determined that -75dBm appeared more frequently followed by -85dBm. The work revealed that significant part of the signal measured is dominated by weak signal and the signal followed more of Rayleigh than Gaussian distribution. This confirmed the wavelet prediction.Keywords: decomposition, clustering, propagation, model, wavelet, signal strength and spectral efficiency
Procedia PDF Downloads 4486061 Artificial Intelligence-Generated Previews of Hyaluronic Acid-Based Treatments
Authors: Ciro Cursio, Giulia Cursio, Pio Luigi Cursio, Luigi Cursio
Abstract:
Communication between practitioner and patient is of the utmost importance in aesthetic medicine: as of today, images of previous treatments are the most common tool used by doctors to describe and anticipate future results for their patients. However, using photos of other people often reduces the engagement of the prospective patient and is further limited by the number and quality of pictures available to the practitioner. Pre-existing work solves this issue in two ways: 3D scanning of the area with manual editing of the 3D model by the doctor or automatic prediction of the treatment by warping the image with hand-written parameters. The first approach requires the manual intervention of the doctor, while the second approach always generates results that aren’t always realistic. Thus, in one case, there is significant manual work required by the doctor, and in the other case, the prediction looks artificial. We propose an AI-based algorithm that autonomously generates a realistic prediction of treatment results. For the purpose of this study, we focus on hyaluronic acid treatments in the facial area. Our approach takes into account the individual characteristics of each face, and furthermore, the prediction system allows the patient to decide which area of the face she wants to modify. We show that the predictions generated by our system are realistic: first, the quality of the generated images is on par with real images; second, the prediction matches the actual results obtained after the treatment is completed. In conclusion, the proposed approach provides a valid tool for doctors to show patients what they will look like before deciding on the treatment.Keywords: prediction, hyaluronic acid, treatment, artificial intelligence
Procedia PDF Downloads 1146060 Contrasting The Water Consumption Estimation Methods
Authors: Etienne Alain Feukeu, L. W. Snyman
Abstract:
Water scarcity is becoming a real issue nowadays. Most countries in the world are facing it in their own way based on their own geographical coordinate and condition. Many countries are facing a challenge of a growing water demand as a result of not only an increased population, economic growth, but also as a pressure of the population dynamic and urbanization. In view to mitigate some of this related problem, an accurate method of water estimation and future prediction, forecast is essential to guarantee not only the sufficient quantity, but also a good water distribution and management system. Beside the fact that several works have been undertaken to address this concern, there is still a considerable disparity between different methods and standard used for water prediction and estimation. Hence this work contrast and compare two well-defined and established methods from two countries (USA and South Africa) to demonstrate the inconsistency when different method and standards are used interchangeably.Keywords: water scarcity, water estimation, water prediction, water forecast.
Procedia PDF Downloads 2016059 Fecal Immunochemical Testing to Deter Colon Cancer
Authors: Valerie A. Conrade
Abstract:
Introduction: A large body of literature suggests patients who complete fecal immunochemical testing (FIT) kits are likely to identify colorectal cancer sooner than those who do not complete FIT kits. Background: Patients who do not participate in preventative measures such as the FIT kit are at a higher risk of colorectal cancer growing unnoticed. The objective was to see if the method the principal investigator (PI) uses to educate clinical staff on the importance of FIT kit administration provides an increased amount of FIT kit dissemination to patients post clinical education. Methodologies: Data collection via manual tallies took place before and after the clinical staff was educated on the importance of FIT kits. Results: The results showed an increase in FIT kit dissemination post clinical staff education. Through enhanced instruction to the clinical staff regarding the importance of FIT kits, expanding their knowledge on preventative measures to detect colorectal cancer positively impacted nurses and, in turn, their patients.Keywords: colon cancer, education, fecal immunochemical testing, nursing
Procedia PDF Downloads 1376058 Analytical Study and Conservation Processes of a Wooden Coffin of Middel Kingdom, Ancient Egypt
Authors: Mohamed Ahmed Abd El Kader
Abstract:
This paper describes the conservation processes of an Ancient Egyptian wooden coffin dating back to the Middle Kingdom, ancient Egypt, using several scientific and analytical methods in order to provide a deeper understanding of the deterioration status and a greater awareness of how well preserved the object is. Visual observation and 2D Programs, as well as Optical Microscopy (OM), Environmental scanning Electron Microscopy (ESEM), X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were used in our study. The identification of wood species and the composition of the pigments and previous restoration materials were made. The coffin was previously conserved and stored in improper conditions, which led to its further deterioration; the surface of the lid dust, which obscured the decorations as well as all necessary restoration work was promptly carried out as soon as the coffin was transferred from the display hall from the Egyptian Museum to the Wood Conservation Laboratory of the Grand Egyptian Museum-Conservation Center (GEM-CC). The analyses provided detailed information concerning the original materials and the materials added during the previous treatment interventions, which was considered when applying the conservation plan. Conservation procedures have been applied with high accuracy to conserve the coffin including cleaning, consolidation of fragile painted layers, and the wooden boards forming the sides of the coffin were reassembled in their original positions. The materials and methods that were applied were extremely effective in stability and reinforcement of the coffin without harmfulness to the original materials and the coffin was successfully conserved and ready to display in the Grand Egyptian Museum (GEM).Keywords: coffin, middle kingdom, deterioration, 2d program
Procedia PDF Downloads 536057 Prediction on the Pursuance of Separation of Catalonia from Spain
Authors: Francis Mark A. Fernandez, Chelca Ubay, Armithan Suguitan
Abstract:
Regions or provinces in a definite state certainly contribute to the economy of their mainland. These regions or provinces are the ones supplying the mainland with different resources and assets. Thus, with a certain region separating from the mainland would indeed impinge the heart of an entire state to develop and expand. With these, the researchers decided to study on the effects of the separation of one’s region to its mainland and the consequences that will take place if the mainland would rule out the region to separate from them. The researchers wrote this paper to present the causes of the separation of Catalonia from Spain and the prediction regarding the pursuance of this region to revolt from its mainland, Spain. In conducting this research, the researchers utilized two analyses, namely: qualitative and quantitative. In qualitative, numerous of information regarding the existing experiences of the citizens of Catalonia were gathered by the authors to give certainty to the prediction of the researchers. Besides this undertaking, the researchers will also gather needed information and figures through books, journals and the published news and reports. In addition, to further support this prediction under qualitative analysis, the researchers intended to operate the Phenomenological research in which the examiners will exemplify the lived experiences of each citizen in Catalonia. Moreover, the researchers will utilize one of the types of Phenomenological research which is hermeneutical phenomenology by Van Manen. In quantitative analysis, the researchers utilized the regression analysis in which it will ascertain the causality in an underlying theory in understanding the relationship of the variables. The researchers assigned and identified different variables, wherein the dependent variable or the y which represents the prediction of the researchers, the independent variable however or the x represents the arising problems that grounds the partition of the region, the summation of the independent variable or the ∑x represents the sum of the problem and finally the summation of the dependent variable or the ∑y is the result of the prediction. With these variables, using the regression analysis, the researchers will be able to show the connections and how a single variable could affect the other variables. From these approaches, the prediction of the researchers will be specified. This research could help different states dealing with this kind of problem. It will further help certain states undergoing this problem by analyzing the causes of these insurgencies and the effects on it if it will obstruct its region to consign their full-pledge autonomy.Keywords: autonomy, liberty, prediction, separation
Procedia PDF Downloads 2506056 A New Prediction Model for Soil Compression Index
Authors: D. Mohammadzadeh S., J. Bolouri Bazaz
Abstract:
This paper presents a new prediction model for compression index of fine-grained soils using multi-gene genetic programming (MGGP) technique. The proposed model relates the soil compression index to its liquid limit, plastic limit and void ratio. Several laboratory test results for fine-grained were used to develop the models. Various criteria were considered to check the validity of the model. The parametric and sensitivity analyses were performed and discussed. The MGGP method was found to be very effective for predicting the soil compression index. A comparative study was further performed to prove the superiority of the MGGP model to the existing soft computing and traditional empirical equations.Keywords: new prediction model, compression index soil, multi-gene genetic programming, MGGP
Procedia PDF Downloads 3756055 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study
Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng
Abstract:
MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.Keywords: microRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM
Procedia PDF Downloads 3996054 Project Progress Prediction in Software Devlopment Integrating Time Prediction Algorithms and Large Language Modeling
Authors: Dong Wu, Michael Grenn
Abstract:
Managing software projects effectively is crucial for meeting deadlines, ensuring quality, and managing resources well. Traditional methods often struggle with predicting project timelines accurately due to uncertain schedules and complex data. This study addresses these challenges by combining time prediction algorithms with Large Language Models (LLMs). It makes use of real-world software project data to construct and validate a model. The model takes detailed project progress data such as task completion dynamic, team Interaction and development metrics as its input and outputs predictions of project timelines. To evaluate the effectiveness of this model, a comprehensive methodology is employed, involving simulations and practical applications in a variety of real-world software project scenarios. This multifaceted evaluation strategy is designed to validate the model's significant role in enhancing forecast accuracy and elevating overall management efficiency, particularly in complex software project environments. The results indicate that the integration of time prediction algorithms with LLMs has the potential to optimize software project progress management. These quantitative results suggest the effectiveness of the method in practical applications. In conclusion, this study demonstrates that integrating time prediction algorithms with LLMs can significantly improve the predictive accuracy and efficiency of software project management. This offers an advanced project management tool for the industry, with the potential to improve operational efficiency, optimize resource allocation, and ensure timely project completion.Keywords: software project management, time prediction algorithms, large language models (LLMS), forecast accuracy, project progress prediction
Procedia PDF Downloads 796053 Clinical Advice Services: Using Lean Chassis to Optimize Nurse-Driven Telephonic Triage of After-Hour Calls from Patients
Authors: Eric Lee G. Escobedo-Wu, Nidhi Rohatgi, Fouzel Dhebar
Abstract:
It is challenging for patients to navigate through healthcare systems after-hours. This leads to delays in care, patient/provider dissatisfaction, inappropriate resource utilization, readmissions, and higher costs. It is important to provide patients and providers with effective clinical decision-making tools to allow seamless connectivity and coordinated care. In August 2015, patient-centric Stanford Health Care established Clinical Advice Services (CAS) to provide clinical decision support after-hours. CAS is founded on key Lean principles: Value stream mapping, empathy mapping, waste walk, takt time calculations, standard work, plan-do-check-act cycles, and active daily management. At CAS, Clinical Assistants take the initial call and manage all non-clinical calls (e.g., appointments, directions, general information). If the patient has a clinical symptom, the CAS nurses take the call and utilize standardized clinical algorithms to triage the patient to home, clinic, urgent care, emergency department, or 911. Nurses may also contact the on-call physician based on the clinical algorithm for further direction and consultation. Since August 2015, CAS has managed 228,990 calls from 26 clinical specialties. Reporting is built into the electronic health record for analysis and data collection. 65.3% of the after-hours calls are clinically related. Average clinical algorithm adherence rate has been 92%. An average of 9% of calls was escalated by CAS nurses to the physician on call. An average of 5% of patients was triaged to the Emergency Department by CAS. Key learnings indicate that a seamless connectivity vision, cascading, multidisciplinary ownership of the problem, and synergistic enterprise improvements have contributed to this success while striving for continuous improvement.Keywords: after hours phone calls, clinical advice services, nurse triage, Stanford Health Care
Procedia PDF Downloads 1746052 Prediction of Oil Recovery Factor Using Artificial Neural Network
Authors: O. P. Oladipo, O. A. Falode
Abstract:
The determination of Recovery Factor is of great importance to the reservoir engineer since it relates reserves to the initial oil in place. Reserves are the producible portion of reservoirs and give an indication of the profitability of a field Development. The core objective of this project is to develop an artificial neural network model using selected reservoir data to predict Recovery Factors (RF) of hydrocarbon reservoirs and compare the model with a couple of the existing correlations. The type of Artificial Neural Network model developed was the Single Layer Feed Forward Network. MATLAB was used as the network simulator and the network was trained using the supervised learning method, Afterwards, the network was tested with input data never seen by the network. The results of the predicted values of the recovery factors of the Artificial Neural Network Model, API Correlation for water drive reservoirs (Sands and Sandstones) and Guthrie and Greenberger Correlation Equation were obtained and compared. It was noted that the coefficient of correlation of the Artificial Neural Network Model was higher than the coefficient of correlations of the other two correlation equations, thus making it a more accurate prediction tool. The Artificial Neural Network, because of its accurate prediction ability is helpful in the correct prediction of hydrocarbon reservoir factors. Artificial Neural Network could be applied in the prediction of other Petroleum Engineering parameters because it is able to recognise complex patterns of data set and establish a relationship between them.Keywords: recovery factor, reservoir, reserves, artificial neural network, hydrocarbon, MATLAB, API, Guthrie, Greenberger
Procedia PDF Downloads 4416051 Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines
Authors: Xiaogang Li, Jieqiong Miao
Abstract:
As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square errorKeywords: Grey prediction model, trigonometric functions, support vector machines, genetic algorithms, root mean square error
Procedia PDF Downloads 4616050 Clinical Signs of River Blindness and the Efficacy of Ivermectin Therapy in Idogun, Ondo State-Nigeria
Authors: Afolabi O.J, Simon-Oke I.A., Oniya M.O., Okaka C.E.
Abstract:
River blindness is a skin, and an eye disease caused by Onchocerca volvulus and vectored by a female hematophagous blackfly. The study aims to evaluate the distribution of the clinical signs of river blindness and the efficacy of ivermectin in the treatment of river blindness in Idogun. Observational studies in epidemiology that involve the use of a structured questionnaire to obtain useful epidemiological information from the respondents, physical assessment via palpation from head to ankle was used to assess clinical signs from the respondents and skin snip test was used to evaluate the prevalence of the disease. The efficacy of the drug was evaluated and expressed in percentages. One hundred and ninety-two (192) out of the 384 respondents examined, showed various signs of river blindness. However, it was only 108 (28.1%) respondents with the clinical signs that demonstrated Onchocerca volvulus microfilariae in their skin snips. The clinical signs observed among the respondents include skin depigmentation such as dermatitis, leopard skin, papules, pruritus and self-inflicted injury, while ocular symptoms include cataract, ocular lesion and partial blindness. Among these clinical signs, papules, and pruritus were the most dominant in the community. The prevalence of the clinical signs was observed to vary significantly among the age groups and gender (P<0.05). The efficacy of the drug after 6 and 12 months of treatments shows that the drug is more effective at age groups 10-50 years than the age groups 51-90 years. Ivermectin is observed to be efficacious in the treatment of the disease. However, to achieve eradication of the disease, the drug may be administered at 0.15mg/kg twice a year.Keywords: riverblindness, clinical signs, ivermectin, Idogun
Procedia PDF Downloads 1596049 Virtual Chemistry Laboratory as Pre-Lab Experiences: Stimulating Student's Prediction Skill
Authors: Yenni Kurniawati
Abstract:
Students Prediction Skill in chemistry experiments is an important skill for pre-service chemistry students to stimulate students reflective thinking at each stage of many chemistry experiments, qualitatively and quantitatively. A Virtual Chemistry Laboratory was designed to give students opportunities and times to practicing many kinds of chemistry experiments repeatedly, everywhere and anytime, before they do a real experiment. The Virtual Chemistry Laboratory content was constructed using the Model of Educational Reconstruction and developed to enhance students ability to predicted the experiment results and analyzed the cause of error, calculating the accuracy and precision with carefully in using chemicals. This research showed students changing in making a decision and extremely beware with accuracy, but still had a low concern in precision. It enhancing students level of reflective thinking skill related to their prediction skill 1 until 2 stage in average. Most of them could predict the characteristics of the product in experiment, and even the result will going to be an error. In addition, they take experiments more seriously and curiously about the experiment results. This study recommends for a different subject matter to provide more opportunities for students to learn about other kinds of chemistry experiments design.Keywords: virtual chemistry laboratory, chemistry experiments, prediction skill, pre-lab experiences
Procedia PDF Downloads 3406048 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul
Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini
Abstract:
The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.Keywords: decision tree, breast cancer, probability, data mining
Procedia PDF Downloads 1386047 Stress Recovery and Durability Prediction of a Vehicular Structure with Random Road Dynamic Simulation
Authors: Jia-Shiun Chen, Quoc-Viet Huynh
Abstract:
This work develops a flexible-body dynamic model of an all-terrain vehicle (ATV), capable of recovering dynamic stresses while the ATV travels on random bumpy roads. The fatigue life of components is forecasted as well. While considering the interaction between dynamic forces and structure deformation, the proposed model achieves a highly accurate structure stress prediction and fatigue life prediction. During the simulation, stress time history of the ATV structure is retrieved for life prediction. Finally, the hot sports of the ATV frame are located, and the frame life for combined road conditions is forecasted, i.e. 25833.6 hr. If the usage of vehicle is eight hours daily, the total vehicle frame life is 8.847 years. Moreover, the reaction force and deformation due to the dynamic motion can be described more accurately by using flexible body dynamics than by using rigid-body dynamics. Based on recommendations made in the product design stage before mass production, the proposed model can significantly lower development and testing costs.Keywords: flexible-body dynamics, veicle, dynamics, fatigue, durability
Procedia PDF Downloads 3946046 Leadership Development for Nurses as Educators
Authors: Abeer Alhazmi
Abstract:
Introduction: Clinical education is considered a significant part of the learning process for nurses and nursing students. However, recruiting high- caliber individuals to train them to be tomorrow’s educators/teachers has been a recurrent challenge. One of the troubling challenges in this field is the absent of proper training programmes to train educators to be future education professionals and leaders. Aim: To explore the impact of a stage 1 and stage 2 clinical instructor courses on developing leadership skills for nurses as educators.Theoretical Framework: Informed by a symbolic interactionist framework, this research explored the Impact of stage 1 and stage 2 clinical instructor courses on nurses' knowledge, attitudes, and leadership skills. Method: Using Glaserian grounded theory method the data were derived from 3 focus groups and 15 in-depth interviews with nurse educators/clinical instructors and nurses who attended stage 1 and stage 2 clinical instructor courses at King Abdu-Aziz University Hospital (KAUH). Findings: The findings of the research are represented in the core category exploring new identity as educator and its two constituent categories Accepting change, and constructing educator identity. The core and sub- categories were generated through a theoretical exploration of the development of educator’s identity throughout stage 1 and stage 2 clinical instructor courses. Conclusion: The social identity of the nurse educators was developed and changed during and after attending stage 1 and stage 2 clinical instructor courses. In light of an increased understanding of the development process of educators identity and role, the research presents implications and recommendations that may contribute to the development of nursing educators in general and in Saudi Arabia in specific.Keywords: clinical instructor course, educators, identity work, clinical nursing
Procedia PDF Downloads 4166045 The Implications of the Lacanian Concept of 'Lalangue' for Lacanian Theory and Clinical Practice
Authors: Dries Dulsster
Abstract:
This research we want to discuss the implications of the concept of ‘lalangue’ and illustrate its importance for lacanian psychoanalysis and its clinical practice. We will look at this concept through an in depth reading of Lacan’s later seminars, his lectures at the North-American universities and his study on James Joyce. We will illustrate the importance of this concept with a case study from a clinical practice. We will argue that the introduction of ‘lalangue’ has several theoretical and clinical implications that will radically change Lacans teachings. We will illustrate the distinction between language and lalangue. Language serves communication, but this is not the case with lalangue. We will claim that there is jouissance in language and will approach this by introducing the concept of ‘lalangue’. We will ask ourselves what the effect will be of this distinction and how we can use this in clinical practice. The concept of ‘lalangue’ will introduce a new way of thinking about the unconscious. It will force us to no longer view the unconscious as Symbolic, but as Imaginary or Real. Another implication will be the approach on the symptom, no longer approaching it as a formation of the unconscious. It will be renamed as ‘sinthome’, as function of the real. Last of all it will force us to rethink the lacanian interpretation and how we direct the treatment. The implications on a clinical level will be how we think about the lacanian interpretation and the direction of the treatment. We will no longer focus on language and meaning, but focus on jouissance and the ways in which the subject deals with this. We will illustrate this importance with a clinical case study. To summarize, the concept of lalangue forces us to radically rethink lacanian psychoanalysis, with major implications on a theoretical and clinical level. It introduces new concepts such as the real unconscious and the sinthome. It will also make us rethink the way we work as lacanian psychoanalysts.Keywords: Lacan's later teaching, language, Lalangue, the unconscious
Procedia PDF Downloads 228