Search results for: Swaminathan Venkatraman
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21

Search results for: Swaminathan Venkatraman

21 Fast Authentication Using User Path Prediction in Wireless Broadband Networks

Authors: Gunasekaran Raja, Rajakumar Arul, Kottilingam Kottursamy, Ramkumar Jayaraman, Sathya Pavithra, Swaminathan Venkatraman

Abstract:

Wireless Interoperability for Microwave Access (WiMAX) utilizes the IEEE 802.1X mechanism for authentication. However, this mechanism incurs considerable delay during handoffs. This delay during handoffs results in service disruption which becomes a severe bottleneck. To overcome this delay, our article proposes a key caching mechanism based on user path prediction. If the user mobility follows that path, the user bypasses the normal IEEE 802.1X mechanism and establishes the necessary authentication keys directly. Through analytical and simulation modeling, we have proved that our mechanism effectively decreases the handoff delay thereby achieving fast authentication.

Keywords: authentication, authorization, and accounting (AAA), handoff, mobile, user path prediction (UPP) and user pattern

Procedia PDF Downloads 363
20 Pythagorean-Platonic Lattice Method for Finding all Co-Prime Right Angle Triangles

Authors: Anthony Overmars, Sitalakshmi Venkatraman

Abstract:

This paper presents a method for determining all of the co-prime right angle triangles in the Euclidean field by looking at the intersection of the Pythagorean and Platonic right angle triangles and the corresponding lattice that this produces. The co-prime properties of each lattice point representing a unique right angle triangle are then considered. This paper proposes a conjunction between these two ancient disparaging theorists. This work has wide applications in information security where cryptography involves improved ways of finding tuples of prime numbers for secure communication systems. In particular, this paper has direct impact in enhancing the encryption and decryption algorithms in cryptography.

Keywords: Pythagorean triples, platonic triples, right angle triangles, co-prime numbers, cryptography

Procedia PDF Downloads 198
19 Validating the Contract between Microservices

Authors: Parveen Banu Ansari, Venkatraman Chinnappan, Paramasivam Shankar

Abstract:

Contract testing plays a pivotal role in the current landscape of microservices architecture. Testing microservices at the initial stages of development helps to identify and rectify issues before they escalate to higher levels, such as UI testing. By validating microservices through contract testing, you ensure the integration quality of APIs, enhancing the overall reliability and performance of the application. Contract testing, being a collaborative effort between testers and developers, ensures that the microservices adhere to the specified contracts or agreements. This proactive approach significantly reduces defects, streamlines the development process, and contributes to the overall efficiency and robustness of the application. In the dynamic and fast-paced world of digital applications, where microservices are the building blocks, embracing contract testing is indeed a strategic move for ensuring the quality and reliability of the entire system.

Keywords: validation, testing, contract, agreement, microservices

Procedia PDF Downloads 28
18 Spherical Harmonic Based Monostatic Anisotropic Point Scatterer Model for RADAR Applications

Authors: Eric Huang, Coleman DeLude, Justin Romberg, Saibal Mukhopadhyay, Madhavan Swaminathan

Abstract:

High performance computing (HPC) based emulators can be used to model the scattering from multiple stationary and moving targets for RADAR applications. These emulators rely on the RADAR Cross Section (RCS) of the targets being available in complex scenarios. Representing the RCS using tables generated from electromagnetic (EM) simulations is often times cumbersome leading to large storage requirement. This paper proposed a spherical harmonic based anisotropic scatterer model to represent the RCS of complex targets. The problem of finding the locations and reflection profiles of all scatterers can be formulated as a linear least square problem with a special sparsity constraint. This paper solves this problem using a modified Orthogonal Matching Pursuit algorithm. The results show that the spherical harmonic based scatterer model can effectively represent the RCS data of complex targets.

Keywords: RADAR, RCS, high performance computing, point scatterer model

Procedia PDF Downloads 167
17 An Authentication Protocol for Quantum Enabled Mobile Devices

Authors: Natarajan Venkatachalam, Subrahmanya V. R. K. Rao, Vijay Karthikeyan Dhandapani, Swaminathan Saravanavel

Abstract:

The quantum communication technology is an evolving design which connects multiple quantum enabled devices to internet for secret communication or sensitive information exchange. In future, the number of these compact quantum enabled devices will increase immensely making them an integral part of present communication systems. Therefore, safety and security of such devices is also a major concern for us. To ensure the customer sensitive information will not be eavesdropped or deciphered, we need a strong authentications and encryption mechanism. In this paper, we propose a mutual authentication scheme between these smart quantum devices and server based on the secure exchange of information through quantum channel which gives better solutions for symmetric key exchange issues. An important part of this work is to propose a secure mutual authentication protocol over the quantum channel. We show that our approach offers robust authentication protocol and further our solution is lightweight, scalable, cost-effective with optimized computational processing overheads.

Keywords: quantum cryptography, quantum key distribution, wireless quantum communication, authentication protocol, quantum enabled device, trusted third party

Procedia PDF Downloads 142
16 Experimental Study of Water Injection into Manifold on Engine Performance and Emissions in Compression Ignition Engine

Authors: N. Rajmohan, M. R. Swaminathan

Abstract:

The performance of a diesel engine depends mainly on mixing of the fuel and air in the combustion chamber. The diesel engine suffers from significant generation of nitric oxide and particulate matter emission due to incomplete combustion. As the fuel is injected directly into the combustion chamber in conventional diesel engines, spatial distributions of air-fuel ratio vary widely from rich to lean in combustion chamber. The NOx is formed in stoichiometric zone and smoke is generated during diffusion combustion period where the combustion rate becomes slower. One of the effective methods to reduce oxides of nitrogen and particulate matter emissions simultaneously is to reduce the intake charge temperature in diesel engines. Therefore, in the present study, the effect of water injection into intake air on performance and emission characteristic of single cylinder CI engine are carried out at different load and constant speed, with variable water to diesel ratio by mass. The water is injected into intake air by an elementary carburetor.

Keywords: engine emission control, oxides of nitrogen, diesel engine, ignition engine

Procedia PDF Downloads 338
15 Using Scrum in an Online Smart Classroom Environment: A Case Study

Authors: Ye Wei, Sitalakshmi Venkatraman, Fahri Benli, Fiona Wahr

Abstract:

The present digital world poses many challenges to various stakeholders in the education sector. In particular, lecturers of higher education (HE) are faced with the problem of ensuring that students are able to achieve the required learning outcomes despite rapid changes taking place worldwide. Different strategies are adopted to retain student engagement and commitment in classrooms to address the differences in learning habits, preferences, and styles of the digital generation of students recently. Further, the onset of the coronavirus disease (COVID-19) pandemic has resulted in online teaching being mandatory. These changes have compounded the problems in the learning engagement and short attention span of HE students. New agile methodologies that have been successfully employed to manage projects in different fields are gaining prominence in the education domain. In this paper, we present the application of Scrum as an agile methodology to enhance student learning and engagement in an online smart classroom environment. We demonstrate the use of our proposed approach using a case study to teach key topics in information technology that require students to gain technical and business-related data analytics skills.

Keywords: agile methodology, Scrum, online learning, smart classroom environment, student engagement, active learning

Procedia PDF Downloads 134
14 Influence of Free Field Vibrations Due to Vibratory Pile Driving

Authors: Shashank Mukkoti, Mainak Majumder, Srinivasan Venkatraman

Abstract:

Owing to the land scarcity in the modern-day, most of the construction activities are carried out closed to the existing buildings. Most of the high-rise buildings are constructed on pile foundations to transfer the design loads to a strong stratum below the ground surface. Due to the proximity of the new and existing structures, noise disturbances are prominent during the pile installation. Installation of vibratory piles is most suitable in urban areas. The ground vibrations developed due to the vibratory pile driving may cause many detrimental effects on the surrounding structures based on the proximity of the sources and nature of the structures. In the present study, an attempt has been made to study the severity of ground vibrations induced by vibratory pile driving. For this purpose, a three-dimensional finite element model has been developed in the ABAQUS/ Explicit finite element program. The couple finite/infinite element method has been employed for the capturing of propagating waves due to the pile installation. The geometry of the pile foundations, frequency of the pile driving, length of the pile has been considered for the parametric study. The results show that vibrations generated due to the vibratory pile installation are either very close or more than the thresholds tolerance limits set by different guidelines.

Keywords: FE model, pile driving, free field vibrations, wave propagation

Procedia PDF Downloads 263
13 Numerical Response of Planar HPGe Detector for 241Am Contamination of Various Shapes

Authors: M. Manohari, Himanshu Gupta, S. Priyadharshini, R.Santhanam, S.Chandrasekaran, B|.Venkatraman

Abstract:

Injection is one of the potential routes of intake in a radioactive facility. The internal dose due to this intake is monitored at the radiation emergency medical centre, IGCAR using a portable planar HPGe detector. The contaminated wound may be having different shapes. In a reprocessing potential of wound contamination with actinide is more. Efficiency is one of the input parameters for estimation of internal dose. Estimating these efficiencies experimentally would be tedious and cumbersome. Numerical estimation can be a supplement to experiment. As an initial step in this study 241Am contamination of different shapes are studied. In this study portable planar HPGe detector was modeled using Monte Carlo code FLUKA and the effect of different parameters like distance of the contamination from the detector, radius of the circular contamination were studied. Efficiency values for point and surface contamination located at different distances were estimated. The effect of efficiency on the radius of the surface source was more predominant when the source is at 1 cm distance compared to when the source to detector distance is 10 cm. At 1 cm the efficiency decreased quadratically as the radius increased and at 10 cm it decreased linearly. The point source efficiency varied exponentially with source to detector distance.

Keywords: Planar HPGe, efficiency value, injection, surface source

Procedia PDF Downloads 13
12 Integrating Generic Skills into Disciplinary Curricula

Authors: Sitalakshmi Venkatraman, Fiona Wahr, Anthony de Souza-Daw, Samuel Kaspi

Abstract:

There is a growing emphasis on generic skills in higher education to match the changing skill-set requirements of the labour market. However, researchers and policy makers have not arrived at a consensus on the generic skills that actually contribute towards workplace employability and performance that complement and/or underpin discipline-specific graduate attributes. In order to strengthen the qualifications framework, a range of ‘generic’ learning outcomes have been considered for students undergoing higher education programs and among them it is necessary to have the fundamental generic skills such as literacy and numeracy at a level appropriate to the qualification type. This warrants for curriculum design approaches to contextualise the form and scope of these fundamental generic skills for supporting both students’ learning engagement in the course, as well as the graduate attributes required for employability and to progress within their chosen profession. Little research is reported in integrating such generic skills into discipline-specific learning outcomes. This paper explores the literature of the generic skills required for graduates from the discipline of Information Technology (IT) in relation to an Australian higher education institution. The paper presents the rationale of a proposed Bachelor of IT curriculum designed to contextualize the learning of these generic skills within the students’ discipline studies.

Keywords: curriculum, employability, generic skills, graduate attributes, higher education, information technology

Procedia PDF Downloads 227
11 Enhancing Aerodynamic Performance of Savonius Vertical Axis Turbine Used with Triboelectric Generator

Authors: Bhavesh Dadhich, Fenil Bamnoliya, Akshita Swaminathan

Abstract:

This project aims to design a system to generate energy from flowing wind due to the motion of a vehicle on the road or from the flow of wind in compact areas to utilize the wasteful energy into a useful one. It is envisaged through a design and aerodynamic performance improvement of a Savonius vertical axis wind turbine rotor and used in an integrated system with a Triboelectric Nanogenerator (TENG) that can generate a good amount of electrical energy. Aerodynamic calculations are performed numerically using Computational Fluid Dynamics software, and TENG's performance is evaluated analytically. The Turbine's coefficient of power is validated with published results for an inlet velocity of 7 m/s with a Tip Speed Ratio of 0.75 and found to reasonably agree with that of experiment results. The baseline design is modified with a new blade arc angle and rotor position angle based on the recommended parameter ranges suggested by previous researchers. Simulations have been performed for different T.S.R. values ranging from 0.25 to 1.5 with an interval of 0.25 with two applicable free stream velocities of 5 m/s and 7m/s. Finally, the newly designed VAWT CFD performance results are used as input for the analytical performance prediction of the triboelectric nanogenerator. The results show that this approach could be feasible and useful for small power source applications.

Keywords: savonius turbine, power, overlap ratio, tip speed ratio, TENG

Procedia PDF Downloads 93
10 Development of High Strength Self Curing Concrete Using Super Absorbing Polymer

Authors: K. Bala Subramanian, A. Siva, S. Swaminathan, Arul. M. G. Ajin

Abstract:

Concrete is an essential building material which is widely used in construction industry all over the world due to its compressible strength. Curing of concrete plays a vital role in durability and other performance necessities. Improper curing can affect the concrete performance and durability easily. When areas like scarcity of water, structures is not accessible by humans external curing cannot be performed, so we opt for internal curing. Internal curing (or) self-curing plays a major role in developing the concrete pore structure and microstructure. The concept of internal curing is to enhance the hydration process to maintain the temperature uniformly. The evaporation of water in the concrete is reduced by self-curing agent (Super Absorbing Polymer – SAP) thereby increasing the water retention capacity of the concrete. The research work was carried out to reduce water, which is prime material used for concrete in the construction industry. Concrete curing plays a major role in developing hydration process. Concept of self-curing will reduce the evaporation of water from concrete. Self-curing will increase water retention capacity as compared to the conventional concrete. Proper self-curing (or) internal curing increases the strength, durability and performance of concrete. Super absorbing Polymer (SAP) used as internal curing agent. In this study 0.2% to 0.4% of SAP was varied in different grade of high strength concrete. In the experiment replacement of cement by silica fumes with 5%, 10% and 15% are studied. It is found that replacement of silica fumes by 10 % gives more strength and durability when compared to others

Keywords: compressive strength, high strength concrete rapid chloride permeability, super absorbing polymer

Procedia PDF Downloads 355
9 Evaluation of Mechanical Properties and Analysis of Rapidly Heat Treated M-42 High Speed Steel

Authors: R. N. Karthik Babu, R. Sarvesh, A. Rajendra Prasad, G. Swaminathan

Abstract:

M42 is a molybdenum-series high-speed alloy steel widely used because of its better hot-hardness and wear resistance. These steels are conventionally heat treated in a salt bath furnace with up to three stages of preheating with predetermined soaking and holding periods. Such methods often involve long periods of processing with a large amount of energy consumed. In this study, the M42 steel samples were heat-treated by rapidly heating the specimens to the austenising temperature of 1260 °C and cooled conventionally by quenching in a neutral salt bath at a temperature of 550 °C with the aid of a hybrid microwave furnace. As metals reflect microwaves, they cannot directly be heated up when placed in a microwave furnace. The technology used herein requires the specimens to be placed in a crucible lined with SiC which is a good absorber of microwaves and the SiC lining heats the metal through radiation which facilitates the volumetric heating of the metal. A sample of similar dimensions was heat treated conventionally and cooled in the same manner. Conventional tempering process was then carried out on both these samples and analysed for various parameters such as micro-hardness, processing time, etc. Microstructure analysis and scanning electron microscopy was also carried out. The objective of the study being that similar or better properties, with substantial time and energy saving and cost cutting are achievable by rapid heat treatment through hybrid microwave furnaces. It is observed that the heat treatment is done with substantial time and energy savings, and also with minute improvement in mechanical properties of the tool steel heat treated.

Keywords: rapid heating, heat treatment, metal processing, microwave heating

Procedia PDF Downloads 261
8 Numerical response of Coaxial HPGe Detector for Skull and Knee measurement

Authors: Pabitra Sahu, M. Manohari, S. Priyadharshini, R. Santhanam, S. Chandrasekaran, B. Venkatraman

Abstract:

Radiation workers of reprocessing plants have a potential for internal exposure due to actinides and fission products. Radionuclides like Americium, lead, Polonium and Europium are bone seekers and get accumulated in the skeletal part. As the major skeletal content is in the skull (13%) and knee (22%), measurements of old intake have to be carried out in the skull and knee. At the Indira Gandhi Centre for Atomic Research, a twin HPGe-based actinide monitor is used for the measurement of actinides present in bone. Efficiency estimation, which is one of the prerequisites for the quantification of radionuclides, requires anthropomorphic phantoms. Such phantoms are very limited. Hence, in this study, efficiency curves for a Twin HPGe-based actinide monitoring system are established theoretically using the FLUKA Monte Carlo method and ICRP adult male voxel phantom. In the case of skull measurement, the detector is placed over the forehead, and for knee measurement, one detector is placed over each knee. The efficiency values of radionuclides present in the knee and skull vary from 3.72E-04 to 4.19E-04 CPS/photon and 5.22E-04 to 7.07E-04 CPS/photon, respectively, for the energy range 17 to 3000keV. The efficiency curves for the measurement are established, and it is found that initially, the efficiency value increases up to 100 keV and then starts decreasing. It is found that the skull efficiency values are 4% to 63% higher than that of the knee, depending on the energy for all the energies except 17.74 keV. The reason is the closeness of the detector to the skull compared to the knee. But for 17.74 keV the efficiency of the knee is more than the skull due to the higher attenuation caused in the skull bones because of its greater thickness. The Minimum Detectable Activity (MDA) for 241Am present in the skull and knee is 9 Bq. 239Pu has a MDA of 950 Bq and 1270 Bq for knee and skull, respectively, for a counting time of 1800 sec. This paper discusses the simulation method and the results obtained in the study.

Keywords: FLUKA Monte Carlo Method, ICRP adult male voxel phantom, knee, Skull.

Procedia PDF Downloads 10
7 Socio-Demographic Factors and Testing Practices Are Associated with Spatial Patterns of Clostridium difficile Infection in the Australian Capital Territory, 2004-2014

Authors: Aparna Lal, Ashwin Swaminathan, Teisa Holani

Abstract:

Background: Clostridium difficile infections (CDIs) have been on the rise globally. In Australia, rates of CDI in all States and Territories have increased significantly since mid-2011. Identifying risk factors for CDI in the community can help inform targeted interventions to reduce infection. Methods: We examine the role of neighbourhood socio-economic status, demography, testing practices and the number of residential aged care facilities on spatial patterns in CDI incidence in the Australian Capital Territory. Data on all tests conducted for CDI were obtained from ACT Pathology by postcode for the period 1st January 2004 through 31 December 2014. Distribution of age groups and the neighbourhood Index of Relative Socio-economic Advantage Disadvantage (IRSAD) were obtained from the Australian Bureau of Statistics 2011 National Census data. A Bayesian spatial conditional autoregressive model was fitted at the postcode level to quantify the relationship between CDI and socio-demographic factors. To identify CDI hotspots, exceedance probabilities were set at a threshold of twice the estimated relative risk. Results: CDI showed a positive spatial association with the number of tests (RR=1.01, 95% CI 1.00, 1.02) and the resident population over 65 years (RR=1.00, 95% CI 1.00, 1.01). The standardized index of relative socio-economic advantage disadvantage (IRSAD) was significantly negatively associated with CDI (RR=0.74, 95% CI 0.56, 0.94). We identified three postcodes with high probability (0.8-1.0) of excess risk. Conclusions: Here, we demonstrate geographic variations in CDI in the ACT with a positive association of CDI with socioeconomic disadvantage and identify areas with a high probability of elevated risk compared with surrounding communities. These findings highlight community-based risk factors for CDI.

Keywords: spatial, socio-demographic, infection, Clostridium difficile

Procedia PDF Downloads 292
6 Comparative Performance of Standing Whole Body Monitor and Shielded Chair Counter for In-vivo Measurements

Authors: M. Manohari, S. Priyadharshini, K. Bajeer Sulthan, R. Santhanam, S. Chandrasekaran, B. Venkatraman

Abstract:

In-vivo monitoring facility at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, caters to the monitoring of internal exposure of occupational radiation workers from various radioactive facilities of IGCAR. Internal exposure measurement is done using Na(Tl) based Scintillation detectors. Two types of whole-body counters, namely Shielded Chair Counter (SC) and Standing Whole-Body Monitor (SWBM), are being used. The shielded Chair is based on a NaI detector of 20.3 cm diameter and 10.15 cm thick. The chair of the system is shielded using lead shots of 10 cm lead equivalent and the detector with 8 cm lead bricks. Counting geometry is sitting geometry. Calibration is done using 95 percentile BOMAB phantom. The minimum Detectable Activity (MDA) for 137Cs for the 60s is 1150 Bq. Standing Wholebody monitor (SWBM) has two NaI(Tl) detectors of size 10.16 x 10.16 x 40.64 cm3 positioned serially, one over the other. It has a shielding thickness of 5cm lead equivalent. Counting is done in standup geometry. Calibration is done with the help of Ortec Phantom, having a uniform distribution of mixed radionuclides for the thyroid, thorax and pelvis. The efficiency of SWBM is 2.4 to 3.5 times higher than that of the shielded chair in the energy range of 279 to 1332 keV. MDA of 250 Bq for 137Cs can be achieved with a counting time of 60s. MDA for 131I in the thyroid was estimated as 100 Bq from the MDA of whole-body for one-day post intake. Standing whole body monitor is better in terms of efficiency, MDA and ease of positioning. In case of emergency situations, the optimal MDAs for in-vivo monitoring service are 1000 Bq for 137Cs and 100 Bq for 131I. Hence, SWBM is more suitable for the rapid screening of workers as well as the public in the case of an emergency. While a person reports for counting, there is a potential for external contamination. In SWBM, there is a feasibility to discriminate them as the subject can be counted in anterior or posterior geometry which is not possible in SC.

Keywords: minimum detectable activity, shielded chair, shielding thickness, standing whole body monitor

Procedia PDF Downloads 13
5 Enhanced Disk-Based Databases towards Improved Hybrid in-Memory Systems

Authors: Samuel Kaspi, Sitalakshmi Venkatraman

Abstract:

In-memory database systems are becoming popular due to the availability and affordability of sufficiently large RAM and processors in modern high-end servers with the capacity to manage large in-memory database transactions. While fast and reliable in-memory systems are still being developed to overcome cache misses, CPU/IO bottlenecks and distributed transaction costs, disk-based data stores still serve as the primary persistence. In addition, with the recent growth in multi-tenancy cloud applications and associated security concerns, many organisations consider the trade-offs and continue to require fast and reliable transaction processing of disk-based database systems as an available choice. For these organizations, the only way of increasing throughput is by improving the performance of disk-based concurrency control. This warrants a hybrid database system with the ability to selectively apply an enhanced disk-based data management within the context of in-memory systems that would help improve overall throughput. The general view is that in-memory systems substantially outperform disk-based systems. We question this assumption and examine how a modified variation of access invariance that we call enhanced memory access, (EMA) can be used to allow very high levels of concurrency in the pre-fetching of data in disk-based systems. We demonstrate how this prefetching in disk-based systems can yield close to in-memory performance, which paves the way for improved hybrid database systems. This paper proposes a novel EMA technique and presents a comparative study between disk-based EMA systems and in-memory systems running on hardware configurations of equivalent power in terms of the number of processors and their speeds. The results of the experiments conducted clearly substantiate that when used in conjunction with all concurrency control mechanisms, EMA can increase the throughput of disk-based systems to levels quite close to those achieved by in-memory system. The promising results of this work show that enhanced disk-based systems facilitate in improving hybrid data management within the broader context of in-memory systems.

Keywords: in-memory database, disk-based system, hybrid database, concurrency control

Procedia PDF Downloads 386
4 Studies on Virulence Factors Analysis in Streptococcus agalactiae from the Clinical Isolates

Authors: Natesan Balasubramanian, Palpandi Pounpandi, Venkatraman Thamil Priya, Vellasamy Shanmugaiah, Karubbiah Balakrishnan, Mandayam Anandam Thirunarayan

Abstract:

Streptococcus agalactiae is commonly known as Group B Streptococcus (GBS) and it is the most common cause of life-threatening bacterial infection. GBS first considered as a veterinary pathogen causing mastitis in cattle later becomes a human pathogen for severe neonatal infections. In this present study, a total of 20 new clinical isolates of S. agalactiae were collected from male (6) and female patient (14) with different age group. The isolates were from Urinary tract infection (UTI), blood, pus and eye ulcer. All the 20 S. agalactiae isolates has clear hemolysis properties on blood agar medium and were identified by serogrouping and MALTI-TOF-MS analysis. Antibiotic susceptibility/resistance test was performed for 20 S. agalactiae isolates, further phenotypic resistance pattern was observed for tetracycline, vancomycin, ampicillin and penicillin. Genotypically we found two antibiotic resistance genes such as Betalactem antibiotic resistance gene (Tem) (70%) and tetracycline resistance gene Tet(O) 15% in our isolates. Six virulence factors encoding genes were performed by PCR in twenty GBS isolates, cfb gene (100%), followed by, cylE(90.47%), lmp(85.7%), bca(71.42%), rib (38%) and low frequency in bac gene (4.76%) were determined. Most of the S. agalactiae isolates produced strong biofilm in the polystyrene surface (hydrophobic), and low-level biofilm formation was found in glass tube (hydrophilic) surface. lytR is secreted protein and localized in bacterial cell wall, extra cellular membrane, and cytoplasm. In silico docking studies were performed for lytR protein with four antibiofilm compounds, including a peptide (PR39) with the docking study showed peptide has strong interaction followed by ellagic acid and interaction length is 2.95, 2.97 and 2.95 A°. In ligand EGCGO10 and O11 two atoms intract with lytR (Leu271), with binding bond affinity length is 3.24 and 3.14. The aminoacid Leu 271 is act as an impartant aminoacid, since ellagic acid and EGCG interact with same aminoacid.

Keywords: antibiotics, biofilms, clinical isolates, S. agalactiae, virulence

Procedia PDF Downloads 77
3 Building the Professional Readiness of Graduates from Day One: An Empirical Approach to Curriculum Continuous Improvement

Authors: Fiona Wahr, Sitalakshmi Venkatraman

Abstract:

Industry employers require new graduates to bring with them a range of knowledge, skills and abilities which mean these new employees can immediately make valuable work contributions. These will be a combination of discipline and professional knowledge, skills and abilities which give graduates the technical capabilities to solve practical problems whilst interacting with a range of stakeholders. Underpinning the development of these disciplines and professional knowledge, skills and abilities, are “enabling” knowledge, skills and abilities which assist students to engage in learning. These are academic and learning skills which are essential to common starting points for both the learning process of students entering the course as well as forming the foundation for the fully developed graduate knowledge, skills and abilities. This paper reports on a project created to introduce and strengthen these enabling skills into the first semester of a Bachelor of Information Technology degree in an Australian polytechnic. The project uses an action research approach in the context of ongoing continuous improvement for the course to enhance the overall learning experience, learning sequencing, graduate outcomes, and most importantly, in the first semester, student engagement and retention. The focus of this is implementing the new curriculum in first semester subjects of the course with the aim of developing the “enabling” learning skills, such as literacy, research and numeracy based knowledge, skills and abilities (KSAs). The approach used for the introduction and embedding of these KSAs, (as both enablers of learning and to underpin graduate attribute development), is presented. Building on previous publications which reported different aspects of this longitudinal study, this paper recaps on the rationale for the curriculum redevelopment and then presents the quantitative findings of entering students’ reading literacy and numeracy knowledge and skills degree as well as their perceived research ability. The paper presents the methodology and findings for this stage of the research. Overall, the cohort exhibits mixed KSA levels in these areas, with a relatively low aggregated score. In addition, the paper describes the considerations for adjusting the design and delivery of the new subjects with a targeted learning experience, in response to the feedback gained through continuous monitoring. Such a strategy is aimed at accommodating the changing learning needs of the students and serves to support them towards achieving the enabling learning goals starting from day one of their higher education studies.

Keywords: enabling skills, student retention, embedded learning support, continuous improvement

Procedia PDF Downloads 222
2 Upward Spread Forced Smoldering Phenomenon: Effects and Applications

Authors: Akshita Swaminathan, Vinayak Malhotra

Abstract:

Smoldering is one of the most persistent types of combustion which can take place for very long periods (hours, days, months) if there is an abundance of fuel. It causes quite a notable number of accidents and is one of the prime suspects for fire and safety hazards. It can be ignited with weaker ignition and is more difficult to suppress than flaming combustion. Upward spread smoldering is the case in which the air flow is parallel to the direction of the smoldering front. This type of smoldering is quite uncontrollable, and hence, there is a need to study this phenomenon. As compared to flaming combustion, a smoldering phenomenon often goes unrecognised and hence is a cause for various fire accidents. A simplified experimental setup was raised to study the upward spread smoldering, its effects due to varying forced flow and its effects when it takes place in the presence of external heat sources and alternative energy sources such as acoustic energy. Linear configurations were studied depending on varying forced flow effects on upward spread smoldering. Effect of varying forced flow on upward spread smoldering was observed and studied: (i) in the presence of external heat source (ii) in the presence of external alternative energy sources (acoustic energy). The role of ash removal was observed and studied. Results indicate that upward spread forced smoldering was affected by various key controlling parameters such as the speed of the forced flow, surface orientation, interspace distance (distance between forced flow and the pilot fuel). When an external heat source was placed on either side of the pilot fuel, it was observed that the smoldering phenomenon was affected. The surface orientation and interspace distance between the external heat sources and the pilot fuel were found to play a huge role in altering the regression rate. Lastly, by impinging an alternative energy source in the form of acoustic energy on the smoldering front, it was observed that varying frequencies affected the smoldering phenomenon in different ways. The surface orientation also played an important role. This project highlights the importance of fire and safety hazard and means of better combustion for all kinds of scientific research and practical applications. The knowledge acquired from this work can be applied to various engineering systems ranging from aircrafts, spacecrafts and even to buildings fires, wildfires and help us in better understanding and hence avoiding such widespread fires. Various fire disasters have been recorded in aircrafts due to small electric short circuits which led to smoldering fires. These eventually caused the engine to catch fire that cost damage to life and property. Studying this phenomenon can help us to control, if not prevent, such disasters.

Keywords: alternative energy sources, flaming combustion, ignition, regression rate, smoldering

Procedia PDF Downloads 104
1 Bioresorbable Medicament-Eluting Grommet Tube for Otitis Media with Effusion

Authors: Chee Wee Gan, Anthony Herr Cheun Ng, Yee Shan Wong, Subbu Venkatraman, Lynne Hsueh Yee Lim

Abstract:

Otitis media with effusion (OME) is the leading cause of hearing loss in children worldwide. Surgery to insert grommet tube into the eardrum is usually indicated for OME unresponsive to antimicrobial therapy. It is the most common surgery for children. However, current commercially available grommet tubes are non-bioresorbable, not drug-treated, with unpredictable duration of retention on the eardrum to ventilate middle ear. Their functionality is impaired when clogged or chronically infected, requiring additional surgery to remove/reinsert grommet tubes. We envisaged that a novel fully bioresorbable grommet tube with sustained antibiotic release technology could address these drawbacks. In this study, drug-loaded bioresorbable poly(L-lactide-co-ε-caprolactone)(PLC) copolymer grommet tubes were fabricated by microinjection moulding technique. In vitro drug release and degradation model of PLC tubes were studied. Antibacterial property was evaluated by incubating PLC tubes with P. aeruginosa broth. Surface morphology was analyzed using scanning electron microscopy. A preliminary animal study was conducted using guinea pigs as an in vivo model to evaluate PLC tubes with and without drug, with commercial Mini Shah grommet tube as comparison. Our in vitro data showed sustained drug release over 3 months. All PLC tubes revealed exponential degradation profiles over time. Modeling predicted loss of tube functionality in water to be approximately 14 weeks and 17 weeks for PLC with and without drug, respectively. Generally, PLC tubes had less bacteria adherence, which were attributed to the much smoother tube surfaces compared to Mini Shah. Antibiotic from PLC tube further made bacteria adherence on surface negligible. They showed neither inflammation nor otorrhea after 18 weeks post-insertion in the eardrums of guinea pigs, but had demonstrated severe degree of bioresorption. Histology confirmed the new PLC tubes were biocompatible. Analyses on the PLC tubes in the eardrums showed bioresorption profiles close to our in vitro degradation models. The bioresorbable antibiotic-loaded grommet tubes showed good predictability in functionality. The smooth surface and sustained release technology reduced the risk of tube infection. Tube functional duration of 18 weeks allowed sufficient ventilation period to treat OME. Our ongoing studies include modifying the surface properties with protein coating, optimizing the drug dosage in the tubes to enhance their performances, evaluating their functional outcome on hearing after full resoption of grommet tube and healing of eardrums, and developing animal model with OME to further validate our in vitro models.

Keywords: bioresorbable polymer, drug release, grommet tube, guinea pigs, otitis media with effusion

Procedia PDF Downloads 426