Search results for: effect size
16789 The Effect of Adding CuO Nanoparticles on Boiling Heat Transfer Enhancement in Horizontal Flattened Tubes
Authors: M. A. Akhavan-Behabadi, M. Najafi, A. Abbasi
Abstract:
An empirical investigation was performed in order to study the heat transfer characteristics of R600a flow boiling inside horizontal flattened tubes and the simultaneous effect of nanoparticles on boiling heat transfer in flattened channel. Round copper tubes of 8.7 mm I.D. were deformed into flattened shapes with different inside heights of 6.9, 5.5, and 3.4 mm as test areas. The effect of different parameters such as mass flux, vapor quality and inside height on heat transfer coefficient was studied. Flattening the tube caused a significant enhancement in heat transfer performance, so that the maximum augmentation ratio of 163% was obtained in flattened channel with lowest internal height. A new correlation was developed based on the present experimental data to predict the heat transfer coefficient in flattened tubes. This correlation estimated 90% of the entire database within ±20%. The best flat channel with the point of view of heat transfer performance was selected to study the effect of nanoparticle on heat transfer enhancement. Four homogenized mixtures containing 1% weight fraction of R600a/oil with different CuO nanoparticles concentration including 0.5%, 1% and 1.5% mass fraction of R600a/oil/CuO were studied. Observations show that heat transfer was improved by adding nanoparticles, which lead to maximum enhancement of 79% compare to the pure refrigerant at the same test condition.Keywords: nano fluids, heat transfer, flattend tube, transport phenomena
Procedia PDF Downloads 43216788 Preparation and Study of Pluronic F127 Monolayers at Air-Water Interface
Authors: Neha Kanodia, M. Kamil
Abstract:
Properties of mono layers of Pluronic F127 at air/water interface have been investigated by using Langmuir trough method. Pluronic F127 is a triblock copolymer of poly (ethyleneoxide) (PEO groups)– poly (propylene oxide) (PO groups)–poly(ethylene oxide) (PEO groups). Surface pressure versus mean molecular area isotherms is studied. The isotherm of the mono layer showed the characteristics of a pancake-to-brush transition upon compression of the mono layer. The effect of adding surfactant (SDS) to polymer and the effect of increasing loading on polymer was also studied. The effect of repeated compression and expansion cycle (or hysteresis curve) is investigated to know about stability of the film formed. Static elasticity of mono layer gives information about molecular arrangement, phase structure and phase transition.Keywords: surface-pressure, mean molecular area isotherms, hysteresis, static elasticity
Procedia PDF Downloads 44916787 Effects of Video Games and Online Chat on Mathematics Performance in High School: An Approach of Multivariate Data Analysis
Authors: Lina Wu, Wenyi Lu, Ye Li
Abstract:
Regarding heavy video game players for boys and super online chat lovers for girls as a symbolic phrase in the current adolescent culture, this project of data analysis verifies the displacement effect on deteriorating mathematics performance. To evaluate correlation or regression coefficients between a factor of playing video games or chatting online and mathematics performance compared with other factors, we use multivariate analysis technique and take gender difference into account. We find the most important reason for the negative sign of the displacement effect on mathematics performance due to students’ poor academic background. Statistical analysis methods in this project could be applied to study internet users’ academic performance from the high school education to the college education.Keywords: correlation coefficients, displacement effect, multivariate analysis technique, regression coefficients
Procedia PDF Downloads 36516786 Effect of Jet Diameter on Surface Quenching at Different Spatial Locations
Authors: C. Agrawal, R. Kumar, A. Gupta, B. Chatterjee
Abstract:
An experimental investigation has been carried out to study the cooling of a hot horizontal Stainless Steel surface of 3 mm thickness, which has 800±10 °C initial temperature. A round water jet of 22 ± 1 °C temperature was injected over the hot surface through straight tube type nozzles of 2.5-4.8 mm diameter and 250 mm length. The experiments were performed for the jet exit to target surface spacing of 4 times of jet diameter and jet Reynolds number of 5000-24000. The effect of change in jet Reynolds number on the surface quenching has been investigated form the stagnation point to 16 mm spatial location.Keywords: hot-surface, jet impingement, quenching, stagnation point
Procedia PDF Downloads 61016785 A Mathematical Investigation of the Turkevich Organizer Theory in the Citrate Method for the Synthesis of Gold Nanoparticles
Authors: Emmanuel Agunloye, Asterios Gavriilidis, Luca Mazzei
Abstract:
Gold nanoparticles are commonly synthesized by reducing chloroauric acid with sodium citrate. This method, referred to as the citrate method, can produce spherical gold nanoparticles (NPs) in the size range 10-150 nm. Gold NPs of this size are useful in many applications. However, the NPs are usually polydisperse and irreproducible. A better understanding of the synthesis mechanisms is thus required. This work thoroughly investigated the only model that describes the synthesis. This model combines mass and population balance equations, describing the NPs synthesis through a sequence of chemical reactions. Chloroauric acid reacts with sodium citrate to form aurous chloride and dicarboxy acetone. The latter organizes aurous chloride in a nucleation step and concurrently degrades into acetone. The unconsumed precursor then grows the formed nuclei. However, depending on the pH, both the precursor and the reducing agent react differently thus affecting the synthesis. In this work, we investigated the model for different conditions of pH, temperature and initial reactant concentrations. To solve the model, we used Parsival, a commercial numerical code, whilst to test it, we considered various conditions studied experimentally by different researchers, for which results are available in the literature. The model poorly predicted the experimental data. We believe that this is because the model does not account for the acid-base properties of both chloroauric acid and sodium citrate.Keywords: citrate method, gold nanoparticles, Parsival, population balance equations, Turkevich organizer theory
Procedia PDF Downloads 20316784 Effects of Rockdust as a Soil Stabilizing Agent on Poor Subgrade Soil
Authors: Muhammad Munawar
Abstract:
Pavement destruction is normally associated with the horizontal relocation of subgrade because of pavement engrossing water and inordinate avoidance and differential settlement of material underneath the pavement. The aim of the research is to study the effect of the additives (rockdust) on the stability and the increase of bearing capacity of selected soils in Mardan City. The physical, chemical and designing properties of soil were contemplated, and the soil was treated with added admixture rockdust with the goal of stabilizing the local soil. The stabilization or modification of soil is done by blending of rock dust to soils in the scope of 0 to 85% by the rate increment of 5%, 10%, and 15% individually. The following test was done for treated sample: Atterberg limits (liquid limit, plasticity index, plastic limit), standard compaction test, the California bearing test and the direct shear test. The results demonstrated that the gradation of soil is narrow from the particle size analysis. Plasticity index (P.I), Liquid limit (L.L) and plastic limit (P.L) were shown reduction with the addition of Rock dust. It was concluded that the maximum dry density is increasing with the addition of rockdust up to 10%, beyond 10%, it shows reduction in their content. It was discovered that the Cohesion C diminished, the angle of internal friction and the California bearing ratio (C.B.R) was improved with the addition of Rock dust. The investigation demonstrated that the best stabilizer for the contextual investigation (Toru road Mardan) is the rock dust and the ideal dosage is 10 %.Keywords: rockdust, stabilization, modification, CBR
Procedia PDF Downloads 28316783 Study of Pressure and Air Mass Flow Effect on Output Power of PEM Fuel Cell Powertrains in Vehicles and Airplanes- A Simulation-based Approach
Authors: Mahdiye Khorasani, Arjun Vijay, Ali Mashayekh, Christian Trapp
Abstract:
The performance of Proton Exchange Membrane Fuel Cell (PEMFC) is highly dependent on the pressure and mass flow of media (Hydrogen and air) throughout the cells and the stack. Higher pressure, on the one hand, results in higher output power of the stack but, on the other hand, increases the electrical power demand of the compressor. In this work, a simulation model of a PEMFC system for vehicle and airplane applications is developed. With this new model, the effect of different pressures and air mass flow rates are investigated to discover the optimum operating point in a PEMFC system, and innovative operation strategies are implemented to optimize reactants flow while minimizing electrical power demand of the compressor for optimum performance. Additionally, a fuel cell system test bench is set up, which contains not only all the auxiliary components for conditioning the gases, reactants, and flows but also a dynamic titling table for testing different orientations of the stack to simulate the flight conditions during take-off and landing and off-road-vehicle scenarios. The results of simulation will be tested and validated on the test bench for future works.Keywords: air mass flow effect, optimization of operation, pressure effect, PEMFC system, PEMFC system simulation
Procedia PDF Downloads 17516782 Effect of Temperature on Adsorption of Nano Ca-DTPMP Scale Inhibitor
Authors: Radhiyatul Hikmah Binti Abu, Zukhairi Bin Md Rahim, Siti Ujila Binti Masuri, Nur Ismarrubie Binti Zahari, Mohd Zobir Hussein
Abstract:
This paper describes the synthesis of Calcium Diethylenetriamine-penta (Ca-DTPMP) Scale Inhibitor (SI) and the effect of temperature on its adsorption onto the mineral surfaces. Nanosized particles of Ca-DTPMP SI were synthesized and TEM result shows that the sizes of the synthesized particles are ranged from 10 nm to 30 nm. This synthesized nano SI was then used in static adsorption/precipitation test with various temperatures (37°C, 60°C and 100°C) to determine the effect of temperature on its adsorption ability. The performance of the SI was measured by their diffusion capability, which can be inferred by weighing the metal-SI that successfully adsorbed onto the kaolinite (mineral) surface. The kaolinite samples were analyzed using Scanning Electron Microscope (SEM) and the results show the reduction of pores on kaolinite surface as temperature increases. This indicates higher adsorption of the SI particles onto the mineral surface. Furthermore, EDX analysis shows the presence of Phosphorus (P) and Magnesium (Mg2+) on kaolinite particle surface, hence reaffirming the fact that adsorption took place on the kaolinite surface.Keywords: adsorption, diffusivity, scale, scale inhibitor
Procedia PDF Downloads 44216781 Understanding the Impact of Climate-Induced Rural-Urban Migration on the Technical Efficiency of Maize Production in Malawi
Authors: Innocent Pangapanga-Phiri, Eric Dada Mungatana
Abstract:
This study estimates the effect of climate-induced rural-urban migrants (RUM) on maize productivity. It uses panel data gathered by the National Statistics Office and the World Bank to understand the effect of RUM on the technical efficiency of maize production in rural Malawi. The study runs the two-stage Tobit regression to isolate the real effect of rural-urban migration on the technical efficiency of maize production. The results show that RUM significantly reduces the technical efficiency of maize production. However, the interaction of RUM and climate-smart agriculture has a positive and significant influence on the technical efficiency of maize production, suggesting the need for re-investing migrants’ remittances in agricultural activities.Keywords: climate-smart agriculture, farm productivity, rural-urban migration, panel stochastic frontier models, two-stage Tobit regression
Procedia PDF Downloads 13316780 Pregnancy Rhinitis Prevalence among Saudi Women
Authors: Mohammed G. Alotaibi, Sameer Albahkaly, Salwa M. Bahkali, Abdullah M. Alghamdi, Raseel S. Alswidan, Maha Bin Shafi, Sarah Almaiman
Abstract:
Introduction: Rhinitis is common in Saudi Arabia. Therefore, our study was designed to evaluate the prevalence, triggering factors, severity and progression of rhinitis during pregnancy. Methods: Prospective cross-sectional study was conducted in eight governmental and private medical centers in Riyadh, Saudi Arabia, during June and July 2014. Validated Arabic language self-administered questionnaire was used. Sample size of 260 Saudi pregnant women was calculated by Raosoft sample size calculator. Random sampling was achieved by choosing one and skipping every five patients in the clinic list. Data were coded and entered manually into spreadsheets then transferred to SPSS statistical package version 16.0 for Windows. Consent, Privacy and confidentiality of information were assured. Results: Pregnancy rhinitis was reported 31.2% (CI 25.6 - 37.2%). Symptoms arising in first trimester appeared in 79.2% of PR cases and mostly worsen. The most prevalent symptoms were nasal pruritis (67.5%), followed by sneezing (57.1%), congestion (50.6%), and post nasal drip (46.7%). The major triggering factor was dust (71.4%), followed by Tobacco/Shisha smoke (57.6%) and perfume(47%). Preexisting allergic diseases were markedly associated with developing pregnancy rhinitis. Conclusion: Rhinitis during pregnancy manifested in one third of Saudi pregnant ladies. Nasal pruritus was the most common symptom and dust was the widespread triggering factor.Keywords: allergy, pregnancy, Rhinitis, sneezing
Procedia PDF Downloads 25116779 Evaluation of Nanoparticle Application to Control Formation Damage in Porous Media: Laboratory and Mathematical Modelling
Authors: Gabriel Malgaresi, Sara Borazjani, Hadi Madani, Pavel Bedrikovetsky
Abstract:
Suspension-Colloidal flow in porous media occurs in numerous engineering fields, such as industrial water treatment, the disposal of industrial wastes into aquifers with the propagation of contaminants and low salinity water injection into petroleum reservoirs. The main effects are particle mobilization and captured by the porous rock, which can cause pore plugging and permeability reduction which is known as formation damage. Various factors such as fluid salinity, pH, temperature, and rock properties affect particle detachment. Formation damage is unfavorable specifically near injection and production wells. One way to control formation damage is pre-treatment of the rock with nanoparticles. Adsorption of nanoparticles on fines and rock surfaces alters zeta-potential of the surfaces and enhances the attachment force between the rock and fine particles. The main objective of this study is to develop a two-stage mathematical model for (1) flow and adsorption of nanoparticles on the rock in the pre-treatment stage and (2) fines migration and permeability reduction during the water production after the pre-treatment. The model accounts for adsorption and desorption of nanoparticles, fines migration, and kinetics of particle capture. The system of equations allows for the exact solution. The non-self-similar wave-interaction problem was solved by the Method of Characteristics. The analytical model is new in two ways: First, it accounts for the specific boundary and initial condition describing the injection of nanoparticle and production from the pre-treated porous media; second, it contains the effect of nanoparticle sorption hysteresis. The derived analytical model contains explicit formulae for the concentration fronts along with pressure drop. The solution is used to determine the optimal injection concentration of nanoparticle to avoid formation damage. The mathematical model was validated via an innovative laboratory program. The laboratory study includes two sets of core-flood experiments: (1) production of water without nanoparticle pre-treatment; (2) pre-treatment of a similar core with nanoparticles followed by water production. Positively-charged Alumina nanoparticles with the average particle size of 100 nm were used for the rock pre-treatment. The core was saturated with the nanoparticles and then flushed with low salinity water; pressure drop across the core and the outlet fine concentration was monitored and used for model validation. The results of the analytical modeling showed a significant reduction in the fine outlet concentration and formation damage. This observation was in great agreement with the results of core-flood data. The exact solution accurately describes fines particle breakthroughs and evaluates the positive effect of nanoparticles in formation damage. We show that the adsorbed concentration of nanoparticle highly affects the permeability of the porous media. For the laboratory case presented, the reduction of permeability after 1 PVI production in the pre-treated scenario is 50% lower than the reference case. The main outcome of this study is to provide a validated mathematical model to evaluate the effect of nanoparticles on formation damage.Keywords: nano-particles, formation damage, permeability, fines migration
Procedia PDF Downloads 62116778 Analysis of Weather Radar Data for the Cloud Seeding in Korea, 2018
Authors: Yonghun Ro, Joo-Wan Cha, Sanghee Chae, Areum Ko, Woonseon Jung, Jong-Chul Ha
Abstract:
National Institute of Meteorological Science (NIMS) in South Korea has performed the cloud seeding to support the field of cloud physics. This is to determine the precipitation occurrence analyzing the changes in the microphysical schemes of clouds. NIMS conducted 12 times of cloud seeding in the lower height of the troposphere at Kangwon and Kyunggi provinces throughout 2018. The change in the reflectivity of the weather radar was analyzed to verify the enhancement of precipitation according to the cloud seeding in this study. First, the natural system in the near of the target area was separated to clear the seeding effect. The radar reflectivity in the point of ground gauge station was extracted in every 10 minutes and the increased values during the reaction time of cloud particles and seeding materials were estimated as a seeding effect considering the cloud temperature, wind speed and direction, and seeding line that the aircraft had passed by. The radar reflectivity affected by seeding materials was showed an increment of 5 to 10 dBZ, and enhanced precipitation cloud was also detected in the 11 cases of cloud seeding experiments.Keywords: cloud seeding, reflectivity, weather radar, seeding effect
Procedia PDF Downloads 17016777 Effect of Compost Application on Uptake and Allocation of Heavy Metals and Plant Nutrients and Quality of Oriental Tobacco Krumovgrad 90
Authors: Violina R. Angelova, Venelina T. Popova, Radka V. Ivanova, Givko T. Ivanov, Krasimir I. Ivanov
Abstract:
A comparative research on the impact of compost on uptake and allocation of nutrients and heavy metals and quality of Oriental tobacco Krumovgrad 90 has been carried out. The experiment was performed on an agricultural field contaminated by the lead zinc smelter near the town of Kardzali, Bulgaria, after closing the lead production. The compost treatments had significant effects on the uptake and allocation of plant nutrients and heavy metals. The incorporation of compost leads to decrease in the amount of heavy metals present in the tobacco leaves, with Cd, Pb and Zn having values of 36%, 12% and 6%, respectively. Application of the compost leads to increased content of potassium, calcium and magnesium in the leaves of tobacco, and therefore, may favorably affect the burning properties of tobacco. The incorporation of compost in the soil has a negative impact on the quality and typicality of the oriental tobacco variety of Krumovgrad 90. The incorporation of compost leads to an increase in the size of the tobacco plant leaves, the leaves become darker in colour, less fleshy and undergo a change in form, becoming (much) broader in the second, third and fourth stalk position. This is accompanied by a decrease in the quality of the tobacco. The incorporation of compost also results in an increase in the mineral substances (pure ash), total nicotine and nitrogen, and a reduction in the amount of reducing sugars, which causes the quality of the tobacco leaves to deteriorate (particularly in the third and fourth harvests).Keywords: chemical composition, compost, heavy metals, oriental tobacco, quality
Procedia PDF Downloads 27316776 Leaf Epidermal Micromorphology as Identification Features in Accessions of Sesamum indicum L. Collected from Northern Nigeria
Authors: S. D. Abdul, F. B. J. Sawa, D. Z. Andrawus, G. Dan'ilu
Abstract:
Fresh leaves of twelve accessions of S. indicum were studied to examine their stomatal features, trichomes, epidermal cell shapes and anticlinal cell-wall patterns which may be used for the delimitation of the varieties. The twelve accessions of S. indicum studied have amphistomatic leaves, i.e. having stomata on both surfaces. Four types of stomatal complex types were observed namely, diacytic, anisocytic, tetracytic and anomocytic. Anisocytic type was the most common occurring on both surfaces of all the varieties and occurred 100% in varieties lale-duk, ex-sudan and ex-gombe 6. One-way ANOVA revealed that there was no significant difference between the stomatal densities of ex-gombe 6, ex-sudan, adawa-wula, adawa-ting, ex-gombe 4 and ex-gombe 2 . Accession adawa-ting (improved) has the smallest stomatal size (26.39µm) with highest stomatal density (79.08mm2) while variety adawa-wula possessed the largest stomatal size (74.31µm) with lowest stomatal density (29.60mm2), the exception was found in variety adawa-ting whose stomatal size is larger (64.03µm) but with higher stomatal density (71.54mm2). Wavy, curve or undulate anticlinal wall patterns with irregular and or isodiametric epidermal cell shapes were observed. These accessions were found to exhibit high degree of heterogeneity in their trichome features. Ten types of trichomes were observed: unicellular, glandular peltate, capitate glandular, long unbranched uniseriate, short unbranched uniseriate, scale, multicellular, multiseriate capitate glandular, branched uniseriate and stallate trichomes. The most frequent trichome type is short-unbranched uniseriate, followed by long-unbranched uniseriate (72.73% and 72.5%) respectively. The least frequent was multiseriate capitate glandular (11.5%). The high variation in trichome types and density coupled with the stomatal complex types suggest that these varieties of S. indicum probably have the capacity to conserve water. Furthermore, the leaf micromorphological features varied from one accession to another, hence, are found to be good diagnostic and additional tool in identification as well as nomenclature of the accessions of S. indicum.Keywords: Sesamum indicum, stomata, trichomes, epidermal cells, taxonomy
Procedia PDF Downloads 27416775 The Effect of Sensory Integration in Reduction of Stereotype Behaviour in Autistic Children
Authors: Mohammad Khamoushi, Reza Mirmahdi
Abstract:
The aim of this research was the effect of sensory integration in reduction of stereotype behaviors in autistic children. The statistical population included 55 children with the age range 2/8 – 14 in Esfahan Ordibehesht autistic center. Purposive sampling was used for selecting the sample group and 20 children with random assignment were designated in two group; experimental and control . Research project was quasi-experimental two-group with pretest and posttest. Data collection tools included repetitive behavior scale-revised with six sub-scales: stereotype behavior, self-injurious behavior, compulsive behavior, ritualistic behavior, sameness behavior, restricted behavior. Analysis of covariance was used for analyzing hypotheses. Result show that sensory integration procedure was effective in reduction of stereotype behavior, compulsive behavior and self-injurious behavior in autistic children. According to the findings, it is suggested that effect sensory integration procedure in stereotype behavior of autism children should be studied and used for treatment of other disabilities of this children.Keywords: autism, sensory integration procedure, stereotype behavior, compulsive behavior
Procedia PDF Downloads 58016774 Formulation Development and Evaluation Chlorpheniramine Maleate Containing Nanoparticles Loaded Thermo Sensitive in situ Gel for Treatment of Allergic Rhinitis
Authors: Vipin Saini, Manish Kumar, Shailendra Bhatt, A. Pandurangan
Abstract:
The aim of the present study was to fabricate a thermo sensitive gel containing Chlorpheniramine maleate (CPM) loaded nanoparticles following intranasal administration for effective treatment of allergic rhinitis. Chitosan based nanoparticles were prepared by precipitation method followed by the addition of developed NPs within the Poloxamer 407 and carbopol 934P based mucoadhesive thermo-reversible gel. Developed formulations were evaluated for Particle size, PDI, % entrapment efficiency and % cumulative drug permeation. NP3 formulation was found to be optimized on the basis of minimum particle size (143.9 nm), maximum entrapment efficiency (80.10±0.414 %) and highest drug permeation (90.92±0.531 %). The optimized formulation NP3 was then formulated into thermo reversible in situ gel. This intensifies the contact between nasal mucosa and the drug, increases and facilitates the drug absorption which results in increased bioavailability. G4 formulation was selected as the optimize on the basis of gelation ability and mucoadhesive strength. Histology was carried out to examine the damage caused by the optimized G4 formulation. Results revealed no visual signs of tissue damage thus indicated safe nasal delivery of nanoparticulate in situ gel formulation G4. Thus, intranasal CPM NP-loaded in situ gel was found to be a promising formulation for the treatment of allergic rhinitis.Keywords: chitosan, nanoparticles, in situ gel, chlorpheniramine maleate, poloxamer 407
Procedia PDF Downloads 17816773 X-Ray Dynamical Diffraction Rocking Curves in Case of Third Order Nonlinear Renninger Effect
Authors: Minas Balyan
Abstract:
In the third-order nonlinear Takagi’s equations for monochromatic waves and in the third-order nonlinear time-dependent dynamical diffraction equations for X-ray pulses for forbidden reflections the Fourier-coefficients of the linear and the third order nonlinear susceptibilities are zero. The dynamical diffraction in the nonlinear case is related to the presence in the nonlinear equations the terms proportional to the zero order and the second order nonzero Fourier coefficients of the third order nonlinear susceptibility. Thus in the third order nonlinear Bragg diffraction case a nonlinear analogue of the well known Renninger effect takes place. In this work, the ‘third order nonlinear Renninger effect’ is considered theoretically and numerically. If the reflection exactly is forbidden the diffracted wave’s amplitude is zero both in Laue and Bragg cases since the boundary conditions and dynamical diffraction equations are compatible with zero solution. But in real crystals due to some percent of dislocations and other localized defects, the atoms are displaced with respect to their equilibrium positions. Thus in real crystals susceptibilities of forbidden reflection are by some order small than for usual not forbidden reflections but are not exactly equal to zero. The numerical calculations for susceptibilities two order less than for not forbidden reflection show that in Bragg geometry case the nonlinear reflection curve’s behavior is the same as for not forbidden reflection, but for forbidden reflection the rocking curves’ width, center and boundaries are two order sensitive on the input intensity value. This gives an opportunity to investigate third order nonlinear X-ray dynamical diffraction for not intense beams – 0.001 in the units of critical intensity.Keywords: third order nonlinearity, Bragg diffraction, nonlinear Renninger effect, rocking curves
Procedia PDF Downloads 40816772 Metabolic Syndrome and Its Effects on Cartilage Degeneration vs Regeneration: A Pilot Study Using Osteoarthritis Biomarkers
Authors: Neena Kanojia, R. K. Kanojia
Abstract:
Background: Osteoarthritis OA of the knee is one of the leading causes of disability characterized by degeneration of hyaline cartilage combined with reparative processes. Its strong association with metabolic syndrome is postulated to be due to both mechanical and biochemical factors. Our study aims to study differential effect of metabolic risk factors on cartilage degeneration and regeneration at biomarker level. Design: After screening 281 patients presenting with knee pain, 41 patients who met the selection criteria were included and were divided into metabolic MetS OA and non-metabolic Non-MetS OA phenotypes using National Cholesterol Education Programme-Adult Treatment Panel-III NCEP ATP III criteria for metabolic syndrome. Serum Cartilage Oligomeric Matrix Protein COMP and Procollagen type IIA N terminal Propeptide PIIANP levels were used as tools to assess cartilage degeneration and regeneration, respectively. Results: 22 among 41 patients 53.66% had metabolic syndrome. Covariates like age, gender, Kellgren Lawrence KL grades were comparable in both groups. MetS OA group showed significant increase in serum COMP levels (p 0.03 with no significant effect on serum PIIANP levels (p 0.46. Hypertriglyceridemia showed independent association with both cartilage anabolism (p 0.03 and catabolism (p 0.03. Conclusion: Metabolic syndrome, though has no effect on cartilage regeneration tends to shift cartilage homeostasis towards degeneration with hypertriglyceridemia showing significant independent effect on cartilage metabolism.Keywords: metabolic, syndrome, cartilage, degernation
Procedia PDF Downloads 6516771 Antioxidant Mediated Neuroprotective Effects of Allium Cepa Extract Against Ischemia Reperfusion Induced Cognitive Dysfunction and Brain Damage in Mice
Authors: Jaspal Rana, Varinder Singh
Abstract:
Oxidative stress has been identified as an underlying cause of ischemia-reperfusion (IR) related cognitive dysfunction and brain damage. Therefore, antioxidant based therapies to treat IR injury are being investigated. Allium cepa L. (onion) is used as culinary medicine and is documented to have marked antioxidant effects. Hence, the present study was designed to evaluate the effect of A. cepa outer scale extract (ACE) against IR induced cognition and biochemical deficit in mice. ACE was prepared by maceration with 70% methanol and fractionated into ethylacetate and aqueous fractions. Bilateral common carotid artery occlusion for 10 min, followed by 24 h reperfusion, was used to induce cerebral IR injury. Following IR injury, ACE (100 and 200 mg/kg) was administered orally to animals for 7 days once daily. Behavioral outcomes (memory and sensorimotor functions) were evaluated using Morris water maze and neurological severity score. Cerebral infarct size, brain thiobarbituric acid reactive species, reduced glutathione, and superoxide dismutase activity were also determined. Treatment with ACE significantly ameliorated IR mediated deterioration of memory and sensorimotor functions and rose in brain oxidative stress in animals. The results of the present investigation revealed that ACE improved functional outcomes after cerebral IR injury which may be attributed to its antioxidant properties.Keywords: allium cepa, cerebral ischemia, memory, sensorimotor
Procedia PDF Downloads 11516770 Dietary Supplementation with Coula edulis B. Walnuts Prevents Diet-Induced Obesity and Insulin Resistance in Rats
Authors: Eric Beyegue, Boris Azantza, Judith Laure Ngondi, Julius E. Oben
Abstract:
Background: Dietary supplement may potentially help to fight obesity and other metabolic disorders such as adipogenesis, insulin resistance, and inflammation. The present study aimed to test whether supplementation with African walnuts (Aw) could have an effect on adipogenesis and others dysfunctions associated with obesity in rats. Methods: Wistar rats were fed with standard diet (SD) or high-fat high-sucrose diet (HFS) and HFS with supplemented (HFS-Aw) for eight weeks. Results: HFS diet-induced body weight gain and increased fat mass compared to SD. In addition HFS-fed rats developed fasting hyperglycaemia and insulinaemia as well as insulin resistance. Aw supplementation in HFS rats had a protective effect against adipose tissues weigh gain but slightly against body weight gain and major study related disorders. This could be mainly due to decreased food intake dependently of effect in food intake in central nervous system, which decreased in HFS rats supplemented with African walnut compared to the HFS-diet group. Interestingly, African walnut supplementation induced a slight decrease of fasting glycaemia, insulinaemia and Nitric Oxide which could partially explain its minor protective effect against diet-induced insulin resistance. Additionally a decrease in hepatic TG and transaminases levels suggesting a protective effect against liver injury. Conclusion: Taken together these data suggested that supplementation of African walnut could be used to prevent adipose weight gain and related disorders on the other hand, minimally reduced insulin resistance.Keywords: African walnut, dietary fiber, insulin resistance, oxidative stress
Procedia PDF Downloads 28316769 Effect of Prefabricated Vertical Drain System Properties on Embankment Behavior
Authors: Seyed Abolhasan Naeini, Ali Namaei
Abstract:
This study presents the effect of prefabricated vertical drain system properties on embankment behavior by calculating the settlement, lateral displacement and induced excess pore pressure by numerical method. In order to investigate this behavior, three different prefabricated vertical drains have been simulated under an embankment. The finite element software PLAXIS has been carried out for analyzing the displacements and excess pore pressures. The results showed that the consolidation time and induced excess pore pressure are highly depended to the discharge capacity of the prefabricated vertical drain. The increase in the discharge capacity leads to decrease the consolidation process and the induced excess pore pressure. Moreover, it was seen that the vertical drains spacing does not have any significant effect on the consolidation time. However, the increase in the drains spacing would decrease the system stiffness.Keywords: vertical drain, prefabricated, consolidation, embankment
Procedia PDF Downloads 15116768 The Influence of Knowledge Spillovers on High-Impact Firm Growth: A Comparison of Indigenous and Foreign Firms
Authors: Yazid Abdullahi Abubakar, Jay Mitra
Abstract:
This paper is concerned with entrepreneurial high-impact firms, which are firms that generate ‘both’ disproportionate levels of employment and sales growth, and have high levels of innovative activity. It investigates differences in factors influencing high-impact growth between indigenous and foreign firms. The study is based on an analysis of data from United Kingdom (UK) Innovation Scoreboard on 865 firms, which were divided into high-impact firms (those achieving positive growth in both sales and employment) and low-impact firms (negative or no growth in sales or employment); in order to identifying the critical differences in regional, sectorial and size related factors that facilitate knowledge spillovers and high-impact growth between indigenous and foreign firms. The findings suggest that: 1) Firms’ access to regional knowledge spillovers (from businesses and higher education institutions) is more significantly associated with high-impact growth of UK firms in comparison to foreign firms, 2) Because high-tech sectors have greater use of knowledge spillovers (compared to low-tech sectors), high-tech sectors are more associated with high-impact growth, but the relationship is stronger for UK firms compared to foreign firms, 3) Because small firms have greater need for knowledge spillovers (relative to large firms), there is a negative relationship between firm size and high-impact growth, but the negative relationship is greater for UK firms in comparison to foreign firms.Keywords: entrepreneurship, high-growth, indigenous firms, foreign firms, small firms, large firms
Procedia PDF Downloads 43016767 The Effect of Impinging WC-12Co Particles Temperature on Thickness of HVOF Thermally Sprayed Coatings
Authors: M. Jalali Azizpour
Abstract:
In this paper, the effect of WC-12Co particle Temperature in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are more effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose.Keywords: HVOF, temperature thickness, velocity, WC-12Co
Procedia PDF Downloads 24116766 Does Level of Countries Corruption Affect Firms Working Capital Management?
Authors: Ebrahim Mansoori, Datin Joriah Muhammad
Abstract:
Recent studies in finance have focused on the effect of external variables on working capital management. This study investigates the effect of corruption indexes on firms' working capital management. A large data set that covers data from 2005 to 2013 from five ASEAN countries, namely, Malaysia, Indonesia, Singapore, Thailand, and the Philippines, was selected to investigate how the level of corruption in these countries affect working capital management. The results of panel data analysis include fixed effect estimations showed that a high level of countries' corruption indexes encourages managers to shorten the CCC length. Meanwhile, the managers reduce the level of investment in cash and cash equivalents when the levels of corruption indexes increase. Therefore, increasing the level of countries' corruption indexes encourages managers to select conservative working capital strategies by reducing the level of NLB.Keywords: ASEAN, corruption indexes, panel data analysis, working capital management
Procedia PDF Downloads 43816765 Modeling of Thermally Induced Acoustic Emission Memory Effects in Heterogeneous Rocks with Consideration for Fracture Develo
Authors: Vladimir A. Vinnikov
Abstract:
The paper proposes a model of an inhomogeneous rock mass with initially random distribution of microcracks on mineral grain boundaries. It describes the behavior of cracks in a medium under the effect of thermal field, the medium heated instantaneously to a predetermined temperature. Crack growth occurs according to the concept of fracture mechanics provided that the stress intensity factor K exceeds the critical value of Kc. The modeling of thermally induced acoustic emission memory effects is based on the assumption that every event of crack nucleation or crack growth caused by heating is accompanied by a single acoustic emission event. Parameters of the thermally induced acoustic emission memory effect produced by cyclic heating and cooling (with the temperature amplitude increasing from cycle to cycle) were calculated for several rock texture types (massive, banded, and disseminated). The study substantiates the adaptation of the proposed model to humidity interference with the thermally induced acoustic emission memory effect. The influence of humidity on the thermally induced acoustic emission memory effect in quasi-homogeneous and banded rocks is estimated. It is shown that such modeling allows the structure and texture of rocks to be taken into account and the influence of interference factors on the distinctness of the thermally induced acoustic emission memory effect to be estimated. The numerical modeling can be used to obtain information about the thermal impacts on rocks in the past and determine the degree of rock disturbance by means of non-destructive testing.Keywords: degree of rock disturbance, non-destructive testing, thermally induced acoustic emission memory effects, structure and texture of rocks
Procedia PDF Downloads 26316764 Green Synthesis of Silver Nanoparticles, Their Toxicity and Biomedical Applications
Authors: Kiran Shehzadi, Yasmeen Akhtar, Mujahid Ameen, Tabinda Ijaz, Shoukat Siddique
Abstract:
Nanoparticles, due to their different sizes and morphologies, are employed in various fields such as the medical field, cosmetics, pharmaceutical, textile industry as well as in paints, adhesives, and electronics. Metal nanoparticles exhibit excellent antimicrobial activity, dye degradation and can be used as anti-cancerous drug loading agents. In this study, sZilver nanoparticles (Ag-NPs) were synthesized employing doxycycline (antibiotic) as a reducing and capping agent (biological/green synthesis). Produced Ag-NPS were characterized using UV/VIS spectrophotometry, XRD, SEM, and FTIR. Surface plasmon resonance (SPR) of silver nanoparticles was observed at 411nm with 90nm size with homogenized spherical shape. These particles revealed good inhibition zones for Fungi such as Candida albicans and Candida tropicalis. In this study, toxic properties of Ag-NPs were monitored by allowing them to penetrate in the cell, causing an abrupt increase in oxidative stress, which resulted ultimately in cell death. Histopathological analysis of mice organs was performed by administering definite concentrations of silver nanoparticles orally to mice for 14 days. Toxic properties were determined, and it was revealed that the toxicity of silver nanoparticles mainly depends on the size. Silver nanoparticles of this work presented mild toxicity for different organs (liver, kidney, spleen, heart, and stomach) of mice.Keywords: metal nanoparticles, green/biological methods, toxicity, Candida albicans, Candida tropicalis
Procedia PDF Downloads 12916763 Feasibility Study on a Conductive-Type Cooling System for an Axial Flux Permanent Magnet Generator
Authors: Yang-Gyun Kim, Eun-Taek Woo, Myeong-Gon Lee, Yun-Hyun Cho, Seung-Ho Han
Abstract:
For the sustainable development of wind energy, energy industries have invested in the development of highly efficient wind turbines such as an axial flux permanent magnet (AFPM) generator. The AFPM generator, however, has a history of overheating on the surface of the stator, so that power production decreases significantly. A proper cooling system, therefore, is needed. Although a convective-type cooling system has been developed, the size of the air blower must be increased when the generator’s capacity exceeds 2.5 MW. In this paper, we proposed a newly developed conductive-type cooling system using a heat pipe wound to the stator of a 2.5 MW AFPM generator installed on an offshore wind turbine. The numerical results showed that the temperatures on the stator surface using convective-type cooling system and the proposed conductive-type cooling system at thermal saturation were 60 and 76°C, respectively, which met the requirements for power production. The temperatures of the permanent magnet cased by the radiant heating from the stator surface were 53°C and 66°C, respectively, in each case. As a result, the permanent magnet did not reach the malfunction temperature. Although the cooling temperatures in the case of the conductive-type cooling system were higher than that of the convective-type cooling system, the relatively small size of the water pump and radiators make a light-weight design of the AFPM generator possible.Keywords: wind turbine, axial flux permanent magnet (AFPM) generator, conductive-type cooling system
Procedia PDF Downloads 32716762 Nickel Electroplating in Post Supercritical CO2 Mixed Watts Bath under Different Agitations
Authors: Chun-Ying Lee, Kun-Hsien Lee, Bor-Wei Wang
Abstract:
The process of post-supercritical CO2 electroplating uses the electrolyte solution after being mixed with supercritical CO2 and released to atmospheric pressure. It utilizes the microbubbles that form when oversaturated CO2 in the electrolyte returns to gaseous state, which gives the similar effect of pulsed electroplating. Under atmospheric pressure, the CO2 bubbles gradually diffuse. Therefore, the introduction of ultrasound and/or other agitation can potentially excite the CO2 microbubbles to achieve an electroplated surface of even higher quality. In this study, during the electroplating process, three different modes of agitation: magnetic stirrer agitation, ultrasonic agitation and a combined mode (magnetic + ultrasonic) were applied, respectively, in order to obtain an optimal surface morphology and mechanical properties for the electroplated Ni coating. It is found that the combined agitation mode at a current density of 40 A/dm2 achieved the smallest grain size, lower surface roughness, and produced an electroplated Ni layer that achieved hardness of 320 HV, much higher when compared with conventional method, which were usually in the range of 160 to 300 HV. However, at the same time, the electroplating with combined agitation developed a higher internal stress of 320 MPa due to the lower current efficiency of the process and finer grain in the coating. Moreover, a new control methodology for tailoring the coating’s mechanical property through its thickness was demonstrated by the timely introduction of ultrasonic agitation during the electroplating process with post supercritical CO2 mixed electrolyte.Keywords: nickel electroplating, micro-bubbles, supercritical carbon dioxide, ultrasonic agitation
Procedia PDF Downloads 27816761 Impact of Lined and Unlined Water Bodies on the Distribution and Abundance of Fresh Water Snails in Certain Governorates in Egypt
Authors: Nahed Mohamed Ismail, Bayomy Mostafa, Ahmed Abdel Kader, Ahmed Mohamed Azzam
Abstract:
Effect of lining watercourses on the distribution and abundance of fresh water snails at two Egyptian governorates, Baheria (new reclaimed area) and Giza was studied. Seasonal survey in lined and unlined sites during two successive years was carried out. Samples of snails and water were collected from each examined site and the ecological conditions were recorded. The collected snails from each site were placed in plastic aquaria and transferred to the laboratory, where they were sorted out, identified, counted and examined for natural infection. The size frequency distribution was calculated for each snail species. Results revealed that snails were represented in all examined watercourses (lined and unlined) at the two tested habitats by 14 species. (Biomphalaria alexandrina, B. glabrata, Bulinus truncatus, Physa acuta. Helisoma duryi, Lymnaea natalensis, Planorbis planorbis, Cleopatra bulimoids, Lanistes carinatus, Bellamya unicolor, Melanoides tuberculata, Theodoxus nilotica, Succinia cleopatra and Gabbiella senaarensis). During spring, the percentage of live (45%) and dead (55%) snail species was extremely highly significant lower (p>0.001) in lined water bodies compared to the unlined ones (93.5% and 6.5%, respectively) in the examined sites at Baheria. At Giza, the percentage values of live snail species from all lined watercourses (82.6% and 60.2%, during winter and spring, respectively) was significantly lower (p>0.05 & p>0.01) than those in unlined ones (91.1% and 79%, respectively). Size frequency distribution of snails collected from the lined and unlined water bodies at Baheria and Giza governorates during all seasons revealed that during survey, snail populations were stable and the recruitment of young to adult was continuing for some species, where the recruits were observed with adults. However, there was no sign of small snails occurrence in case of B. glabrata and B. alexandrina during autumn, winter and spring and disappear during summer at Giza. Meanwhile they completely absent during all seasons at Baheria Governorate. Chemical analysis of some heavy metals of water samples collected from lined and unlined sites from Baheria and Giza governorates during autumn, winter and spring were approximately as the same in both lined and unlined water bodies. However, Zn and Fe were higher in lined sites (0.78±0.37and 17.4 ± 4.3, respectively) than that of unlined ones (0.4±0.1 and 10.95 ± 1.93, respectively) and Cu was absent in both lined and unlined sites during summer at Baheria governorate. At Giza, Cu and Pb were absent and Fe were higher in lined sites (4.7± 4.2) than that of unlined ones (2.5 ± 1.4) during summer. Statistical analysis showed that no significant difference in all physico-chemical parameters of water in lined and unlined water bodies at the two tested habitats during all seasons. However, it was found that the water conductivity and TDS showed a lower mean values in lined sites than those of unlined ones. Thus, the present obtained data support the concept of utilizing environmental modification such as lining of water courses to help in minimizing the population density of certain vector snails and consequently reduce the transmission of snails born diseases.Keywords: lining, fresh water, snails, watercourses
Procedia PDF Downloads 25416760 Nanomechanical Devices Vibrating at Microwave Frequencies in Simple Liquids
Authors: Debadi Chakraborty, John E. Sader
Abstract:
Nanomechanical devices have emerged as a versatile platform for a host of applications due to their extreme sensitivity to environmental conditions. For example, mass measurements with sensitivity at the atomic level have recently been demonstrated. Ultrafast laser spectroscopy coherently excite the vibrational modes of metal nanoparticles and permits precise measurement of the vibration characteristics as a function of nanoparticle shape, size and surrounding environment. This study reports that the vibration of metal nanoparticles in simple liquids, like water and glycerol are not described by conventional fluid mechanics, i.e., Navier Stokes equations. The intrinsic molecular relaxation processes in the surrounding liquid are found to have a profound effect on the fluid-structure interaction of mechanical devices at nanometre scales. Theoretical models have been developed based on the non-Newtonian viscoelastic fluid-structure interaction theory to investigate the vibration of nanoparticles immersed in simple fluids. The utility of this theoretical framework is demonstrated by comparison to measurements on single nanowires and ensembles of metal rods. This study provides a rigorous foundation for the use of metal nanoparticles as ultrasensitive mechanical sensors in fluid and opens a new paradigm for understanding extremely high frequency fluid mechanics, nanoscale sensing technologies, and biophysical processes.Keywords: fluid-structure interaction, nanoparticle vibration, ultrafast laser spectroscopy, viscoelastic damping
Procedia PDF Downloads 275