Search results for: hybrid block methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17514

Search results for: hybrid block methods

15264 Islanding Detection of Wind Turbine by Rate of Change of Frequency (ROCOF) and Rate of change of Power (ROCOP) Method

Authors: Vipulkumar Jagodana

Abstract:

Recently the use of renewable sources has increased, these sources include fuel cell, photo voltaic, and wind turbine. Islanding occurs when one portion of grid is isolated from remaining grid. Use of the renewable sources can provide continuous power to isolated portion in islanding condition. One of the common renewable sources is wind generation using wind turbine. The efficiency of wind generation can be increased in combination with conventional sources. When islanding occurs, few parameters change which may be frequency, voltage, active power, and harmonics. According to large change in one of these parameters islanding is detected. In this paper, two passive methods Rate of Change of Frequency (ROCOF) and Rate of change of Power (ROCOP) have been implemented for islanding detection of small wind-turbine. Islanding detection of both methods have been simulated in PSCAD. Simulation results show at different islanding inception angle response of ROCOF and ROCOP.

Keywords: islanding, adopted methods, PSCAD simulation, comparison

Procedia PDF Downloads 225
15263 Effects of Different Sowing Dates on Oil Yield of Castor (Ricinus communis L.)

Authors: Özden Öztürk, Gözde Pınar Gerem, Ayça Yenici, Burcu Haspolat

Abstract:

Castor (Ricinus communis L.) is one of the important non-edible oilseed crops having immense industrial and medicinal value. Oil yield per unit area is the ultimate target in growing oilseed plants and sowing date is one of the important factors which have a clear role in the production of active substances particularly in oilseeds. This study was conducted to evaluate the effect of sowing date on the seed and oil yield of castor in Central Anatolia in Turkey in 2011. The field experiment was set up in a completely randomized block design with three replication. Black Diamond-2 castor cultivar was used as plant material. The treatment was four sowing dates of May 10, May 25, June 10, June 25. In this research; seed yield, oil content and oil yield were investigated. Results showed that the effect of different sowing dates was significant on all of the characteristics. In general; delayed sowing dates, resulted in decreased seed yield, oil content and oil yield. The highest value of seed yield, oil content and oil yield (respectively, 2523.7 kg ha-1, 51.18% and 1292.2 kg ha-1) were obtained from the first sowing date (May 10) while the lowest seed yield, oil content and oil yield (respectively, 1550 kg ha-1, 43.67%, 677.3 kg ha-1) were recorded from the latest sowing date (June 25). Therefore, it can be concluded that early May could be recommended as an appropriate sowing date in the studied location and similar climates for achieved high oil yield of castor.

Keywords: castor bean, Ricinus communis L., sowing date, seed yield, oil content

Procedia PDF Downloads 384
15262 Application of Groundwater Model for Optimization of Denitrification Strategies to Minimize Public Health Risk

Authors: Mukesh A. Modi

Abstract:

High-nitrate concentration in groundwater of unconfined aquifers has been a serious issue for public health risk at a global scale. Various anthropogenic activities in agricultural land and urban land of alluvial soil have been observed to be responsible for the increment of nitrate in groundwater. The present study was designed to identify suitable denitrification strategies to minimize the effects of high nitrate in groundwater near the Mahi River of Vadodara block, Gujarat. There were 11 wells of Jal Jeevan Mission, Ministry of Jal Shakti, along with 3 observation wells of Gujarat Water Resources Development Corporation have been used for the duration of 21 years. MODFLOW and MT3DMS codes have been used to simulate solute transport phenomena along with attempted effectively for optimization. Current research is one step ahead by optimizing various denitrification strategies with the simulation of the model. The in-situ and ex-situ denitrification strategies viz. NAS (No Action Scenario), CAS (Crop Alternation Scenario), PS (Phytoremediation Scenario), and CAS + PS (Crop Alternation Scenario + Phytoremediation Scenario) have been selected for the optimization. The groundwater model simulates the most suitable denitrification strategy considering the hydrogeological characteristics at the targeted well.

Keywords: groundwater, high nitrate, MODFLOW, MT3DMS, optimization, denitrification strategy

Procedia PDF Downloads 30
15261 Aerodynamic Analysis and Design of Banners for Remote-Controlled Aircraft

Authors: Peyman Honarmandi, Mazen Alhirsh

Abstract:

Banner towing is a major form of advertisement. It consists of a banner showing a logo or a selection of words or letters being towed by an aircraft. Traditionally bush planes have been used to tow banners given their high thrust capabilities; however, with the development of remote-controlled (RC) aircraft, they could be a good replacement as RC planes mitigate the risk of human life and can be easier to operate. This paper studies the best banner design to be towed by an RC aircraft. This is done by conducting wind tunnel testing on an array of banners with different materials and designs. A pull gauge is used to record the drag force during testing, which is then used to calculate the coefficient of drag, Cd. The testing results show that the best banner design would be a hybrid design with a solid and mesh material. The design with the lowest Cd of 0.082 was a half ripstop nylon half polyester mesh design. On the other hand, the design with the highest Cd of 0.305 involved incorporating a tail chute to decrease fluttering.

Keywords: aerodynamics of banner, banner design, banner towing, drag coefficients of banner, RC aircraft banner

Procedia PDF Downloads 242
15260 Application Reliability Method for Concrete Dams

Authors: Mustapha Kamel Mihoubi, Mohamed Essadik Kerkar

Abstract:

Probabilistic risk analysis models are used to provide a better understanding of the reliability and structural failure of works, including when calculating the stability of large structures to a major risk in the event of an accident or breakdown. This work is interested in the study of the probability of failure of concrete dams through the application of reliability analysis methods including the methods used in engineering. It is in our case, the use of level 2 methods via the study limit state. Hence, the probability of product failures is estimated by analytical methods of the type first order risk method (FORM) and the second order risk method (SORM). By way of comparison, a level three method was used which generates a full analysis of the problem and involves an integration of the probability density function of random variables extended to the field of security using the Monte Carlo simulation method. Taking into account the change in stress following load combinations: normal, exceptional and extreme acting on the dam, calculation of the results obtained have provided acceptable failure probability values which largely corroborate the theory, in fact, the probability of failure tends to increase with increasing load intensities, thus causing a significant decrease in strength, shear forces then induce a shift that threatens the reliability of the structure by intolerable values of the probability of product failures. Especially, in case the increase of uplift in a hypothetical default of the drainage system.

Keywords: dam, failure, limit-state, monte-carlo, reliability, probability, simulation, sliding, taylor

Procedia PDF Downloads 324
15259 Evaluation of Three Digital Graphical Methods of Baseflow Separation Techniques in the Tekeze Water Basin in Ethiopia

Authors: Alebachew Halefom, Navsal Kumar, Arunava Poddar

Abstract:

The purpose of this work is to specify the parameter values, the base flow index (BFI), and to rank the methods that should be used for base flow separation. Three different digital graphical approaches are chosen and used in this study for the purpose of comparison. The daily time series discharge data were collected from the site for a period of 30 years (1986 up to 2015) and were used to evaluate the algorithms. In order to separate the base flow and the surface runoff, daily recorded streamflow (m³/s) data were used to calibrate procedures and get parameter values for the basin. Additionally, the performance of the model was assessed by the use of the standard error (SE), the coefficient of determination (R²), and the flow duration curve (FDC) and baseflow indexes. The findings indicate that, in general, each strategy can be used worldwide to differentiate base flow; however, the Sliding Interval Method (SIM) performs significantly better than the other two techniques in this basin. The average base flow index was calculated to be 0.72 using the local minimum method, 0.76 using the fixed interval method, and 0.78 using the sliding interval method, respectively.

Keywords: baseflow index, digital graphical methods, streamflow, Emba Madre Watershed

Procedia PDF Downloads 79
15258 New Formulation of FFS3 Layered Blown Films Containing Toughened Polypropylene and Plastomer with Superior Properties

Authors: S. Talebnezhad, S. Pourmahdian, D. Soudbar, M. Khosravani, J. Merasi

Abstract:

Adding toughened polypropylene and plastomer in FFS 3 layered blown film formulation resulted in superior dart impact and MD tear resistance along with acceptable tensile properties in TD and MD. The optimum loading of toughened polypropylene and plastomer in each layer depends on miscibility of polypropylene in polyethylene medium, mechanical properties, welding characteristics in bags top and bottoms and friction coefficient of film surfaces. Film property tests and efficiency of FFS machinery during processing in industrial scale showed that about 4% loading of plastomer and 16% of toughened polypropylene (reactor grade) in middle layer and loading of 0-1% plastomer and 5-19% of toughened polypropylene in other layers results optimum characteristics in the formulation based on 1-butene LLDPE grade with MFR of 0.9 and LDPE grade with MFI of 0.3. Both the plastomer and toughened polypropylene had the MFI of blow 1 and the TiO2 and processing aid masterbatches loading was 2%. The friction coefficient test results also represented the anti-block masterbatch could be omitted from formulation with adding toughened polypropylene due to partial miscibility of PP in PE which makes the surface of films somewhat bristly.

Keywords: FFS 3 layered blown film, toughened polypropylene, plastomer, dart impact, tear resistance

Procedia PDF Downloads 410
15257 Mathematical Reconstruction of an Object Image Using X-Ray Interferometric Fourier Holography Method

Authors: M. K. Balyan

Abstract:

The main principles of X-ray Fourier interferometric holography method are discussed. The object image is reconstructed by the mathematical method of Fourier transformation. The three methods are presented – method of approximation, iteration method and step by step method. As an example the complex amplitude transmission coefficient reconstruction of a beryllium wire is considered. The results reconstructed by three presented methods are compared. The best results are obtained by means of step by step method.

Keywords: dynamical diffraction, hologram, object image, X-ray holography

Procedia PDF Downloads 394
15256 Numerical Modelling of Crack Initiation around a Wellbore Due to Explosion

Authors: Meysam Lak, Mohammad Fatehi Marji, Alireza Yarahamdi Bafghi, Abolfazl Abdollahipour

Abstract:

A wellbore is a hole that is drilled to aid in the exploration and recovery of natural resources including oil and gas. Occasionally, in order to increase productivity index and porosity of the wellbore and reservoir, the well stimulation methods have been used. Hydraulic fracturing is one of these methods. Moreover, several explosions at the end of the well can stimulate the reservoir and create fractures around it. In this study, crack initiation in rock around the wellbore has been numerically modeled due to explosion. One, two, three, and four pairs of explosion have been set at the end of the wellbore on its wall. After each stage of the explosion, results have been presented and discussed. Results show that this method can initiate and probably propagate several fractures around the wellbore.

Keywords: crack initiation, explosion, finite difference modelling, well productivity

Procedia PDF Downloads 291
15255 Integrated Grey Rational Analysis-Standard Deviation Method for Handover in Heterogeneous Networks

Authors: Mohanad Alhabo, Naveed Nawaz, Mahmoud Al-Faris

Abstract:

The dense deployment of small cells is a promising solution to enhance the coverage and capacity of the heterogeneous networks (HetNets). However, the unplanned deployment could bring new challenges to the network ranging from interference, unnecessary handovers and handover failures. This will cause a degradation in the quality of service (QoS) delivered to the end user. In this paper, we propose an integrated Grey Rational Analysis Standard Deviation based handover method (GRA-SD) for HetNet. The proposed method integrates the Standard Deviation (SD) technique to acquire the weight of the handover metrics and the GRA method to select the best handover base station. The performance of the GRA-SD method is evaluated and compared with the traditional Multiple Attribute Decision Making (MADM) methods including Simple Additive Weighting (SAW) and VIKOR methods. Results reveal that the proposed method has outperformed the other methods in terms of minimizing the number of frequent unnecessary handovers and handover failures, in addition to improving the energy efficiency.

Keywords: energy efficiency, handover, HetNets, MADM, small cells

Procedia PDF Downloads 116
15254 A Modified NSGA-II Algorithm for Solving Multi-Objective Flexible Job Shop Scheduling Problem

Authors: Aydin Teymourifar, Gurkan Ozturk, Ozan Bahadir

Abstract:

NSGA-II is one of the most well-known and most widely used evolutionary algorithms. In addition to its new versions, such as NSGA-III, there are several modified types of this algorithm in the literature. In this paper, a hybrid NSGA-II algorithm has been suggested for solving the multi-objective flexible job shop scheduling problem. For a better search, new neighborhood-based crossover and mutation operators are defined. To create new generations, the neighbors of the selected individuals by the tournament selection are constructed. Also, at the end of each iteration, before sorting, neighbors of a certain number of good solutions are derived, except for solutions protected by elitism. The neighbors are generated using a constraint-based neural network that uses various constructs. The non-dominated sorting and crowding distance operators are same as the classic NSGA-II. A comparison based on some multi-objective benchmarks from the literature shows the efficiency of the algorithm.

Keywords: flexible job shop scheduling problem, multi-objective optimization, NSGA-II algorithm, neighborhood structures

Procedia PDF Downloads 229
15253 Analysis and Comparison of Prototypes of an Ergometric Step in a Multidisciplinary Design Process

Authors: M. B. Ricardo De Oliveira, A. Borghi-Silva, L. Di Thommazo, D. Braatz

Abstract:

Prototypes can be understood as representations of a product concept. Furthermore, prototyping consists in an important stage in product development and results in better team communication, decision making, testing and problem solving through feedback. Although there are several methods of prototyping suggested by recent studies for designers to choose from, some methods present different advantages, such as cost and time reduction, performance and fidelity, which should be taken in account during a product development project. In this multidisciplinary study, involving areas of physiotherapy, engineering and computer science (hardware and software), we compared four developed prototypes of an ergometric step: a virtual prototype, a 3D printed prototype, a bricolage prototype and a prototype manufactured by a third-party company. These prototypes were evaluated in a comparative-qualitative approach for their contribution to the concept’s maturation of the product, the different prototyping methods used and the advantages and disadvantages of each one based on the product’s design specifications (performance, safety, materials, cost, maintenance, usability, ergonomics and portability). Our results indicated that despite prototypes show overall advantages, all of them have limitations, thus being crucial to have different methods of testing and interacting with the product. Additionally, virtual and 3D printed prototypes were essential at early stages of the project due to their low-cost and high-fidelity representation of the product, while the prototype manufactured by a third-party company and bricolage prototype introduced functional tests in real scenarios, allowing more detailed evaluations. This study also resulted in a patent for an ergometric step.

Keywords: Product Design, Product Development, Prototypes, Step

Procedia PDF Downloads 117
15252 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems

Authors: Sultan Noman Qasem

Abstract:

This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFNN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.

Keywords: radial basis function network, hybrid learning, multi-objective optimization, genetic algorithm

Procedia PDF Downloads 563
15251 Numerical Multi-Scale Modeling of Rubber Friction on Rough Pavements Using Finite Element Method

Authors: Ashkan Nazari, Saied Taheri

Abstract:

Knowledge of tire-pavement interaction plays a crucial role in designing safer and more reliable tires. Characterizing the tire-pavement frictional interaction leads to a better understanding of vehicle performance in braking and acceleration. In this work, we devise a multi-scale simulation approach to incorporate the effect of pavement surface asperities in different length-scales. We construct two- and three-dimensional Finite Element (FE) models to simulate the interaction between a rubber block and a rough pavement surface with asperities in different scales. To achieve this, the road profile is scanned via a laser profilometer and the obtained asperities are implemented in an FE software (ABAQUS) in micro and macro length-scales. The hysteresis friction, which is due to the dissipative nature of rubber, is the main component of the friction force and therefore is the subject of study in this work. Using different scales not only will assist in characterizing the pavement asperities with sufficient details but also, it is highly effective in preventing extreme local deformations and stress gradients which results in divergence in FE simulations. The simulation results will be validated with experimental results as well as the results reported in the literature.

Keywords: friction, finite element, multi-scale modeling, rubber

Procedia PDF Downloads 137
15250 Climate Change and the Invasive Alien Species of Western Himalayan State of India

Authors: Yashasvi Thakur, Vikas K. Sharma

Abstract:

The fragile Himalayan ecosystems are sensitive to environmental stresses, including direct and indirect impacts of climate stresses. A total of 297 naturalized alien plant species belonging to 65 families in the IHR have already been reported. Of the total 297 naturalized alien plant species in IHR, the maximum species occur in Himachal Pradesh (232; 78.1%), followed by Jammu & Kashmir (192; 64.6%) and Uttarakhand (181; 60.90%). The present study reports the spread of some invasive and existing weed species like Ageratum conyzoides, Bidens pilosa, Chromolaena odorata, Lantana camara, Brossnetia papyrifera, Oxalis corniculata, Galinsoga parviflora, Panicum maximum at an extent that they are not only invading the agricultural fields but are also replacing the native plant species and degrading the existing grassland quality. Moreover, the degradation of grassland has led to the dry fodder shortage for livestock in the lower Shivalik ranges of the state of Himachal Pradesh and has also encouraged the use of herbicides at an extensive scale. This article provides a mapping of the current spread of some of these species at the block level to allow the development of appropriate management strategies and policy planning for addressing issues pertaining to plant invasion, agricultural fields, and grasslands across the IHR states.

Keywords: climate change, invasive alien species, agriculture, grassland, IHR

Procedia PDF Downloads 74
15249 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing

Authors: Tolulope Aremu

Abstract:

This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.

Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving

Procedia PDF Downloads 31
15248 A Review of Masonry Buildings Restrengthening Methods

Authors: Negar Sartipzadeh

Abstract:

The historic buildings are generally the ones which have been built by materials like brick, mud, stone, and wood. Some phenomena such as severe earthquakes can be tremendously detrimental to the structures, imposing serious effects and losses on such structures. Hence, it matters a lot to ascertain safety and reliability of the structures under such circumstances. It has been asserted that the major reason for the collapse of Unreinforced Masonry (URM) in various earthquakes is the incapability of resisting the forces and vice versa because such URMs are meant for the gravity load and they fail to withstand the shear forces inside the plate and the bending forces outside the plate. For this reason, restrengthening such structures is a key factor in lowering the seismic loss in developing countries. Seismic reinforcement of the historic buildings with regard to their cultural value on one hand, and exhaustion and damage of many of the structural elements on the other hand, have brought in restricting factors which necessitate the seismic reinforcement methods meant for such buildings to be maximally safe, non-destructive, effective, and non-obvious. Henceforth, it is pinpointed that making use of diverse technologies such as active controlling, Energy dampers, and seismic separators besides the current popular methods would be justifiable for such buildings, notwithstanding their high imposed costs.

Keywords: masonry buildings, seismic reinforcement, Unreinforced Masonry (URM), earthquake

Procedia PDF Downloads 280
15247 Synthesis of Biofuels of New Generation

Authors: Selena Gutiérrez, Araceli Martínez

Abstract:

One of the most important challenges worldwide, scientific and technological, is to have a sustainable energy source; friendly to the environment and widely available. Currently, the 85% of the energy used comes from the fossil sources. Another important environmental problem is that several rubber products (tires, gloves, hoses, among others) are discarded practically without any treatment. In nature, the degradation of such products will take at least 500 years. In 2009, the worldwide rubber production was about 23.6 million tons. In order to solve this problems, our research focus in an alternative synthesis of biofuels in a two-step approach: The metathesis degradation of industrial rubber (models of rubber waste), and the oligomers transesterification. Thus, cis-1,4-polybutadiene (Mn= 9.1x105, Mw/Mn= 2.2) and styrene-butadiene block copolymers with 30% (Mn= 1.61x105; Mw/Mn= 1.3) and 21% wt styrene (Mn= 1.92x105; Mw/Mn= 1.4) were degraded via metathesis with soybean oil as chain transfer agent (CTA) and green solvent; using [(PCy3)2Cl2Ru=CHPh] and [(1,3-diphenyl-4,5-dihydroimidazol-2-ylidene)(PCy3)Ru=CHPh] catalysts. Afterwards, the products were transesterified by basic homogeneous catalysis. Before transesterification, the polystyrene microblocks (Mn= 16,761; Mw/Mn= 1.2) were isolated. Finally, the biofuels obtained (BO) were purified, characterized and showed similar properties to standards biodiesel (SB) (Norms: EN 14214-03 and ASTM D6751-02), i.e. (SB / BO): molecular weight [Daltons] (570 / 543-596), density [g/cm3] (0.86-0.90 / 0.88), kinematic viscosity [mm2/s] (1.90-6.0 / 3.5-4.5), iodine (97 / 97-98) and cetane number (Min.47 / 56-58).

Keywords: biofuels, industrial rubber, metathesis, vegetable oils

Procedia PDF Downloads 258
15246 Selling Electric Vehicles: Experiences from Car Salesmen in Sweden

Authors: Jens Hagman, Jenny Janhager Stier, Ellen Olausson, Anne Y. Faxer, Ana Magazinius

Abstract:

Sweden has the second highest electric vehicle (plug-in hybrid and battery electric vehicle) sales per capita in Europe but in relation to sales of internal combustion engine electric vehicles sales are still minuscular (< 4%). Much research effort has been placed on various technical and user focused barriers and enablers for adoption of electric vehicles. Less effort has been placed on investigating the retail (dealership-customer) sales process of vehicles in general and electric vehicles in particular. Arguably, no one ought to be better informed about needs and desires of potential electric vehicle buyers than car salesmen, originating from their daily encounters with customers at the dealership. The aim of this paper is to explore the conditions of selling electric vehicle from a car salesmen’s perspective. This includes identifying barriers and enablers for electric vehicle sales originating from internal (dealership and brand) and external (customer, government) sources. In this interview study five car brands (manufacturers) that sell both electric and internal combustion engine vehicles have been investigated. A total of 15 semi-structured interviews have been conducted (three per brand, in rural and urban settings and at different dealerships). Initial analysis reveals several barriers and enablers, experienced by car salesmen, which influence electric vehicle sales. Examples of as reported by car salesmen identified barriers are: -Electric vehicles earn car salesmen less commission on average compared to internal combustion engine vehicles. -It takes more time to sell and deliver an electric vehicle than an internal combustion engine vehicle. -Current leasing contracts entails relatively low second-hand value estimations for electric vehicles and thus a high leasing fee, which negatively affects the attractiveness of electric vehicles for private consumers in particular. -High purchasing price discourages many consumers from considering electric vehicles. -The education and knowledge level of electric vehicles differs between car salesmen, which could affect their self-confidence in meeting well prepared and question prone electric vehicle buyers. Examples of identified enablers are: -Company car tax regulation promotes sales of electric vehicles; in particular, plug-in hybrid electric vehicles are sold extensively to companies (up to 95 % of sales). -Low operating cost of electric vehicles such as fuel and service is an advantage when understood by consumers. -The drive performance of electric vehicles (quick, silent and fun to drive) is attractive to consumers. -Environmental aspects are considered important for certain consumer groups. -Fast technological improvements, such as increased range are opening up a wider market for electric vehicles. -For one of the brands; attractive private lease campaigns have proved effective to promote sales. This paper gives insights of an important but often overlooked aspect for the diffusion of electric vehicles (and durable products in general); the interaction between car salesmen and customers at the critical acquiring moment. Extracted through interviews with multiple car salesmen. The results illuminate untapped potential for sellers (salesmen, dealerships and brands) to mitigating sales barriers and strengthening sales enablers and thus becoming a more important actor in the electric vehicle diffusion process.

Keywords: customer barriers, electric vehicle promotion, sales of electric vehicles, interviews with car salesmen

Procedia PDF Downloads 229
15245 A Mixed Methods Study Aimed at Exploring the Conceptualization of Orthorexia Nervosa on Instagram

Authors: Elena V. Syurina, Sophie Renckens, Martina Valente

Abstract:

Objective: The objective of this study was to investigate the nature of the conversation around orthorexia nervosa (ON) on Instagram. Methods: The present study was conducted using mixed methods, combining a concurrent triangulation and sequential explanatory design. First, 3027 pictures posted on Instagram using #Orthorexia were analyzed. Then, a questionnaire about Instagram use related to ON was completed entirely by 185 respondents. These two quantitative data sources were statistically analyzed and triangulated afterwards. Finally, 9 interviews were conducted, to more deeply investigate what is being said about ON on Instagram and what the motivations to post about it are. Results: Four main categories of pictures were found to be represented in Instagram posts about ON: ‘food’, ‘people’, ‘text’, and ‘other.’ Savory and unprocessed food was most highly represented within the food category, and pictures of people were mostly pictures of the account holder. People who self-identify as having ON were more likely to post about ON, and they were significantly more likely to post about ‘food’, ‘people’ and ‘text.’ The goal of the posts was to raise awareness around ON, as well as to provide support for people who believe to be suffering from it. Conclusion: Since the conversation around ON on Instagram is supportive, it could be beneficial to consider Instagram use in the treatment of ON. However, more research is needed on a larger scale.

Keywords: orthorexia nervosa, Instagram, social media, disordered eating

Procedia PDF Downloads 138
15244 The Influence of High Temperatures on HVFA Concrete Columns by NDT Methods

Authors: D. Jagath Kumari, K. Srinivasa Rao

Abstract:

Quality assurance of the structures subjected to high temperatures is now enforcing measure for the Structural Engineers. The existing relations between strength and nondestructive measurements have been established under normal conditions are not suitable to concretes that have been exposed to high temperatures. The scope of the work is to investigate the influence of high temperatures of short durations on the residual properties of reinforced HVFA concrete columns that affect the strength by non-destructive tests (NDT). Fly ash concrete is increasingly used in the design of normal strength, high strength and high performance concretes. In this paper, the authors revealed the influence of high temperatures on HVFA concrete columns. These columns are heated from 100oC to 800oC with increments of 100oC and allowed to cool to room temperature by two methods one is air cooling method and the other immediate water quenching method. All the specimens were tested identically, before heating and after heating for compressive strength and material integrity by rebound hammer and ultrasonic pulse velocity (UPV) meter respectively. HVFA concrete retained more residual strength by water quenching method than air-cooling method.

Keywords: HVFA concrete, NDT methods, residual strength, non-destructive tests

Procedia PDF Downloads 457
15243 A Comparison of Methods for Neural Network Aggregation

Authors: John Pomerat, Aviv Segev

Abstract:

Recently, deep learning has had many theoretical breakthroughs. For deep learning to be successful in the industry, however, there need to be practical algorithms capable of handling many real-world hiccups preventing the immediate application of a learning algorithm. Although AI promises to revolutionize the healthcare industry, getting access to patient data in order to train learning algorithms has not been easy. One proposed solution to this is data- sharing. In this paper, we propose an alternative protocol, based on multi-party computation, to train deep learning models while maintaining both the privacy and security of training data. We examine three methods of training neural networks in this way: Transfer learning, average ensemble learning, and series network learning. We compare these methods to the equivalent model obtained through data-sharing across two different experiments. Additionally, we address the security concerns of this protocol. While the motivating example is healthcare, our findings regarding multi-party computation of neural network training are purely theoretical and have use-cases outside the domain of healthcare.

Keywords: neural network aggregation, multi-party computation, transfer learning, average ensemble learning

Procedia PDF Downloads 162
15242 Online Creative Writing Courses for Algerian University Students: A Mixed-Methods Study of Benefits, Challenges, and Recommendations

Authors: Wafa Nouari

Abstract:

The paper investigates the advantages and drawbacks of online creative writing courses for Algerian university students, particularly in light of the COVID-19 pandemic. The paper employs a mixed-methods approach, using both quantitative and qualitative data from surveys, interviews, and online course evaluations. The paper examines three online creative writing courses offered by Oxford University, Stanford University, and Coursera. The paper shows that online creative writing courses can improve the student's writing abilities, enthusiasm, and self-confidence, as well as introduce them to various literary forms and cultures. However, the paper also highlights some challenges and obstacles that the students encounter, such as technical problems, language difficulties, cultural gaps, and lack of feedback and interaction. The paper argues that online creative writing courses can be a useful alternative or addition to conventional classroom instruction, especially during the pandemic. The paper also offers some suggestions for enhancing the quality and effectiveness of online creative writing courses, such as giving more direction, support, and feedback to the students, as well as creating a sense of community and cooperation among them.

Keywords: online creative writing courses, Algerian university students, mixed methods approach, benefits and chanllenges

Procedia PDF Downloads 104
15241 Social Studies Teaching Methods: Approaches and Techniques in Teaching History in Primary Education

Authors: Tonguc Basaran

Abstract:

History is a record of a people’s past based on a critical examination of documents and other facts. The essentials of this historical method are not beyond the grasp of even young children. Concrete examples, such as the story of the Rosetta stone, which enabled Champollion to establish the first principles of the deciphering of Egyptian hieroglyphics, vividly illustrate the fundamental processes involved. This search for the facts can be used to illustrate one side of the search for historic truth. The other side is the truth of historic interpretation. The facts cannot be changed, but the interpretation of them can and does change.

Keywords: history, primary education, teaching methods, social studies

Procedia PDF Downloads 298
15240 Systematic Review of Misconceptions: Tools for Diagnostics and Remediation Models for Misconceptions in Physics

Authors: Muhammad Iqbal, Edi Istiyono

Abstract:

Misconceptions are one of the problems in physics learning where students' understanding is not in line with scientific theory. The aim of this research is to find diagnostic tools to identify misconceptions and how to remediate physics misconceptions. In this research, the articles that will be reviewed come from the Scopus database related to physics misconceptions from 2013-2023. The articles obtained from the Scopus database were then selected according to the Prisma model, so 29 articles were obtained that focused on discussing physics misconceptions, especially regarding diagnostic tools and remediation methods. Currently, the most widely used diagnostic tool is the four-tier test, which is able to measure students' misconceptions in depth by knowing whether students are guessing or not and from then on, there is also a trend toward five-tier diagnostic tests with additional sources of information obtained. So that the origin of students' misconceptions is known. There are several ways to remediate student misconceptions, namely 11 ways and one of the methods used is digital practicum so that abstract things can be visualized into real ones. This research is limited to knowing what tools are used to diagnose and remediate misconceptions, so it is not yet known how big the effect of remediation methods is on misconceptions. The researcher recommends that in the future further research can be carried out to find out the most appropriate remediation method for remediating student misconceptions.

Keywords: misconception, remediation, systematic review, tools

Procedia PDF Downloads 36
15239 Comparison of Two Artificial Accelerated Weathering Methods of Larch Wood with Natural Weathering in Exterior Conditions

Authors: I. Sterbova, E. Oberhofnerova, M. Panek, M. Pavelek

Abstract:

With growing popularity, wood of European larch (Larix decidua, Mill.) is being more often applied into the exterior, usually as facade elements, also without surface treatment. The aim of this work was to compare two laboratory tests of artificial accelerated weathering of wood with two ways of natural weathering in the exterior. To assess changes in selected surface characteristics of larch wood, accelerated weathering methods in the Xenotest and UV chamber were used, both in combination with temperature cycling, for 6 weeks. They were compared with natural weathering results at exposition under 45° and 90° in the exterior for 12 months. The changes of colour, gloss, contact angle of water and also changes in visual characteristics were evaluated. The results of wood surfaces changes after 6 weeks of accelerated weathering in Xenotest are closer to 12 months of natural weathering in the exterior at an angle of 90° compared to the UV chamber testing. The results, especially the colour changes, of the samples exposed at an angle of 45° in the exterior were significantly different. Testing in Xenotest more closely simulates the weathering of façade elements in the exterior compared to the UV chamber testing.

Keywords: larch wood, wooden facade, wood accelerated weathering, weathering methods

Procedia PDF Downloads 139
15238 The Continuous Facility Location Problem and Transportation Mode Selection in the Supply Chain under Sustainability

Authors: Abdulaziz Alageel, Martino Luis, Shuya Zhong

Abstract:

The main focus of this research study is on the challenges faced in decision-making in a supply chain network regarding the facility location while considering carbon emissions. The study aims (i) to locate facilities (i.e., distribution centeres) in a continuous space considering limitations of capacity and the costs associated with opening and (ii) to reduce the cost of carbon emissions by selecting the mode of transportation. The problem is formulated as mixed-integer linear programming. This study hybridised a greedy randomised adaptive search (GRASP) and variable neighborhood search (VNS) to deal with the problem. Well-known datasets from the literature (Brimberg et al. 2001) are used and adapted in order to assess the performance of the proposed method. The proposed hybrid method produces encouraging results based on computational analysis. The study also highlights some research avenues for future recommendations.

Keywords: supply chain, facility location, weber problem, sustainability

Procedia PDF Downloads 100
15237 Hybrid Data-Driven Drilling Rate of Penetration Optimization Scheme Guided by Geological Formation and Historical Data

Authors: Ammar Alali, Mahmoud Abughaban, William Contreras Otalvora

Abstract:

Optimizing the drilling process for cost and efficiency requires the optimization of the rate of penetration (ROP). ROP is the measurement of the speed at which the wellbore is created, in units of feet per hour. It is the primary indicator of measuring drilling efficiency. Maximization of the ROP can indicate fast and cost-efficient drilling operations; however, high ROPs may induce unintended events, which may lead to nonproductive time (NPT) and higher net costs. The proposed ROP optimization solution is a hybrid, data-driven system that aims to improve the drilling process, maximize the ROP, and minimize NPT. The system consists of two phases: (1) utilizing existing geological and drilling data to train the model prior, and (2) real-time adjustments of the controllable dynamic drilling parameters [weight on bit (WOB), rotary speed (RPM), and pump flow rate (GPM)] that direct influence on the ROP. During the first phase of the system, geological and historical drilling data are aggregated. After, the top-rated wells, as a function of high instance ROP, are distinguished. Those wells are filtered based on NPT incidents, and a cross-plot is generated for the controllable dynamic drilling parameters per ROP value. Subsequently, the parameter values (WOB, GPM, RPM) are calculated as a conditioned mean based on physical distance, following Inverse Distance Weighting (IDW) interpolation methodology. The first phase is concluded by producing a model of drilling best practices from the offset wells, prioritizing the optimum ROP value. This phase is performed before the commencing of drilling. Starting with the model produced in phase one, the second phase runs an automated drill-off test, delivering live adjustments in real-time. Those adjustments are made by directing the driller to deviate two of the controllable parameters (WOB and RPM) by a small percentage (0-5%), following the Constrained Random Search (CRS) methodology. These minor incremental variations will reveal new drilling conditions, not explored before through offset wells. The data is then consolidated into a heat-map, as a function of ROP. A more optimum ROP performance is identified through the heat-map and amended in the model. The validation process involved the selection of a planned well in an onshore oil field with hundreds of offset wells. The first phase model was built by utilizing the data points from the top-performing historical wells (20 wells). The model allows drillers to enhance decision-making by leveraging existing data and blending it with live data in real-time. An empirical relationship between controllable dynamic parameters and ROP was derived using Artificial Neural Networks (ANN). The adjustments resulted in improved ROP efficiency by over 20%, translating to at least 10% saving in drilling costs. The novelty of the proposed system lays is its ability to integrate historical data, calibrate based geological formations, and run real-time global optimization through CRS. Those factors position the system to work for any newly drilled well in a developing field event.

Keywords: drilling optimization, geological formations, machine learning, rate of penetration

Procedia PDF Downloads 131
15236 The Revealed Preference Methods in Economic Valuation of Environmental Goods: A Review

Authors: Sara Sousa

Abstract:

The environmental goods and services have often been neglected in crucial decisions affecting the environment mainly because the difficulty in estimating their economic value, since we are dealing with non-market goods and, thus, without a price associated. Nevertheless, the inexistence of prices does not necessarily mean these goods have no value. The environment is a key element in today's society that seeks to be as sustainable as possible, where the environmental assets have both use and non-use values. To estimate the use value, researchers may apply the revealed preference methods. This paper provides a theoretical review of the main concepts and methodologies on the economic valuation of the environment, with particular emphasis on the revealed preference techniques. Based on a detailed literature review, this study concludes that, despite some inherent limitations, the revealed preference methodologies – travel cost, hedonic price, and averting behaviour – represent essential tools for the researchers who accept the challenge to estimate the use value of environmental goods and services based on the actual individuals` behaviour. The main purpose of this study is to contribute to an increased theoretical information on the economic valuation of environmental assets, allowing researchers and policymakers to improve future decisions regarding the environment.

Keywords: economic valuation, environmental goods, revealed preference methods, total economic value

Procedia PDF Downloads 130
15235 Use of Telehealth for Facilitating the Diagnostic Assessment of Autism Spectrum Disorder: A Scoping Review

Authors: Manahil Alfuraydan, Jodie Croxall, Lisa Hurt, Mike Kerr, Sinead Brophy

Abstract:

Autism Spectrum Disorder (ASD) is a developmental condition characterised by impairment in terms of social communication, social interaction, and a repetitive or restricted pattern of interest, behaviour, and activity. There is a significant delay between seeking help and a confirmed diagnosis of ASD. This may result in delay in receiving early intervention services, which are critical for positive outcomes. The long wait times also cause stress for the individuals and their families. Telehealth potentially offers a way of improving the diagnostic pathway for ASD. This review of the literature aims to examine which telehealth approaches have been used in the diagnosis and assessment of autism in children and adults, whether they are feasible and acceptable, and how they compare with face-to-face diagnosis and assessment methods. A comprehensive search of following databases- MEDLINE, CINAHL Plus with Full text, Business Sources Complete, Web of Science, Scopus, PsycINFO and trail and systematic review databases including Cochrane Library, Health Technology Assessment, Database of Abstracts and Reviews of Effectiveness and NHS Economic Evaluation was conducted, combining the terms of autism and telehealth from 2000 to 2018. A total of 10 studies were identified for inclusion in the review. This review of the literature found there to be two methods of using telehealth: (a) video conferencing to enable teams in different areas to consult with the families and to assess the child/adult in real time and (b) a video upload to a web portal that enables the clinical assessment of behaviours in the family home. The findings were positive, finding there to be high agreement in terms of the diagnosis between remote methods and face to face methods and with high levels of satisfaction among the families and clinicians. This field is in the very early stages, and so only studies with small sample size were identified, but the findings suggest that there is potential for telehealth methods to improve assessment and diagnosis of autism used in conjunction with existing methods, especially for those with clear autism traits and adults with autism. Larger randomised controlled trials of this technology are warranted.

Keywords: assessment, autism spectrum disorder, diagnosis, telehealth

Procedia PDF Downloads 128