Search results for: energy efficiency in historical buildings
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15899

Search results for: energy efficiency in historical buildings

13589 Efficiency Enhancement of Blue OLED by Incorporating Ag Nanoplate Layers

Authors: So-Jeong Kim, Nak-Kwan Chung, Jintae Kim, Juyoung Yun

Abstract:

The metal nanoplates are potentially used for electroluminescence enhancement of OLEDs owing to the localized surface plasmon resonance. In our study, enhanced electroluminescence in blue organic light-emitting diodes is demonstrated by incorporating silver nanoplates into poly(3,4-ethylene dioxythiophene):polystyrene sulfonic acid. To have surface plasmon resonance absorption peak matching with photoluminescent (PL) peak of blue, Ag nanoplates with triangular shape are used in this study. Finally, about 30 % enhancement in electroluminescence intensity and current efficiency for blue emission devices is obtained via Ag nanoplates.

Keywords: efficiency enhancement, nanoplate, OLED, surface plasmon resonance

Procedia PDF Downloads 345
13588 The Importance of Conserving Pre-Historical, Historical and Cultural Heritage and Its Tourist Exploitation

Authors: Diego Renan G. Tudela, Veruska C. Dutra, Mary Lucia Gomes Silveira de Senna, Afonso R. Aquino

Abstract:

Tourism in the present is the largest industry in the world, being an important global activity that has grown a lot in recent times. In this context, the activity of cultural tourism is growing, being seen as an important source of knowledge and information enjoyed by visitors. This article aims to discuss the cultural tourism, archaeological records and indigenous communities and the importance of preserving these invaluable sources of information, focusing on the records of the first peoples inhabiting the South American and North American lands. The study was based on discussions, theoretical studies, bibliographical research. Archaeological records are an important source of knowledge and information. Indigenous ethnic tourism represents a rescue of the authenticity of indigenous traditional cultures and their relation to the natural habitat. Cultural and indigenous tourism activity requires long-term planning to make it a sustainable activity.

Keywords: tourism, culture, preservation, discussions

Procedia PDF Downloads 265
13587 Walking in a Weather rather than a Climate: Critique on the Meta-Narrative of Buddhism in Early India

Authors: Yongjun Kim

Abstract:

Since the agreement on the historicity of historical Buddha in eastern India, the beginning, heyday and decline of Buddhism in Early India have been discussed in urbanization, commercialism and state formation context, in short, Weberian socio-politico frame. Recent Scholarship, notably in archaeology and anthropology, has proposed ‘re-materialization of Buddhism in Early India’ based on what Buddhist had actually done rather than what they should do according to canonical teachings or philosophies. But its historical narrations still remain with a domain of socio-politico meta-narrative which tends to unjustifiably dismiss the naturally existing heterogeneity and often chaotic dynamic of diverse agencies, landscape perceptions, localized traditions, etc. An author will argue the multiplicity of theoretical standpoints for the reconstruction on the Buddhism in Early India. For this, at first, the diverse agencies, localized traditions, landscape patterns of Buddhist communities and monasteries in Trans-Himalayan regions; focusing Zanskar Valley and Spiti Valley in India will be illustrated based on an author’s field work. And then an author will discuss this anthropological landscape analysis is better appropriated with textual and archaeological evidences on the tension between urban monastic and forest Buddhism, the phenomena of sacred landscape, cemetery, garden, natural cave along with socio-economic landscape, the demographic heterogeneity in Early India. Finally, it will be attempted to compare between anthropological landscape of present Trans-Himalayan and archaeological one of ancient Western India. The study of Buddhism in Early India has hardly been discussed through multivalent theoretical archaeology and anthropology of religion, thus traditional and recent scholarship have produced historical meta-narrative though heterogeneous among them. The multidisciplinary approaches of textual critics, archaeology and anthropology will surely help to deconstruct the grand and all-encompassing historical description on Buddhism in Early India and then to reconstruct the localized, behavioral and multivalent narratives. This paper expects to highlight the importance of lesser-studied Buddhist archaeological sites and the dynamic views on religious landscape in Early India with a help of critical anthropology of religion.

Keywords: analogy by living traditions, Buddhism in Early India, landscape analysis, meta-narrative

Procedia PDF Downloads 334
13586 Suitable Models and Methods for the Steady-State Analysis of Multi-Energy Networks

Authors: Juan José Mesas, Luis Sainz

Abstract:

The motivation for the development of this paper lies in the need for energy networks to reduce losses, improve performance, optimize their operation and try to benefit from the interconnection capacity with other networks enabled for other energy carriers. These interconnections generate interdependencies between some energy networks and others, which requires suitable models and methods for their analysis. Traditionally, the modeling and study of energy networks have been carried out independently for each energy carrier. Thus, there are well-established models and methods for the steady-state analysis of electrical networks, gas networks, and thermal networks separately. What is intended is to extend and combine them adequately to be able to face in an integrated way the steady-state analysis of networks with multiple energy carriers. Firstly, the added value of multi-energy networks, their operation, and the basic principles that characterize them are explained. In addition, two current aspects of great relevance are exposed: the storage technologies and the coupling elements used to interconnect one energy network with another. Secondly, the characteristic equations of the different energy networks necessary to carry out the steady-state analysis are detailed. The electrical network, the natural gas network, and the thermal network of heat and cold are considered in this paper. After the presentation of the equations, a particular case of the steady-state analysis of a specific multi-energy network is studied. This network is represented graphically, the interconnections between the different energy carriers are described, their technical data are exposed and the equations that have previously been presented theoretically are formulated and developed. Finally, the two iterative numerical resolution methods considered in this paper are presented, as well as the resolution procedure and the results obtained. The pros and cons of the application of both methods are explained. It is verified that the results obtained for the electrical network (voltages in modulus and angle), the natural gas network (pressures), and the thermal network (mass flows and temperatures) are correct since they comply with the distribution, operation, consumption and technical characteristics of the multi-energy network under study.

Keywords: coupling elements, energy carriers, multi-energy networks, steady-state analysis

Procedia PDF Downloads 83
13585 Policy Views of Sustainable Integrated Solution for Increased Synergy between Light Railways and Electrical Distribution Network

Authors: Mansoureh Zangiabadi, Shamil Velji, Rajendra Kelkar, Neal Wade, Volker Pickert

Abstract:

The EU has set itself a long-term goal of reducing greenhouse gas emissions by 80-95% of the 1990 levels by 2050 as set in the Energy Roadmap 2050. This paper reports on the European Union H2020 funded E-Lobster project which demonstrates tools and technologies, software and hardware in integrating the grid distribution, and the railway power systems with power electronics technologies (Smart Soft Open Point - sSOP) and local energy storage. In this context this paper describes the existing policies and regulatory frameworks of the energy market at European level with a special focus then at National level, on the countries where the members of the consortium are located, and where the demonstration activities will be implemented. By taking into account the disciplinary approach of E-Lobster, the main policy areas investigated includes electricity, energy market, energy efficiency, transport and smart cities. Energy storage will play a key role in enabling the EU to develop a low-carbon electricity system. In recent years, Energy Storage System (ESSs) are gaining importance due to emerging applications, especially electrification of the transportation sector and grid integration of volatile renewables. The need for storage systems led to ESS technologies performance improvements and significant price decline. This allows for opening a new market where ESSs can be a reliable and economical solution. One such emerging market for ESS is R+G management which will be investigated and demonstrated within E-Lobster project. The surplus of energy in one type of power system (e.g., due to metro braking) might be directly transferred to the other power system (or vice versa). However, it would usually happen at unfavourable instances when the recipient does not need additional power. Thus, the role of ESS is to enhance advantages coming from interconnection of the railway power systems and distribution grids by offering additional energy buffer. Consequently, the surplus/deficit of energy in, e.g. railway power systems, is not to be immediately transferred to/from the distribution grid but it could be stored and used when it is really needed. This will assure better energy management exchange between the railway power systems and distribution grids and lead to more efficient loss reduction. In this framework, to identify the existing policies and regulatory frameworks is crucial for the project activities and for the future development of business models for the E-Lobster solutions. The projections carried out by the European Commission, the Member States and stakeholders and their analysis indicated some trends, challenges, opportunities and structural changes needed to design the policy measures to provide the appropriate framework for investors. This study will be used as reference for the discussion in the envisaged workshops with stakeholders (DSOs and Transport Managers) in the E-Lobster project.

Keywords: light railway, electrical distribution network, Electrical Energy Storage, policy

Procedia PDF Downloads 140
13584 Optimizing Design Parameters for Efficient Saturated Steam Production in Fire Tube Boilers: A Cost-Effective Approach

Authors: Yoftahe Nigussie Worku

Abstract:

This research focuses on advancing fire tube boiler technology by systematically optimizing design parameters to achieve efficient saturated steam production. The main objective is to design a high-performance boiler with a production capacity of 2000kg/h at a 12-bar design pressure while minimizing costs. The methodology employs iterative analysis, utilizing relevant formulas, and considers material selection and production methods. The study successfully results in a boiler operating at 85.25% efficiency, with a fuel consumption rate of 140.37kg/hr and a heat output of 1610kW. Theoretical importance lies in balancing efficiency, safety considerations, and cost minimization. The research addresses key questions on parameter optimization, material choices, and safety-efficiency balance, contributing valuable insights to fire tube boiler design.

Keywords: safety consideration, efficiency, production methods, material selection

Procedia PDF Downloads 70
13583 The Current Development and Legislation on the Acquisition and Use of Nuclear Energy in Contemporary International Law

Authors: Uche A. Nnawulezi

Abstract:

Over the past decades, the acquisition and utilization of nuclear energy have remained a standout amongst the most intractable issues which past world leaders have unsuccessfully endeavored to grapple with. This study analyzes the present advancement and enactment on the acquisition and utilization of nuclear energy in contemporary international law. It seeks to address international co-operations in the field of nuclear energy by looking at what nuclear energy is all about and how it came into being. It also seeks to address concerns expressed by a few researchers on the position of nuclear law in the most extensive domain of the law by looking at the authoritative procedure for nuclear law, system of arrangements and traditions. This study also agrees in favour of treaty on non-proliferation of nuclear weapons based on human right and humanitarian principles that are not duly moral, but also legal ones. Specifically, the past development activities on nuclear weapon and the practical system of the nuclear energy institute will be inspected. The study noted among others, former president Obama's remark on nuclear energy and Pakistan nuclear policies and its attendant outcomes. Essentially, we depended on documentary evidence and henceforth scooped a great part of the data from secondary sources. The study emphatically advocates for the adoption of absolute liability principles and setting up of a viability trust fund, all of which will help in sustaining global peace where global best practices in acquisition and use of nuclear energy will be widely accepted in the contemporary international law. Essentially, the fundamental proposals made in this paper if completely adopted, might go far in fortifying the present advancement and enactment on the application and utilization of nuclear energy and accordingly, addressing a portion of the intractable issues under international law.

Keywords: nuclear energy, international law, acquisition, development

Procedia PDF Downloads 181
13582 Cellular Energy Metabolism Decreases with Age in the Trophocytes and Oenocytes of Honeybees (Apis Mellifera)

Authors: Chin-Yuan Hsu, Yu-Lung Chuang

Abstract:

The expression, concentration, and activity of mitochondrial energy-utilized molecules and cellular energy-regulated molecules decreased with age in the trophocytes and oenocytes of honeybees (Apis mellifera), but those of cellular energy-metabolized molecules is unknown. In this study, the expression, concentration, and activity of cellular energy-metabolized molecules were assayed in the trophocytes and fat cells of young and old worker bees by using the techniques of cell and biochemistry. The results showed that (i) the •-hydroxylacyl-coenzyme A dehydrogenase (HOAD) activity/citrate synthase (CS) activity ratio, non-esterified fatty acids concentrations, the expression of eukaryotic initiation factor 4E, and the expression of phosphorylated eIF4E binding protein 1 decreased with age; (ii) fat and glycogen accumulation increased with age; and (iii) the pyruvate dehydrogenase (PDH) activity/citrate synthase (CS) activity ratio was not correlated with age. These finding indicated that •-oxidation (HOAD/CS) and protein synthsis decreased with age. Glycolysis (PDH/CS) was unchanged with age. The most likely reason is that sugars are the vital food of worker bees. Taken together these data reveal that young workers have higher cellular energy metabolism than old workers and that aging results in a decline in the cellular energy metabolism in worker honeybees.

Keywords: aging, energy, honeybee, metabolism

Procedia PDF Downloads 472
13581 Real Energy Performance Study of Large-Scale Solar Water Heater by Using Remote Monitoring

Authors: F. Sahnoune, M. Belhamel, M. Zelmat

Abstract:

Solar thermal systems available today provide reliability, efficiency and significant environmental benefits. In housing, they can satisfy the hot water demand and reduce energy bills by 60 % or more. Additionally, collective systems or large scale solar thermal systems are increasingly used in different conditions for hot water applications and space heating in hotels and multi-family homes, hospitals, nursing homes and sport halls as well as in commercial and industrial building. However, in situ real performance data for collective solar water heating systems has not been extensively outlined. This paper focuses on the study of real energy performances of a collective solar water heating system using the remote monitoring technique in Algerian climatic conditions. This is to ensure proper operation of the system at any time, determine the system performance and to check to what extent solar performance guarantee can be achieved. The measurements are performed on an active indirect heating system of 12 m2 flat plate collector’s surface installed in Algiers and equipped with a various sensors. The sensors transmit measurements to a local station which controls the pumps, valves, electrical auxiliaries, etc. The simulation of the installation was developed using the software SOLO 2000. The system provides a yearly solar yield of 6277.5 KWh for an estimated annual need of 7896 kWh; the yearly average solar cover rate amounted to 79.5%. The productivity is in the order of 523.13 kWh / m²/year. Simulation results are compared to measured results and to guaranteed solar performances. The remote monitoring shows that 90% of the expected solar results can be easy guaranteed on a long period. Furthermore, the installed remote monitoring unit was able to detect some dysfunctions. It follows that remote monitoring is an important tool in energy management of some building equipment.

Keywords: large-scale solar water heater, real energy performance, remote monitoring, solar performance guarantee, tool to promote solar water heater

Procedia PDF Downloads 245
13580 A Review of Protocols and Guidelines Addressing the Exposure of Occupants to Electromagnetic Field (EMF) Radiation in Buildings

Authors: Shabnam Monadizadeh, Charles Kibert, Jiaxuan Li, Janghoon Woo, Ashish Asutosh, Samira Roostaei, Maryam Kouhirostami

Abstract:

A significant share of the technology that has emerged over the past several decades produces electromagnetic field (EMF) radiation. Communications devices, household appliances, industrial equipment, and medical devices all produce EMF radiation with a variety of frequencies, strengths, and ranges. Some EMF radiation, such as Extremely Low Frequency (ELF), Radio Frequency (RF), and the ionizing range have been shown to have harmful effects on human health. Depending on the frequency and strength of the radiation, EMF radiation can have health effects at the cellular level as well as at brain, nervous, and cardiovascular levels. Health authorities have enacted regulations locally and globally to set critical values to limit the adverse effects of EMF radiation. By introducing a more comprehensive field of EMF radiation study and practice, architects and designers can design for a safer electromagnetic (EM) indoor environment, and, as building and construction specialists, will be able to monitor and reduce EM radiation. This paper identifies the nature of EMF radiation in the built environment, the various EMF radiation sources, and its human health effects. It addresses European and US regulations for EMF radiation in buildings and provides a preliminary action plan. The challenges of developing measurement protocols for the various EMF radiation frequency ranges and determining the effects of EMF radiation on building occupants are discussed. This paper argues that a mature method for measuring EMF radiation in building environments and linking these measurements to human health impacts occupant health should be developed to provide adequate safeguards for human occupants of buildings for future research.

Keywords: biological affection, electromagnetic field, building regulation, human health, healthy building, clean construction

Procedia PDF Downloads 188
13579 Harnessing Earth's Electric Field and Transmission of Electricity

Authors: Vaishakh Medikeri

Abstract:

Energy in this Universe is the most basic characteristic of every particle. Since the birth of life on this planet, there has been a quest undertaken by the living beings to analyze, understand and harness the precious natural facts of the nature. In this quest, one of the greatest undertaken is the process of harnessing the naturally available energy. Scientists around the globe have discovered many ways to harness the freely available energy. But even today we speak of “Power Crisis”. Nikola Tesla once said “Nature has stored up in this universe infinite energy”. Energy is everywhere around us in unlimited quantities; all of it waiting to be harnessed by us. Here in this paper a method has been proposed to harness earth's electric field and transmit the stored electric energy using strong magnetic fields and electric fields. In this paper a new technique has been proposed to harness earth's electric field which is everywhere around the world in infinite quantities. Near the surface of the earth there is an electric field of about 120V/m. This electric field is used to charge a capacitor with high capacitance. Later the energy stored is allowed to pass through a device which converts the DC stored into AC. The AC so produced is then passed through a step down transformer to magnify the incoming current. Later the current passes through the RLC circuit. Later the current can be transmitted wirelessly using the principle of resonant inductive coupling. The proposed apparatus can be placed in most of the required places and any circuit tuned to the frequency of the transmitted current can receive the energy. The new source of renewable energy is of great importance if implemented since the apparatus is not costly and can be situated in most of the required places. And also the receiver which receives the transmitted energy is just an RLC circuit tuned to the resonant frequency of the transmitted energy. By using the proposed apparatus the energy losses can be reduced to a very large extent.

Keywords: capacitor, inductive resonant coupling, RLC circuit, transmission of electricity

Procedia PDF Downloads 380
13578 Nanomaterials-Assisted Drilling Fluids for Application in Oil Fields - Challenges and Prospects

Authors: Husam Mohammed Saleh Alziyadi

Abstract:

The drilling fluid has a significant impact on drilling efficiency. Drilling fluids have several functions which make them most important within the drilling process, such as lubricating and cooling the drill bit, removing cuttings from down of hole, preventing formation damage, suspending drill bit cuttings, , and also removing permeable formation as a result, the flow of fluid into the formation process is delayed. In the oil and gas sector, unconventional shale reserves have been a central player in meeting world energy demands. Oil-based drilling fluids (OBM) are generally favored for drilling shale plays due to negligible chemical interactions. Nevertheless, the industry has been inspired by strict environmental regulations to design water-based drilling fluids (WBM) capable of regulating shale-water interactions to boost their efficiency. However, traditional additives are too large to plug the micro-fractures and nanopores of the shale. Recently, nanotechnology in the oil and gas industries has shown a lot of promise, especially with drilling fluids based on nanoparticles. Nanotechnology has already made a huge contribution to technical developments in the energy sector. In the drilling industry, nanotechnology can make revolutionary changes. Nanotechnology creates nanomaterials with many attractive properties that can play an important role in improving the consistency of mud cake, reducing friction, preventing differential pipe sticking, preserving the stability of the borehole, protecting reservoirs, and improving the recovery of oil and gas. The selection of suitable nanomaterials should be based on the shale formation characteristics intended for drilling. The size, concentration, and stability of the NPs are three more important considerations. The effects of the environment are highly sensitive to these materials, such as changes in ionic strength, temperature, or pH, all of which occur under downhole conditions. This review paper focused on the previous research and recent development of environmentally friendly drilling fluids according to the regulatory environment and cost challenges.

Keywords: nanotechnology, WBM, Drilling Fluid, nanofluids

Procedia PDF Downloads 129
13577 Performance of Nakagami Fading Channel over Energy Detection Based Spectrum Sensing

Authors: M. Ranjeeth, S. Anuradha

Abstract:

Spectrum sensing is the main feature of cognitive radio technology. Spectrum sensing gives an idea of detecting the presence of the primary users in a licensed spectrum. In this paper we compare the theoretical results of detection probability of different fading environments like Rayleigh, Rician, Nakagami-m fading channels with the simulation results using energy detection based spectrum sensing. The numerical results are plotted as P_f Vs P_d for different SNR values, fading parameters. It is observed that Nakagami fading channel performance is better than other fading channels by using energy detection in spectrum sensing. A MATLAB simulation test bench has been implemented to know the performance of energy detection in different fading channel environment.

Keywords: spectrum sensing, energy detection, fading channels, probability of detection, probability of false alarm

Procedia PDF Downloads 535
13576 Risk Assessment Results in Biogas Production from Agriculture Biomass

Authors: Sandija Zeverte-Rivza, Irina Pilvere, Baiba Rivza

Abstract:

The use of renewable energy sources incl. biogas has become topical in accordance with the increasing demand for energy, decrease of fossil energy resources and the efforts to reduce greenhouse gas emissions as well as to increase energy independence from the territories where fossil energy resources are available. As the technologies of biogas production from agricultural biomass develop, risk assessment and risk management become necessary for farms producing such a renewable energy. The need for risk assessments has become particularly topical when discussions on changing the biogas policy in the EU take place, which may influence the development of the sector in the future, as well as the operation of existing biogas facilities and their income level. The current article describes results of the risk assessment for farms producing biomass from agriculture biomass in Latvia, the risk assessment system included 24 risks, that affect the whole biogas production process and the obtained results showed the high significance of political and production risks.

Keywords: biogas production, risks, risk assessment, biosystems engineering

Procedia PDF Downloads 421
13575 Fabrication of Pure and Doped MAPbI3 Thin Films by One Step Chemical Vapor Deposition Method for Energy Harvesting Applications

Authors: S. V. N. Pammi, Soon-Gil Yoon

Abstract:

In the present study, we report a facile chemical vapor deposition (CVD) method for Perovskite MAPbI3 thin films by doping with Br and Cl. We performed a systematic optimization of CVD parameters such as deposition temperature, working pressure and annealing time and temperature to obtain high-quality films of CH3NH3PbI3, CH3NH3PbI3-xBrx and CH3NH3PbI3-xClx perovskite. Scanning electron microscopy and X-ray Diffraction pattern showed that the perovskite films have a large grain size when compared to traditional spin coated thin films. To the best of our knowledge, there are very few reports on highly quality perovskite thin films by various doping such as Br and Cl using one step CVD and there is scope for significant improvement in device efficiency. In addition, their band-gap can be conveniently and widely tuned via doping process. This deposition process produces perovskite thin films with large grain size, long diffusion length and high surface coverage. The enhancement of the output power, CH3NH3PbI3 (MAPbI3) dye films when compared to spin coated films and enhancement in output power by doping in doped films was demonstrated in detail. The facile one-step method for deposition of perovskite thin films shows a potential candidate for photovoltaic and energy harvesting applications.

Keywords: perovskite thin films, chemical vapor deposition, energy harvesting, photovoltaics

Procedia PDF Downloads 312
13574 Acetic Acid Assisted Phytoextraction of Chromium (Cr) by Energy Crop (Arundo donax L.) in Cr Contaminated Soils

Authors: Muhammad Iqbal, Hafiz Muhammad Tauqeer, Hamza Rafaqat, Muhammad Naveed, Muhammad Awais Irshad

Abstract:

Soil pollution with chromium (Cr) has become one of the most important concerns due to its toxicity for humans. To date, various remediation approaches have been employed for the remediation and management of Cr contaminated soils. Phytoextraction is an eco-friendly and emerging remediation approach which has gained attention due to several advantages over conventional remediation approach. The use of energy crops for phytoremediation is an emerging trend worldwide. These energy crops have high tolerance against various environmental stresses, the potential to grow in diverse ecosystems and high biomass production make them a suitable candidate for phytoremediation of contaminated soils. The removal efficiency of plants in phytoextraction depends upon several soil and plant factors including solubility, bioavailability and metal speciation in soils. A pot scale experiment was conducted to evaluate the phytoextraction potential of Arundo donax L. with the application of acetic acid (A.A) in Cr contaminated soils. Plants were grown in pots filled with 5 kg soils for 90 days. After 30 days plants acclimatization in pot conditions, plants were treated with various levels of Cr (2.5 mM, 5 mM, 7.5 mM, 10 mM) and A.A (Cr 2.5 mM + A.A 2.5 mM, Cr 5 mM + A.A 2.5 mM, Cr 7.5 mM + A.A 2.5 mM, Cr 10 mM + A.A 2.5 mM). The application of A.A significantly increased metal uptake and in roots and shoots of A. donax. This increase was observed at Cr 7.5 mM + A.A 2.5 mM but at high concentrations, visual symptoms of Cr toxicity were observed on leaves. Similarly, A.A applications also affect the activities of key enzymes including catalase (CAT), superoxidase dismutase (SOD), and ascorbate peroxidase (APX) in leaves of A. donax. Based on results it is concluded that the applications of A.A acid for phytoextraction is an alternative approach for the management of Cr affected soils and synthetic chelators should be replaced with organic acids.

Keywords: acetic acid, A. donax, chromium, energy crop, phytoextraction

Procedia PDF Downloads 393
13573 Redefining Surgical Innovation in Urology: A Historical Perspective of the Original Publications on Pioneering Techniques in Urology

Authors: Samuel Sii, David Homewood, Brendan Dittmer, Tony Nzembela, Jonathan O’Brien, Niall Corcoran, Dinesh Agarwal

Abstract:

Introduction: Innovation is key to the advancement of medicine and improvement in patient care. This is particularly true in surgery, where pioneering techniques have transformed operative management from a historically highly risky peri-morbid and disfiguring to the contemporary low-risk, sterile and minimally invasive treatment modality. There is a delicate balance between enabling innovation and minimizing patient harm. Publication and discussion of novel surgical techniques allow for independent expert review. Recent journals have increasingly stringent requirements for publications and often require larger case volumes for novel techniques to be published. This potentially impairs the initial publication of novel techniques and slows innovation. The historical perspective provides a better understanding of how requirements for the publication of new techniques have evolved over time. This is essential in overcoming challenges in developing novel techniques. Aims and Objectives: We explore how novel techniques in Urology have been published over the past 200 years. Our objective is to describe the trend and publication requirements of novel urological techniques, both historical and present. Methods: We assessed all major urological operations using multipronged historical analysis. An initial literature search was carried out through PubMed and Google Scholar for original literature descriptions, followed by reference tracing. The first publication of each pioneering urological procedure was recorded. Data collected includes the year of publication, description of the procedure, number of cases and outcomes. Results: 65 papers describing pioneering techniques in Urology were identified. These comprised of 2 experimental studies, 17 case reports and 46 case series. These papers described various pioneering urological techniques in urological oncology, reconstructive urology and endourology. We found that, historically, techniques were published with smaller case numbers. Often, the surgical technique itself was a greater focus of the publication than patient outcome data. These techniques were often adopted prior to larger publications. In contrast, the risks and benefits of recent novel techniques are often well-defined prior to adoption. This historical perspective is important as recent journals have requirements for larger case series and data outcomes. This potentially impairs the initial publication of novel techniques and slows innovation. Conclusion: A better understanding of historical publications and their effect on the adoption of urological techniques into common practice could assist the current generation of Urologists in formulating a safe, efficacious process in promoting surgical innovation and the development of novel surgical techniques. We propose the reassessment of requirements for the publication of novel operative techniques by splitting technical perspectives and data-orientated case series. Existing frameworks such as IDEAL and ASERNIP-S should be integrated into current processes when investigating and developing new surgical techniques to ensure efficacious and safe innovation within surgery is encouraged.

Keywords: urology, surgical innovation, novel surgical techniques, publications

Procedia PDF Downloads 53
13572 Perovskite Nanocrystals and Quantum Dots: Advancements in Light-Harvesting Capabilities for Photovoltaic Technologies

Authors: Mehrnaz Mostafavi

Abstract:

Perovskite nanocrystals and quantum dots have emerged as leaders in the field of photovoltaic technologies, demonstrating exceptional light-harvesting abilities and stability. This study investigates the substantial progress and potential of these nano-sized materials in transforming solar energy conversion. The research delves into the foundational characteristics and production methods of perovskite nanocrystals and quantum dots, elucidating their distinct optical and electronic properties that render them well-suited for photovoltaic applications. Specifically, it examines their outstanding light absorption capabilities, enabling more effective utilization of a wider solar spectrum compared to traditional silicon-based solar cells. Furthermore, this paper explores the improved durability achieved in perovskite nanocrystals and quantum dots, overcoming previous challenges related to degradation and inconsistent performance. Recent advancements in material engineering and techniques for surface passivation have significantly contributed to enhancing the long-term stability of these nanomaterials, making them more commercially feasible for solar cell usage. The study also delves into the advancements in device designs that incorporate perovskite nanocrystals and quantum dots. Innovative strategies, such as tandem solar cells and hybrid structures integrating these nanomaterials with conventional photovoltaic technologies, are discussed. These approaches highlight synergistic effects that boost efficiency and performance. Additionally, this paper addresses ongoing challenges and research endeavors aimed at further improving the efficiency, stability, and scalability of perovskite nanocrystals and quantum dots in photovoltaics. Efforts to mitigate concerns related to material degradation, toxicity, and large-scale production are actively pursued, paving the way for broader commercial application. In conclusion, this paper emphasizes the significant role played by perovskite nanocrystals and quantum dots in advancing photovoltaic technologies. Their exceptional light-harvesting capabilities, combined with increased stability, promise a bright future for next-generation solar cells, ushering in an era of highly efficient and cost-effective solar energy conversion systems.

Keywords: perovskite nanocrystals, quantum dots, photovoltaic technologies, light-harvesting, solar energy conversion, stability, device designs

Procedia PDF Downloads 104
13571 Appraising the Evolution of Architecture as the Representation of Material Culture: The Nigerian Digest

Authors: Ikenna Emmanuel Idoko

Abstract:

Evolution and evolutionary processes are phenomena that have come to stay in the fabrics of the universal living, hence expressions such as universal evolution. These evolutions in the universe cut across all facets of human accomplishments, which architecture is a part of. There is a notion in political sciences that politics and the act of politicking are local, meaning that politics and political processes are unique and peculiar to a people, all dependent on their sociocultural makeup. The notion is also applicable in architecture because the architecture of a people is mostly dependent on several factors such as climatic conditions, material availability, socio-cultural beliefs and religious inclinations. Stemming from the cultural dimension, it is of course common knowledge that every society is driven by its own unique culture. The fusion of architecture and culture creates the actual uniqueness which underlines the “archi-cultural” representation of a people’s material culture. This paper is aimed at appraising architectural evolution as it affects the representation of the material culture of a people. For effective systemization of the aim, various spectacular kinds of literature were reviewed, coupled with the visitation and study of existing buildings in Nigeria to properly understand the live peculiarity in the architecture of the selected area. Since architecture needs a lot of pictorial pieces of evidence, pictures and graphical representations were extensively utilized, and channelled to aid a better understanding of the study. Amongst all, an important part of this paper is that it adds to the body of existing knowledge in the Arts and Humanities by speaking extensively to the tenets of cultural representation on buildings. Similarly, the field of architecture, specifically, traditional architecture, would be gaining some extra knowledge owing to the study of some important almost-neglected or forgotten architectural elements of various traditional buildings.

Keywords: evolution, architecture, material, culture

Procedia PDF Downloads 63
13570 Bioelectrochemical System: An Alternative Technology for Metal Removal from Industrial Wastewater and Factors Affecting Its Efficiency

Authors: A. G. More

Abstract:

Bioelectrochemical system (BES) is an alternative technology for chromium Cr (VI) removal from industrial wastewater to overcome the existing drawbacks of high chemical and energy consumption by conventional metal removal technologies. A well developed anaerobic sludge was developed in laboratory and used in the batch study of BES at different Cr (VI) concentrations (10, 20, 50, and 50 mg/L) with different COD concentrations (500, 1000, 1500 and 2000 mg/L). Sodium acetate was used as carbon source, whereas Cr (VI) contaminated synthetic wastewater was prepared and added to the cathode chamber. Initially, operating conditions for the BES experiments were optimized. During the study, optimum cathode pH of 2, whereas optimum HRT of 72 hr was obtained. During the study, cathode pH 2 ± 0.1 showed maximum chromium removal efficicency (CRE) of 88.36 ± 8.16% as compared to other pH (1-7) in the cathode chamber. Maximum CRE obtained was 85.93 ± 9.62% at 40°C within the temperature range of 25°C to 45°C. Conducting the BES experiments at optimized operating conditions, CRE of 90.2 %, 93.7 %, 83.75 % and 74.6 % were obtained at cathodic Cr concentration of 10, 20, 50, and 50 mg/L, respectively. BES is a sustainable, energy efficient technology which can be suitably used for metal removal from industrial wastewater.

Keywords: bioelectrochemical system, metal removal, microorganisms, pH and temperature, substrate

Procedia PDF Downloads 138
13569 Quantification of the Variables of the Information Model for the Use of School Terminology from 1884 to 2014 in Dalmatia

Authors: Vinko Vidučić, Tanja Brešan Ančić, Marijana Tomelić Ćurlin

Abstract:

Prior to quantifying the variables of the information model for using school terminology in Croatia's region of Dalmatia from 1884 to 2014, the most relevant model variables had to be determined: historical circumstances, standard of living, education system, linguistic situation, and media. The research findings show that there was no significant transfer of the 1884 school terms into 1949 usage; likewise, the 1949 school terms were not widely used in 2014. On the other hand, the research revealed that the meaning of school terms changed over the decades. The quantification of the variables will serve as the groundwork for creating an information model for using school terminology in Dalmatia from 1884 to 2014 and for defining direct growth rates in further research.

Keywords: education system, historical circumstances, linguistic situation, media, school terminology, standard of living

Procedia PDF Downloads 220
13568 The Energy Consumption by the Sector of Transport and His Impact on the Atmospheric Pollution

Authors: Mme Hamani Née Guessas Ghaniya

Abstract:

The transport is the base of the development of the exchanges and the business, being both a recognized determiner of the economic and social development. The development of the transport is in the center of the big challenges of development of countries, but it is also at the heart of big contradictions, since we integrate the environmental issues which are bound to him, in particular through the questions of energy. Indeed, the energy consumption by the sector of transport is one of bigger concerns, because it is increasing and it has a big impact on our environment. The main consequences are, the atmospheric pollution causing an increase of the greenhouse effect which causes a global warming. These global warming risks to engender a partial cast iron of polar caps so raising the level of seas, flooding the low coastal zones, certain islands and the deltas. Thus, the purpose of this communication is to present the impact of the energy consumption by the sector of transport on the air quality, showing its effect on the health and on the global warming.

Keywords: energy consumption, sector of transport, air quality, atmospheric pollution

Procedia PDF Downloads 335
13567 A Virtual Reality Simulation Tool for Reducing the Risk of Building Content during Earthquakes

Authors: Ali Asgary, Haopeng Zhou, Ghassem Tofighi

Abstract:

Use of virtual (VR), augmented reality (AR), and extended reality technologies for training and education has increased in recent years as more hardware and software tools have become available and accessible to larger groups of users. Similarly, the applications of these technologies in earthquake related training and education are on the rise. Several studies have reported promising results for the use of VR and AR for evacuation behaviour and training under earthquake situations. They simulate the impacts that earthquake has on buildings, buildings’ contents, and how building occupants and users can find safe spots or open paths to outside. Considering that considerable number of earthquake injuries and fatalities are linked to the behaviour, our goal is to use these technologies to reduce the impacts of building contents on people. Building on our artificial intelligence (AI) based indoor earthquake risk assessment application that enables users to use their mobile device to assess the risks associated with building contents during earthquakes, we develop a virtual reality application to demonstrate the behavior of different building contents during earthquakes, their associate moving, spreading, falling, and collapsing risks, and their risk mitigation methods. We integrate realistic seismic models, building contents behavior with and without risk mitigation measures in virtual reality environment. The application can be used for training of architects, interior design experts, and building users to enhance indoor safety of the buildings that can sustain earthquakes. This paper describes and demonstrates the application development background, structure, components, and usage.

Keywords: virtual reality, earthquake damage, building content, indoor risks, earthquake risk mitigation, interior design, unity game engine, oculus

Procedia PDF Downloads 111
13566 Demonstration Operation of Distributed Power Generation System Based on Carbonized Biomass Gasification

Authors: Kunio Yoshikawa, Ding Lu

Abstract:

Small-scale, distributed and low-cost biomass power generation technologies are highly required in the modern society. There are big needs for these technologies in the disaster areas of developed countries and un-electrified rural areas of developing countries. This work aims to present a technical feasibility of the portable ultra-small power generation system based on the gasification of carbonized wood pellets/briquettes. Our project is designed for enabling independent energy production from various kinds of biomass resources in the open-field. The whole process mainly consists of two processes: biomass and waste pretreatment; gasification and power generation. The first process includes carbonization, densification (briquetting or pelletization), and the second includes updraft fixed bed gasification of carbonized pellets/briquettes, syngas purification, and power generation employing an internal combustion gas engine. A combined pretreatment processes including carbonization without external energy and densification were adopted to deal with various biomass. Carbonized pellets showed a better gasification performance than carbonized briquettes and their mixture. The 100-hour continuous operation results indicated that pelletization/briquetting of carbonized fuel realized the stable operation of an updraft gasifier if there were no blocking issues caused by the accumulation of tar. The cold gas efficiency and the carbon conversion during carbonized wood pellets gasification was about 49.2% and 70.5% with the air equivalence ratio value of around 0.32, and the corresponding overall efficiency of the gas engine was 20.3% during the stable stage. Moreover, the maximum output power was 21 kW at the air flow rate of 40 Nm³·h⁻¹. Therefore, the comprehensive system covering biomass carbonization, densification, gasification, syngas purification, and engine system is feasible for portable, ultra-small power generation. This work has been supported by Innovative Science and Technology Initiative for Security (Ministry of Defence, Japan).

Keywords: biomass carbonization, densification, distributed power generation, gasification

Procedia PDF Downloads 162
13565 The Effect of Bearing Surface Finish on the Engine's Lubrication System Performance

Authors: Kudakwashe Diana Nyamugure

Abstract:

Engine design has evolved to suit new industry standards of smaller compact designs that operate at high temperatures and even higher stress loads. Research has proven that the interaction of the bearing surface and the lubrication film is affected by the bearing's surface texture, geometry, and dimensional tolerances. The challenge now for the automotive manufacturing industry is to understand which processes can be applied on bearing surfaces to reduce the 65% energy loss in engines, 15% of which is caused by friction. This paper will discuss a post grinding process known as microfinishing which optimises the characteristics of a manufactured surface such as roughness, profile, and waviness. Microfinishing is becoming an increasing trend within the automotive industry and has so far been applied on high performance and mass production crank or cam bearing surfaces in bid of friction reduction and extended engine service life. In the near future, microfinishing will be applied to more engine components because of the stringent environmental regulations demands on fuel consumption, reliability, power, and service life of engine components.

Keywords: bearings, tribology, friction reduction, energy efficiency

Procedia PDF Downloads 484
13564 Generation of Roof Design Spectra Directly from Uniform Hazard Spectra

Authors: Amin Asgarian, Ghyslaine McClure

Abstract:

Proper seismic evaluation of Non-Structural Components (NSCs) mandates an accurate estimation of floor seismic demands (i.e. acceleration and displacement demands). Most of the current international codes incorporate empirical equations to calculate equivalent static seismic force for which NSCs and their anchorage system must be designed. These equations, in general, are functions of component mass and peak seismic acceleration to which NSCs are subjected to during the earthquake. However, recent studies have shown that these recommendations are suffered from several shortcomings such as neglecting the higher mode effect, tuning effect, NSCs damping effect, etc. which cause underestimation of the component seismic acceleration demand. This work is aimed to circumvent the aforementioned shortcomings of code provisions as well as improving them by proposing a simplified, practical, and yet accurate approach to generate acceleration Floor Design Spectra (FDS) directly from corresponding Uniform Hazard Spectra (UHS) (i.e. design spectra for structural components). A database of 27 Reinforced Concrete (RC) buildings in which Ambient Vibration Measurements (AVM) have been conducted. The database comprises 12 low-rise, 10 medium-rise, and 5 high-rise buildings all located in Montréal, Canada and designated as post-disaster buildings or emergency shelters. The buildings are subjected to a set of 20 compatible seismic records and Floor Response Spectra (FRS) in terms of pseudo acceleration are derived using the proposed approach for every floor of the building in both horizontal directions considering 4 different damping ratios of NSCs (i.e. 2, 5, 10, and 20% viscous damping). Several effective parameters on NSCs response are evaluated statistically. These parameters comprise NSCs damping ratios, tuning of NSCs natural period with one of the natural periods of supporting structure, higher modes of supporting structures, and location of NSCs. The entire spectral region is divided into three distinct segments namely short-period, fundamental period, and long period region. The derived roof floor response spectra for NSCs with 5% damping are compared with the 5% damping UHS and procedure are proposed to generate roof FDS for NSCs with 5% damping directly from 5% damped UHS in each spectral region. The generated FDS is a powerful, practical, and accurate tool for seismic design and assessment of acceleration-sensitive NSCs particularly in existing post-critical buildings which have to remain functional even after the earthquake and cannot tolerate any damage to NSCs.

Keywords: earthquake engineering, operational and functional components (OFCs), operational modal analysis (OMA), seismic assessment and design

Procedia PDF Downloads 240
13563 Occupant Behaviour Change in Post-Pandemic Australia

Authors: Yan Zhang, Felix Kin Peng Hui, Colin Duffield, Caroline X. Gao

Abstract:

In post-pandemic Australia, it is unclear how building occupant have changed their behaviour in their interaction with buildings and other occupants. This research provides information on occupant behaviour change compared to before the pandemic and examines the predictors for those behaviour changes. This paper analyses survey responses from 2298 building occupants in Melbourne to investigate occupant behaviour change and determinants for those changes one year after the pandemic in Australia. The behaviour changes were grouped into three categories based on respiratory infection routes: (1) fomite: hand-shaking and hand hygiene behaviours; (2) airborne: individual interventions to indoor air quality such as face masking, window openings for occupants working in naturally ventilated space; (3) droplets: social distancing, reducing working hours in the workplace. The survey shows that the pandemic has significantly changed occupants' behaviour in all three categories compared to before the pandemic. The changes are significantly associated with occupants' perceived indoor air quality, indoor environmental cleanliness, and occupant density, demonstrating their growing awareness of respiratory infection risk that influences their health behaviours. The two most significant factors identified from multivariate regressions to drive the behaviour change include occupant risk perception of respiratory infections at the workplace and their observed co-worker's behaviour change. Based on the survey results, the paper provides adjusted estimates for related occupant behaviour parameters. The study also discusses alternatives for managing window operations in naturally ventilated buildings to improve occupant satisfaction. This paper could help Building Managers, and Building Designers understand occupant behaviour change to improve building operations and new building design to enhance occupant experience. Also, building energy modellers and risk assessors may use the findings to adjust occupant behaviour-related parameters to improve the models. The findings contribute to the knowledge of Human-Building Interaction.

Keywords: human-building interaction, risk perception, occupant behaviour, IAQ, COVID-19

Procedia PDF Downloads 77
13562 Efficient Use of Energy through Incorporation of a Gas Turbine in Methanol Plant

Authors: M. Azadi, N. Tahouni, M. H. Panjeshahi

Abstract:

A techno-economic evaluation for efficient use of energy in a large scale industrial plant of methanol is carried out. This assessment is based on integration of a gas turbine with an existing plant of methanol in which the outlet gas products of exothermic reactor is expanded to power generation. Also, it is decided that methanol production rate is constant through addition of power generation system to the existing methanol plant. Having incorporated a gas turbine with the existing plant, the economic results showed total investment of MUSD 16.9, energy saving of 3.6 MUSD/yr with payback period of approximately 4.7 years.

Keywords: energy saving, methanol, gas turbine, power generation

Procedia PDF Downloads 472
13561 Decision Support Tool for Green Roofs Selection: A Multicriteria Analysis

Authors: I. Teotónio, C.O. Cruz, C.M. Silva, M. Manso

Abstract:

Diverse stakeholders show different concerns when choosing green roof systems. Also, green roof solutions vary in their cost and performance. Therefore, decision-makers continually face the difficult task of balancing benefits against green roofs costs. Decision analysis methods, as multicriteria analysis, can be used when the decision‑making process includes different perspectives, multiple objectives, and uncertainty. The present study adopts a multicriteria decision model to evaluate the installation of green roofs in buildings, determining the solution with the best trade-off between costs and benefits in agreement with the preferences of the users/investors. This methodology was applied to a real decision problem, assessing the preferences between different green roof systems in an existing building in Lisbon. This approach supports the decision-making process on green roofs and enables robust and informed decisions on urban planning while optimizing buildings retrofitting.

Keywords: decision making, green roofs, investors preferences, multicriteria analysis, sustainable development

Procedia PDF Downloads 187
13560 Construction and Evaluation of Soybean Thresher

Authors: Oladimeji Adetona Adeyeye, Emmanuel Rotimi Sadiku, Oluwaseun Olayinka Adeyeye

Abstract:

In order to resuscitate soybean production and post-harvest processing especially, in term of threshing, there is need to develop an affordable threshing machine which will reduce drudgery associated with manual soybean threshing. Soybean thresher was fabricated and evaluated at Institute of Agricultural Research and Training IAR&T Apata Ibadan. The machine component includes; hopper, threshing unit, shaker, cleaning unit and the seed outlet, all working together to achieve the main objective of threshing and cleaning. TGX1835 - 10E variety was used for evaluation because of its high resistance to pests, rust and pustules. The final moisture content of the used sample was about 15%. The sample was weighed and introduced into the machine. The parameters evaluated includes moisture content, threshing efficiency, cleaning efficiency, machine capacity and speed. The threshing efficiency and capacity are 74% and 65.9kg/hr respectively. All materials used were sourced locally which makes the cost of production of the machine extremely cheaper than the imported soybean thresher.

Keywords: efficiency, machine capacity, speed, soybean, threshing

Procedia PDF Downloads 491