Search results for: plant disease classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9009

Search results for: plant disease classification

6789 The Impacts of Negative Moral Characters on Health: An Article Review

Authors: Mansoor Aslamzai, Delaqa Del, Sayed Azam Sajid

Abstract:

Introduction: Though moral disorders have a high burden, there is no separate topic regarding this problem in the International Classification of Diseases (ICD). Along with the modification of WHO ICD-11, spirituality can prevent the rapid progress of such derangement as well. Objective: This study evaluated the effects of bad moral characters on health, as well as carried out the role of spirituality in the improvement of immorality. Method: This narrative article review was accomplished in 2020-2021 and the articles were searched through the Web of Science, PubMed, BMC, and Google scholar. Results: Based on the current review, most experimental and observational studies revealed significant negative effects of unwell moral characters on the overall aspects of health and well-being. Nowadays, a lot of studies established the positive role of spirituality in the improvement of health and moral disorder. The studies concluded, facilities must be available within schools, universities, and communities for everyone to learn the knowledge of spirituality and improve their unwell moral character world. Conclusion: Considering the negative relationship between unwell moral characters and well-being, the current study proposes the addition of moral disorder as a separate topic in the WHO International Classification of Diseases. Based on this literature review, spirituality will improve moral disorder and establish excellent moral traits.

Keywords: bad moral characters, effect, health, spirituality and well-being

Procedia PDF Downloads 181
6788 Practice on Design Knowledge Management and Transfer across the Life Cycle of a New-Built Nuclear Power Plant in China

Authors: Danying Gu, Xiaoyan Li, Yuanlei He

Abstract:

As a knowledge-intensive industry, nuclear industry highly values the importance of safety and quality. The life cycle of a NPP (Nuclear Power Plant) can last 100 years from the initial research and design to its decommissioning. How to implement the high-quality knowledge management and how to contribute to a more safe, advanced and economic NPP (Nuclear Power Plant) is the most important issue and responsibility for knowledge management. As the lead of nuclear industry, nuclear research and design institute has competitive advantages of its advanced technology, knowledge and information, DKM (Design Knowledge Management) of nuclear research and design institute is the core of the knowledge management in the whole nuclear industry. In this paper, the study and practice on DKM and knowledge transfer across the life cycle of a new-built NPP in China is introduced. For this digital intelligent NPP, the whole design process is based on a digital design platform which includes NPP engineering and design dynamic analyzer, visualization engineering verification platform, digital operation maintenance support platform and digital equipment design, manufacture integrated collaborative platform. In order to make all the design data and information transfer across design, construction, commissioning and operation, the overall architecture of new-built digital NPP should become a modern knowledge management system. So a digital information transfer model across the NPP life cycle is proposed in this paper. The challenges related to design knowledge transfer is also discussed, such as digital information handover, data center and data sorting, unified data coding system. On the other hand, effective delivery of design information during the construction and operation phase will contribute to the comprehensive understanding of design ideas and components and systems for the construction contractor and operation unit, largely increasing the safety, quality and economic benefits during the life cycle. The operation and maintenance records generated from the NPP operation process have great significance for maintaining the operating state of NPP, especially the comprehensiveness, validity and traceability of the records. So the requirements of an online monitoring and smart diagnosis system of NPP is also proposed, to help utility-owners to improve the safety and efficiency.

Keywords: design knowledge management, digital nuclear power plant, knowledge transfer, life cycle

Procedia PDF Downloads 271
6787 Predictors of Non-Alcoholic Fatty Liver Disease in Egyptian Obese Adolescents

Authors: Moushira Zaki, Wafaa Ezzat, Yasser Elhosary, Omnia Saleh

Abstract:

Nonalcoholic fatty liver disease (NAFLD) has increased in conjunction with obesity. The accuracy of risk factors for detecting NAFLD in obese adolescents has not undergone a formal evaluation. The aim of this study was to evaluate predictors of NAFLD among Egyptian female obese adolescents. The study included 162 obese female adolescents. All were subjected to anthropometry, biochemical analysis and abdominal ultrasongraphic assessment. Metabolic syndrome (MS) was diagnosed according to the IDF criteria. Significant association between presence of MS and NAFLD was observed. Obese adolescents with NAFLD had significantly higher levels of ALT, triglycerides, fasting glucose, insulin, blood pressure and HOMA-IR, whereas decreased HDL-C levels as compared with obese cases without NAFLD. Receiver–operating characteristic (ROC) curve analysis shows that ALT is a sensitive predictor for NAFLD, confirming that ALT can be used as a marker of NAFLD.

Keywords: obesity, NAFLD, predictors, adolescents, Egyptians, risk factors, prevalence

Procedia PDF Downloads 388
6786 The Importance of the Fluctuation in Blood Sugar and Blood Pressure of Insulin-Dependent Diabetic Patients with Chronic Kidney Disease

Authors: Hitoshi Minakuchi, Izumi Takei, Shu Wakino, Koichi Hayashi, Hiroshi Itoh

Abstract:

Objectives: Among type 2 diabetics, patients with CKD(chronic kidney disease), insulin resistance, impaired glyconeogenesis in kidney and reduced degradation of insulin are recognized, and we observed different fluctuational patterns of blood sugar between CKD patients and non-CKD patients. On the other hand, non-dipper type blood pressure change is the risk of organ damage and mortality. We performed cross-sectional study to elucidate the characteristic of the fluctuation of blood glucose and blood pressure at insulin-treated diabetic patients with chronic kidney disease. Methods: From March 2011 to April 2013, at the Ichikawa General Hospital of Tokyo Dental College, we recruited 20 outpatients. All participants are insulin-treated type 2 diabetes with CKD. We collected serum samples, urine samples for several hormone measurements, and performed CGMS(Continuous glucose measurement system), ABPM (ambulatory blood pressure monitoring), brain computed tomography, carotid artery thickness, ankle brachial index, PWV, CVR-R, and analyzed these data statistically. Results: Among all 20 participants, hypoglycemia was decided blood glucose 70mg/dl by CGMS of 9 participants (45.0%). The event of hypoglycemia was recognized lower eGFR (29.8±6.2ml/min:41.3±8.5ml/min, P<0.05), lower HbA1c (6.44±0.57%:7.53±0.49%), higher PWV (1858±97.3cm/s:1665±109.2cm/s), higher serum glucagon (194.2±34.8pg/ml:117.0±37.1pg/ml), higher free cortisol of urine (53.8±12.8μg/day:34.8±7.1μg/day), and higher metanephrin of urine (0.162±0.031mg/day:0.076±0.029mg/day). Non-dipper type blood pressure change in ABPM was detected 8 among 9 participants with hypoglycemia (88.9%), 4 among 11 participants (36.4%) without hypoglycemia. Multiplex logistic-regression analysis revealed that the event of hypoglycemia is the independent factor of non-dipper type blood pressure change. Conclusions: Among insulin-treated type 2 diabetic patients with CKD, the events of hypoglycemia were frequently detected, and can associate with the organ derangements through the medium of non-dipper type blood pressure change.

Keywords: chronic kidney disease, hypoglycemia, non-dipper type blood pressure change, diabetic patients

Procedia PDF Downloads 411
6785 Introduction of a Medicinal Plants Garden to Revitalize a Botany Curriculum for Non-Science Majors

Authors: Rosa M. Gambier, Jennifer L. Carlson

Abstract:

In order to revitalize the science curriculum for botany courses for non-science majors, we have introduced the use of the medicinal plants into a first-year botany course. We have connected the use of scientific method, scientific inquiry and active learning in the classroom with the study of Western Traditional Medical Botany. The students have researched models of Botanical medicine and have designed a sustainable medicinal plants garden using native medicinal plants from the northeast. Through the semester, the students have researched their chosen species, planted seeds in the college greenhouse, collected germination ratios, growth ratios and have successfully produced a beginners medicinal plant garden. Phase II of the project will be to tie in SCCCs community outreach goals by involving the public in the expanded development of the garden as a way of sharing learning about medicinal plants and traditional medicine outside the classroom.

Keywords: medicinal plant garden, botany curriculum, active learning, community outreach

Procedia PDF Downloads 303
6784 Automated Buffer Box Assembly Cell Concept for the Canadian Used Fuel Packing Plant

Authors: Dimitrie Marinceu, Alan Murchison

Abstract:

The Canadian Used Fuel Container (UFC) is a mid-size hemispherical headed copper coated steel container measuring 2.5 meters in length and 0.5 meters in diameter containing 48 used fuel bundles. The contained used fuel produces significant gamma radiation requiring automated assembly processes to complete the assembly. The design throughput of 2,500 UFCs per year places constraints on equipment and hot cell design for repeatability, speed of processing, robustness and recovery from upset conditions. After UFC assembly, the UFC is inserted into a Buffer Box (BB). The BB is made from adequately pre-shaped blocks (lower and upper block) and Highly Compacted Bentonite (HCB) material. The blocks are practically ‘sandwiching’ the UFC between them after assembly. This paper identifies one possible approach for the BB automatic assembly cell and processes. Automation of the BB assembly will have a significant positive impact on nuclear safety, quality, productivity, and reliability.

Keywords: used fuel packing plant, automatic assembly cell, used fuel container, buffer box, deep geological repository

Procedia PDF Downloads 273
6783 Frequent Pattern Mining for Digenic Human Traits

Authors: Atsuko Okazaki, Jurg Ott

Abstract:

Some genetic diseases (‘digenic traits’) are due to the interaction between two DNA variants. For example, certain forms of Retinitis Pigmentosa (a genetic form of blindness) occur in the presence of two mutant variants, one in the ROM1 gene and one in the RDS gene, while the occurrence of only one of these mutant variants leads to a completely normal phenotype. Detecting such digenic traits by genetic methods is difficult. A common approach to finding disease-causing variants is to compare 100,000s of variants between individuals with a trait (cases) and those without the trait (controls). Such genome-wide association studies (GWASs) have been very successful but hinge on genetic effects of single variants, that is, there should be a difference in allele or genotype frequencies between cases and controls at a disease-causing variant. Frequent pattern mining (FPM) methods offer an avenue at detecting digenic traits even in the absence of single-variant effects. The idea is to enumerate pairs of genotypes (genotype patterns) with each of the two genotypes originating from different variants that may be located at very different genomic positions. What is needed is for genotype patterns to be significantly more common in cases than in controls. Let Y = 2 refer to cases and Y = 1 to controls, with X denoting a specific genotype pattern. We are seeking association rules, ‘X → Y’, with high confidence, P(Y = 2|X), significantly higher than the proportion of cases, P(Y = 2) in the study. Clearly, generally available FPM methods are very suitable for detecting disease-associated genotype patterns. We use fpgrowth as the basic FPM algorithm and built a framework around it to enumerate high-frequency digenic genotype patterns and to evaluate their statistical significance by permutation analysis. Application to a published dataset on opioid dependence furnished results that could not be found with classical GWAS methodology. There were 143 cases and 153 healthy controls, each genotyped for 82 variants in eight genes of the opioid system. The aim was to find out whether any of these variants were disease-associated. The single-variant analysis did not lead to significant results. Application of our FPM implementation resulted in one significant (p < 0.01) genotype pattern with both genotypes in the pattern being heterozygous and originating from two variants on different chromosomes. This pattern occurred in 14 cases and none of the controls. Thus, the pattern seems quite specific to this form of substance abuse and is also rather predictive of disease. An algorithm called Multifactor Dimension Reduction (MDR) was developed some 20 years ago and has been in use in human genetics ever since. This and our algorithms share some similar properties, but they are also very different in other respects. The main difference seems to be that our algorithm focuses on patterns of genotypes while the main object of inference in MDR is the 3 × 3 table of genotypes at two variants.

Keywords: digenic traits, DNA variants, epistasis, statistical genetics

Procedia PDF Downloads 121
6782 Electrocardiogram-Based Heartbeat Classification Using Convolutional Neural Networks

Authors: Jacqueline Rose T. Alipo-on, Francesca Isabelle F. Escobar, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar Al Dahoul

Abstract:

Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases, which are considered one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis of ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heartbeat types. The dataset used in this work is the synthetic MIT-BIH Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.

Keywords: heartbeat classification, convolutional neural network, electrocardiogram signals, generative adversarial networks, long short-term memory, ResNet-50

Procedia PDF Downloads 127
6781 Resolution Method for Unforeseen Ground Condition Problem Case in Coal Fired Steam Power Plant Project Location Adipala, Indonesia

Authors: Andi Fallahi, Bona Ryan Situmeang

Abstract:

The Construction Industry is notoriously risky. Much of the preparatory paperwork that precedes construction project can be viewed as the formulation of risk allocation between the owner and the Contractor. The Owner is taking the risk that his project will not get built on the schedule that it will not get built for what he has budgeted and that it will not be of the quality he expected. The Contractor Face a multitude of risk. One of them is an unforeseen condition at the construction site. The Owner usually has the upper hand here if the unforeseen condition occurred. Site data contained in Ground Investigation report is often of significant contractual importance in disputes related to the unforeseen ground condition. A ground investigation can never fully disclose all the details of the underground condition (Risk of an unknown ground condition can never be 100% eliminated). Adipala Coal Fired Steam Power Plant (CSFPP) 1 x 660 project is one of the large CSFPP project in Indonesia based on Engineering, Procurement, and Construction (EPC) Contract. Unforeseen Ground Condition it’s responsible by the Contractor has stipulated in the clausal of Contract. In the implementation, there’s indicated unforeseen ground condition at Circulating Water Pump House (CWPH) area which caused the Contractor should be changed the Method of Work that give big impact against Time of Completion and Cost Project. This paper tries to analyze the best way for allocating the risk between The Owner and The Contractor. All parties that allocating of sharing risk fairly can ultimately save time and money for all parties, and get the job done on schedule for the least overall cost.

Keywords: unforeseen ground condition, coal fired steam power plant, circulating water pump house, Indonesia

Procedia PDF Downloads 325
6780 Off Design Modelling of 650MW Combined Cycle Gas Turbine Power Plant Integrated with a Retrofitted Inlet Fogging System

Authors: Osarobo Omorogieva Ighodaro, Josephus Otejere

Abstract:

This paper contains the modelling and simulation of GT13E2 combined cycle gas turbine with the aid of the software EBSILON PROFESSIONAL. The design mode was modeled using guaranteed performance data from the power plant, in the off design, temperature variation of ambient air and fogging (spray water at inlet to compressor) was simulated. The fogging was simulated under two different modes; constant fuel consumption and constant turbine exhaust temperature .The model results were validated using actual operating data by applying error percentage analysis. The validation results obtained ranged from -0.0038% to 0% in design condition while the results varied from -0.9202% to 10.24% The model shows that fogging decreases compressor inlet temperature which in turn decreases the power required to drive the compressor hence improving the simple cycle efficiency and hence increasing power generated.

Keywords: inlet fogging, off design, combined cycle, modelling

Procedia PDF Downloads 38
6779 Cirrhosis Mortality Prediction as Classification using Frequent Subgraph Mining

Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride

Abstract:

In this work, we use machine learning and novel data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. To the best of our knowledge, this is the first work to apply modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.

Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning

Procedia PDF Downloads 132
6778 Long-term Monitoring on Rangelands in Southwest Algeria and Impact of Overgrazing and Droughts on Biodiversity and Soil: Case of the Rogassa Steppe (Wilaya of El Bayadh)

Authors: Slimani Halima

Abstract:

One of the main problems of degradation of arid steppe rangelands in the southern Mediterranean is the loss of plant diversity and changes in soil properties. During the last decades, these rangelands faced two main driving forces: climate through more or less lasting and recurrent droughts and overgrazing by sheep. In the present work, the preexisting system was an arid steppe with alfa grass (Stipa tenacissima L.) as the dominant plant, which was considered to be the "keystone" species toward the whole ecosystem structure and functioning. Vegetation and soil change was monitored for 45 years along a grazing intensity gradient. Changes in species richness and diversity, in the vegetation and in the soil, enabled to better understand climate fluctuations effects in comparison to overgrazing ones. The aim is to assess the impacts of grazing and climatic variability and change on biodiversity,vegetation and soil over a period of 45 years, based on data from seven reference years.

Keywords: biodiversity, desertification, droughts, el bayadh, overgrazing, soil, steppe

Procedia PDF Downloads 103
6777 Bayesian Prospective Detection of Small Area Health Anomalies Using Kullback Leibler Divergence

Authors: Chawarat Rotejanaprasert, Andrew Lawson

Abstract:

Early detection of unusual health events depends on the ability to detect rapidly any substantial changes in disease, thus facilitating timely public health interventions. To assist public health practitioners to make decisions, statistical methods are adopted to assess unusual events in real time. We introduce a surveillance Kullback-Leibler (SKL) measure for timely detection of disease outbreaks for small area health data. The detection methods are compared with the surveillance conditional predictive ordinate (SCPO) within the framework of Bayesian hierarchical Poisson modeling and applied to a case study of a group of respiratory system diseases observed weekly in South Carolina counties. Properties of the proposed surveillance techniques including timeliness and detection precision are investigated using a simulation study.

Keywords: Bayesian, spatial, temporal, surveillance, prospective

Procedia PDF Downloads 311
6776 Integrating Geographic Information into Diabetes Disease Management

Authors: Tsu-Yun Chiu, Tsung-Hsueh Lu, Tain-Junn Cheng

Abstract:

Background: Traditional chronic disease management did not pay attention to effects of geographic factors on the compliance of treatment regime, which resulted in geographic inequality in outcomes of chronic disease management. This study aims to examine the geographic distribution and clustering of quality indicators of diabetes care. Method: We first extracted address, demographic information and quality of care indicators (number of visits, complications, prescription and laboratory records) of patients with diabetes for 2014 from medical information system in a medical center in Tainan City, Taiwan, and the patients’ addresses were transformed into district- and village-level data. We then compared the differences of geographic distribution and clustering of quality of care indicators between districts and villages. Despite the descriptive results, rate ratios and 95% confidence intervals (CI) were estimated for indices of care in order to compare the quality of diabetes care among different areas. Results: A total of 23,588 patients with diabetes were extracted from the hospital data system; whereas 12,716 patients’ information and medical records were included to the following analysis. More than half of the subjects in this study were male and between 60-79 years old. Furthermore, the quality of diabetes care did indeed vary by geographical levels. Thru the smaller level, we could point out clustered areas more specifically. Fuguo Village (of Yongkang District) and Zhiyi Village (of Sinhua District) were found to be “hotspots” for nephropathy and cerebrovascular disease; while Wangliau Village and Erwang Village (of Yongkang District) would be “coldspots” for lowest proportion of ≥80% compliance to blood lipids examination. On the other hand, Yuping Village (in Anping District) was the area with the lowest proportion of ≥80% compliance to all laboratory examination. Conclusion: In spite of examining the geographic distribution, calculating rate ratios and their 95% CI could also be a useful and consistent method to test the association. This information is useful for health planners, diabetes case managers and other affiliate practitioners to organize care resources to the areas most needed.

Keywords: catchment area of healthcare, chronic disease management, Geographic information system, quality of diabetes care

Procedia PDF Downloads 281
6775 Extension Services' Needs of Small Farmers in Biliran Province, Philippines

Authors: Mario C. Nierras

Abstract:

This study aimed to determine the extension services’ needs of small farmers in Biliran province, Philippines. It also sought to find out other issues/concerns of the small farmers. Extension services’ needs of small farmers were gathered through personal interviewing and observational analysis of randomly-selected small farmers in Biliran, Philippines. Biliran small farmers extension services’ needs include: raising fruits, raising legumes, raising vegetables, raising swine, raising cattle, and raising chicken (as priority broad skills). For the specific skills, diagnosing symptoms on fertilizer deficiencies, controlling plant pests and diseases, diagnosing signs on specific pest and disease damage, controlling animal pests and diseases, and doing artificial insemination were the priority skills. They considered an on-farm trial of new technology as most needed to be coupled with industry and quality-orientedness, as positive behaviors needed in farming success. The farmers still adhere to the so-called wait-and-see attitude, thus they are more convinced to follow a particular technology if they see a concrete result of the introduced changes. Technical needs prioritization of Biliran small farmers showed that they have a real need for crop and animal production skills to include the other issues/concerns. Extension service program planning for small farmers should be patterned after their technical needs giving due attention to some issues/concerns so that extension work could deliver the right skills for the right needs of the farmers.

Keywords: extension, extension service, extension service needs, extension service program, farmers, small farmers, marginal farmers

Procedia PDF Downloads 435
6774 Application of Italian Guidelines for Existing Bridge Management

Authors: Giovanni Menichini, Salvatore Giacomo Morano, Gloria Terenzi, Luca Salvatori, Maurizio Orlando

Abstract:

The “Guidelines for Risk Classification, Safety Assessment, and Structural Health Monitoring of Existing Bridges” were recently approved by the Italian Government to define technical standards for managing the national network of existing bridges. These guidelines provide a framework for risk mitigation and safety assessment of bridges, which are essential elements of the built environment and form the basis for the operation of transport systems. Within the guideline framework, a workflow based on three main points was proposed: (1) risk-based, i.e., based on typical parameters of hazard, vulnerability, and exposure; (2) multi-level, i.e., including six assessment levels of increasing complexity; and (3) multirisk, i.e., assessing structural/foundational, seismic, hydrological, and landslide risks. The paper focuses on applying the Italian Guidelines to specific case studies, aiming to identify the parameters that predominantly influence the determination of the “class of attention”. The significance of each parameter is determined via sensitivity analysis. Additionally, recommendations for enhancing the process of assigning the class of attention are proposed.

Keywords: bridge safety assessment, Italian guidelines implementation, risk classification, structural health monitoring

Procedia PDF Downloads 54
6773 Modeling and Optimal Control of Acetylene Catalytic Hydrogenation Reactor in Olefin Plant by Artificial Neural Network

Authors: Faezeh Aghazadeh, Mohammad Javad Sharifi

Abstract:

The application of neural networks to model a full-scale industrial acetylene hydrogenation in olefin plant has been studied. The operating variables studied are the, input-temperature of the reactor, output-temperature of the reactor, hydrogen ratio of the reactor, [C₂H₂]input, and [C₂H₆]input. The studied operating variables were used as the input to the constructed neural network to predict the [C₂H₆]output at any time as the output or the target. The constructed neural network was found to be highly precise in predicting the quantity of [C₂H₆]output for the new input data, which are kept unaware of the trained neural network showing its applicability to determine the [C₂H₆]output for any operating conditions. The enhancement of [C₂H₆]output as compared with [C₂H₆]input was a consequence of low selective acetylene hydrogenation to ethylene.

Keywords: acetylene hydrogenation, Pd-Ag/Al₂O₃, artificial neural network, modeling, optimal design

Procedia PDF Downloads 274
6772 Bioinformatic Design of a Non-toxic Modified Adjuvant from the Native A1 Structure of Cholera Toxin with Membrane Synthetic Peptide of Naegleria fowleri

Authors: Frida Carrillo Morales, Maria Maricela Carrasco Yépez, Saúl Rojas Hernández

Abstract:

Naegleria fowleri is the causative agent of primary amebic meningoencephalitis, this disease is acute and fulminant that affects humans. It has been reported that despite the existence of therapeutic options against this disease, its mortality rate is 97%. Therefore, the need arises to have vaccines that confer protection against this disease and, in addition to developing adjuvants to enhance the immune response. In this regard, in our work group, we obtained a peptide designed from the membrane protein MP2CL5 of Naegleria fowleri called Smp145 that was shown to be immunogenic; however, it would be of great importance to enhance its immunological response, being able to co-administer it with a non-toxic adjuvant. Therefore, the objective of this work was to carry out the bioinformatic design of a peptide of the Naegleria fowleri membrane protein MP2CL5 conjugated with a non-toxic modified adjuvant from the native A1 structure of Cholera Toxin. For which different bioinformatics tools were used to obtain a model with a modification in amino acid 61 of the A1 subunit of the CT (CTA1), to which the Smp145 peptide was added and both molecules were joined with a 13-glycine linker. As for the results obtained, the modification in CTA1 bound to the peptide produces a reduction in the toxicity of the molecule in in silico experiments, likewise, the prediction in the binding of Smp145 to the receptor of B cells suggests that the molecule is directed in specifically to the BCR receptor, decreasing its native enzymatic activity. The stereochemical evaluation showed that the generated model has a high number of adequately predicted residues. In the ERRAT test, the confidence with which it is possible to reject regions that exceed the error values was evaluated, in the generated model, a high score was obtained, which determines that the model has a good structural resolution. Therefore, the design of the conjugated peptide in this work will allow us to proceed with its chemical synthesis and subsequently be able to use it in the mouse meningitis protection model caused by N. fowleri.

Keywords: immunology, vaccines, pathogens, infectious disease

Procedia PDF Downloads 91
6771 Generation of Automated Alarms for Plantwide Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

Earlier detection of incipient abnormal operations in terms of plant-wide process management is quite necessary in order to improve product quality and process safety. And generating warning signals or alarms for operating personnel plays an important role in process automation and intelligent plant health monitoring. Various methodologies have been developed and utilized in this area such as expert systems, mathematical model-based approaches, multivariate statistical approaches, and so on. This work presents a nonlinear empirical monitoring methodology based on the real-time analysis of massive process data. Unfortunately, the big data includes measurement noises and unwanted variations unrelated to true process behavior. Thus the elimination of such unnecessary patterns of the data is executed in data processing step to enhance detection speed and accuracy. The performance of the methodology was demonstrated using simulated process data. The case study showed that the detection speed and performance was improved significantly irrespective of the size and the location of abnormal events.

Keywords: detection, monitoring, process data, noise

Procedia PDF Downloads 252
6770 Complex Management of Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy

Authors: Abdullah A. Al Qurashi, Hattan A. Hassani, Bader K. Alaslap

Abstract:

Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy (ARVD/C) is an uncommon, inheritable cardiac disorder characterized by the progressive substitution of cardiac myocytes by fibro-fatty tissues. This pathologic substitution predisposes patients to ventricular arrhythmias and right ventricular failure. The underlying genetic defect predominantly involves genes encoding for desmosome proteins, particularly plakophilin-2 (PKP2). These aberrations lead to impaired cell adhesion, heightening the susceptibility to fibrofatty scarring under conditions of mechanical stress. Primarily, ARVD/C affects the right ventricle, but it can also compromise the left ventricle, potentially leading to biventricular heart failure. Clinical presentations can vary, spanning from asymptomatic individuals to those experiencing palpitations, syncopal episodes, and, in severe instances, sudden cardiac death. The establishment of a diagnostic criterion specifically tailored for ARVD/C significantly aids in its accurate diagnosis. Nevertheless, the task of early diagnosis is complicated by the disease's frequently asymptomatic initial stages, and the overall rarity of ARVD/C cases reported globally. In some cases, as exemplified by the adult female patient in this report, the disease may advance to terminal stages, rendering therapies like Ventricular Tachycardia (VT) ablation ineffective. This case underlines the necessity for increased awareness and understanding of ARVD/C to aid in its early detection and management. Through such efforts, we aim to decrease morbidity and mortality associated with this challenging cardiac disorder.

Keywords: arrhythmogenic right ventricular dysplasia, cardiac disease, interventional cardiology, cardiac electrophysiology

Procedia PDF Downloads 57
6769 Antidiabetic Effect of Methanolic Leaves Extract and Isolated Constituents from Saraca Asoca

Authors: Sunil Kumar

Abstract:

Background: The present study was performed to investigate the antidiabetic effect of the constituents isolated from Sarca asoca by enzyme inhibitory activity. Methods: The dried leaves of Sarca asoca were defatted with petroleum ether and further the same amount plant materials were extracted with methanol. The dried methanol extract was subjected to fractionation and chromatographic separation, which led to the isolation of kaemferol, β-sitosterol and quercetin stigmasterol. Their structures were elucidated on the basis of spectroscopic studies as well as by comparison with the data available in the literature. The compounds were evaluated for in vitro enzyme inhibition effect. Results: The isolated compounds kaemferol, β-sitosterol and stigmasterol showed 45.32, 40.5 and 41.23% α-amylase inhibition respectively and 43.45, 39.29 and 32.43% α-glucosidase inhibition respectively at the conc. of 50 µg/kg. Conclusion: The compounds isolated from Sarca asoca showed in vitro and in vivo antidiabetic activity. So, Euphorbia hirta is a beneficial plant for management of diabetic disorders.

Keywords: diabetes, quercetin, sitosterol, stigmasterol

Procedia PDF Downloads 424
6768 Evaluation of Physical Parameters and in-Vitro and in-Vivo Antidiabetic Activity of a Selected Combined Medicinal Plant Extracts Mixture

Authors: S. N. T. I. Sampath, J. M. S. Jayasinghe, A. P. Attanayake, V. Karunaratne

Abstract:

Diabetes mellitus is one of the major public health posers throughout the world today that incidence and associated with increasing mortality. Insufficient regulation of the blood glucose level might be serious effects for health and its necessity to identify new therapeutics that have ability to reduce hyperglycaemic condition in the human body. Even though synthetic antidiabetic drugs are more effective to control diabetes mellitus, there are considerable side effects have been reported. Thus, there is an increasing demand for searching new natural products having high antidiabetic activity with lesser side effects. The purposes of the present study were to evaluate different physical parameters and in-vitro and in-vivo antidiabetic potential of the selected combined medicinal plant extracts mixture composed of leaves of Murraya koenigii, cloves of Allium sativum, fruits of Garcinia queasita and seeds of Piper nigrum. The selected plants parts were mixed and ground together and extracted sequentially into the hexane, ethyl acetate and methanol. Solvents were evaporated and they were further dried by freeze-drying to obtain a fine powder of each extract. Various physical parameters such as moisture, total ash, acid insoluble ash and water soluble ash were evaluated using standard test procedures. In-vitro antidiabetic activity of combined plant extracts mixture was screened using enzyme assays such as α-amylase inhibition assay and α-glucosidase inhibition assay. The acute anti-hyperglycaemic activity was performed using oral glucose tolerance test for the streptozotocin induced diabetic Wistar rats to find out in-vivo antidiabetic activity of combined plant extracts mixture and it was assessed through total oral glucose tolerance curve (TAUC) values. The percentage of moisture content, total ash content, acid insoluble ash content and water soluble ash content were ranged of 7.6-17.8, 8.1-11.78, 0.019-0.134 and 6.2-9.2 respectively for the plant extracts and those values were less than standard values except the methanol extract. The hexane and ethyl acetate extracts exhibited highest α-amylase (IC50 = 25.7 ±0.6; 27.1 ±1.2 ppm) and α-glucosidase (IC50 = 22.4 ±0.1; 33.7 ±0.2 ppm) inhibitory activities than methanol extract (IC50 = 360.2 ±0.6; 179.6 ±0.9 ppm) when compared with the acarbose positive control (IC50 = 5.7 ±0.4; 17.1 ±0.6 ppm). The TAUC values for hexane, ethyl acetate, and methanol extracts and glibenclamide (positive control) treated rats were 8.01 ±0.66; 8.05 ±1.07; 8.40±0.50; 5.87 ±0.93 mmol/L.h respectively, whereas in diabetic control rats the TAUC value was 13.22 ±1.07 mmol/L.h. Administration of plant extracts treated rats significantly suppressed (p<0.05) the rise in plasma blood glucose levels compared to control rats but less significant than glibenclamide. The obtained results from in-vivo and in-vitro antidiabetic study showed that the hexane and ethyl acetate extracts of selected combined plant mixture might be considered as a potential source to isolate natural antidiabetic agents and physical parameters of hexane and ethyl acetate extracts will helpful to develop antidiabetic drug with further standardize properties.

Keywords: diabetes mellitus, in-vitro antidiabetic assays, medicinal plants, standardization

Procedia PDF Downloads 129
6767 EEG-Based Classification of Psychiatric Disorders: Bipolar Mood Disorder vs. Schizophrenia

Authors: Han-Jeong Hwang, Jae-Hyun Jo, Fatemeh Alimardani

Abstract:

An accurate diagnosis of psychiatric diseases is a challenging issue, in particular when distinct symptoms for different diseases are overlapped, such as delusions appeared in bipolar mood disorder (BMD) and schizophrenia (SCH). In the present study, we propose a useful way to discriminate BMD and SCH using electroencephalography (EEG). A total of thirty BMD and SCH patients (15 vs. 15) took part in our experiment. EEG signals were measured with nineteen electrodes attached on the scalp using the international 10-20 system, while they were exposed to a visual stimulus flickering at 16 Hz for 95 s. The flickering visual stimulus induces a certain brain signal, known as steady-state visual evoked potential (SSVEP), which is differently observed in patients with BMD and SCH, respectively, in terms of SSVEP amplitude because they process the same visual information in own unique way. For classifying BDM and SCH patients, machine learning technique was employed in which leave-one-out-cross validation was performed. The SSVEPs induced at the fundamental (16 Hz) and second harmonic (32 Hz) stimulation frequencies were extracted using fast Fourier transformation (FFT), and they were used as features. The most discriminative feature was selected using the Fisher score, and support vector machine (SVM) was used as a classifier. From the analysis, we could obtain a classification accuracy of 83.33 %, showing the feasibility of discriminating patients with BMD and SCH using EEG. We expect that our approach can be utilized for psychiatrists to more accurately diagnose the psychiatric disorders, BMD and SCH.

Keywords: bipolar mood disorder, electroencephalography, schizophrenia, machine learning

Procedia PDF Downloads 418
6766 Cellulose Nanocrystals from Melon Plant Residues: A Sustainable and Renewable Source

Authors: Asiya Rezzouq, Mehdi El Bouchti, Omar Cherkaoui, Sanaa Majid, Souad Zyade

Abstract:

In recent years, there has been a steady increase in the exploration of new renewable and non-conventional sources for the production of biodegradable nanomaterials. Nature harbours valuable cellulose-rich materials that have so far been under-exploited and can be used to create cellulose derivatives such as cellulose microfibres (CMFs) and cellulose nanocrystals (CNCs). These unconventional sources have considerable potential as alternatives to conventional sources such as wood and cotton. By using agricultural waste to produce these cellulose derivatives, we are responding to the global call for sustainable solutions to environmental and economic challenges. Responsible management of agricultural waste is increasingly crucial to reducing the environmental consequences of its disposal, including soil and water pollution, while making efficient use of these untapped resources. In this study, the main objective was to extract cellulose nanocrystals (CNC) from melon plant residues using methods that are both efficient and sustainable. To achieve this high-quality extraction, we followed a well-defined protocol involving several key steps: pre-treatment of the residues by grinding, filtration and chemical purification to obtain high-quality (CMF) with a yield of 52% relative to the initial mass of the melon plant residue. Acid hydrolysis was then carried out using phosphoric acid and sulphuric acid to convert (CMF) into cellulose nanocrystals. The extracted cellulose nanocrystals were subjected to in-depth characterization using advanced techniques such as transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The resulting cellulose nanocrystals have exceptional properties, including a large specific surface area, high thermal stability and high mechanical strength, making them suitable for a variety of applications, including as reinforcements for composite materials. In summary, the study highlights the potential for recovering agricultural melon waste to produce high-quality cellulose nanocrystals with promising applications in industry, nanotechnology, and biotechnology, thereby contributing to environmental and economic sustainability.

Keywords: cellulose, melon plant residues, cellulose nanocrystals, properties, applications, composite materials

Procedia PDF Downloads 56
6765 Economic Evaluation of an Advanced Bioethanol Manufacturing Technology Using Maize as a Feedstock in South Africa

Authors: Ayanda Ndokwana, Stanley Fore

Abstract:

Industrial prosperity and rapid expansion of human population in South Africa over the past two decades, have increased the use of conventional fossil fuels such as crude oil, coal and natural gas to meet the country’s energy demands. However, the inevitable depletion of fossil fuel reserves, global volatile oil price and large carbon footprint are some of the crucial reasons the South African Government needs to make a considerable investment in the development of the biofuel industry. In South Africa, this industry is still at the introductory stage with no large scale manufacturing plant that has been commissioned yet. Bioethanol is a potential replacement of gasoline which is a fossil fuel that is used in motor vehicles. Using bioethanol for the transport sector as a source of fuel will help Government to save heavy foreign exchange incurred during importation of oil and create many job opportunities in rural farming. In 2007, the South African Government developed the National Biofuels Industrial Strategy in an effort to make provision for support and attract investment in bioethanol production. However, capital investment in the production of bioethanol on a large scale, depends on the sound economic assessment of the available manufacturing technologies. The aim of this study is to evaluate the profitability of an advanced bioethanol manufacturing technology which uses maize as a feedstock in South Africa. The impact of fiber or bran fractionation in this technology causes it to possess a number of merits such as energy efficiency, low capital expenditure, and profitability compared to a conventional dry-mill bioethanol technology. Quantitative techniques will be used to collect and analyze numerical data from suitable organisations in South Africa. The dependence of three profitability indicators such as the Discounted Payback Period (DPP), Net Present Value (NPV) and Return On Investment (ROI) on plant capacity will be evaluated. Profitability analysis will be done on the following plant capacities: 100 000 ton/year, 150 000 ton/year and 200 000 ton/year. The plant capacity with the shortest Discounted Payback Period, positive Net Present Value and highest Return On Investment implies that a further consideration in terms of capital investment is warranted.

Keywords: bioethanol, economic evaluation, maize, profitability indicators

Procedia PDF Downloads 232
6764 Analytical Authentication of Butter Using Fourier Transform Infrared Spectroscopy Coupled with Chemometrics

Authors: M. Bodner, M. Scampicchio

Abstract:

Fourier Transform Infrared (FT-IR) spectroscopy coupled with chemometrics was used to distinguish between butter samples and non-butter samples. Further, quantification of the content of margarine in adulterated butter samples was investigated. Fingerprinting region (1400-800 cm–1) was used to develop unsupervised pattern recognition (Principal Component Analysis, PCA), supervised modeling (Soft Independent Modelling by Class Analogy, SIMCA), classification (Partial Least Squares Discriminant Analysis, PLS-DA) and regression (Partial Least Squares Regression, PLS-R) models. PCA of the fingerprinting region shows a clustering of the two sample types. All samples were classified in their rightful class by SIMCA approach; however, nine adulterated samples (between 1% and 30% w/w of margarine) were classified as belonging both at the butter class and at the non-butter one. In the two-class PLS-DA model’s (R2 = 0.73, RMSEP, Root Mean Square Error of Prediction = 0.26% w/w) sensitivity was 71.4% and Positive Predictive Value (PPV) 100%. Its threshold was calculated at 7% w/w of margarine in adulterated butter samples. Finally, PLS-R model (R2 = 0.84, RMSEP = 16.54%) was developed. PLS-DA was a suitable classification tool and PLS-R a proper quantification approach. Results demonstrate that FT-IR spectroscopy combined with PLS-R can be used as a rapid, simple and safe method to identify pure butter samples from adulterated ones and to determine the grade of adulteration of margarine in butter samples.

Keywords: adulterated butter, margarine, PCA, PLS-DA, PLS-R, SIMCA

Procedia PDF Downloads 141
6763 The Involvement of the Homing Receptors CCR7 and CD62L in the Pathogenesis of Graft-Versus-Host Disease

Authors: Federico Herrera, Valle Gomez García de Soria, Itxaso Portero Sainz, Carlos Fernández Arandojo, Mercedes Royg, Ana Marcos Jimenez, Anna Kreutzman, Cecilia MuñozCalleja

Abstract:

Introduction: Graft-versus-host disease (GVHD) still remains the major complication associated with allogeneic stem cell transplantation (SCT). The pathogenesis involves migration of donor naïve T-cells into recipient secondary lymphoid organs. Two molecules are important in this process: CD62L and CCR7, which are characteristically expressed in naïve/central memory T-cells. With this background, we aimed to study the influence of CCR7 and CD62L on donor lymphocytes in the development and severity of GVHD. Material and methods: This single center study included 98 donor-recipient pairs. Samples were collected prospectively from the apheresis product and phenotyped by flow cytometry. CCR7 and CD62L expression in CD4+ and CD8+ T-cells were compared between patients who developed acute (n=40) or chronic GVHD (n=33) and those who did not (n=38). Results: The patients who developed acute GVHD were transplanted with a higher percentage of CCR7+CD4+ T-cells (p = 0.05) compared to the no GVHD group. These results were confirmed when these patients were divided in degrees according to the severity of the disease; the more severe disease, the higher percentage of CCR7+CD4+ T-cells. Conversely, chronic GVHD patients received a higher percentage of CCR7+CD8+ T-cells (p=0.02) in comparison to those who did not develop the complication. These data were also confirmed when patients were subdivided in degrees of the disease severity. A multivariable analysis confirmed that percentage of CCR7+CD4+ T-cells is a predictive factor of acute GVHD whereas the percentage of CCR7+CD8+ T-cells is a predictive factor of chronic GVHD. In vitro functional assays (migration and activation assays) supported the idea of CCR7+ T-cells were involved in the development of GVHD. As low levels of CD62L expression were detected in all apheresis products, we tested the hypothesis that CD62L was shed during apheresis procedure. Comparing CD62L surface levels in T-cells from the same donor immediately before collecting the apheresis product, and the final apheresis product we found that this process down-regulated CD62L in both CD4+ and CD8+ T cells (p=0.008). Interestingly, when CD62L levels were analysed in days 30 or 60 after engraftment, they recovered to baseline (p=0.008). However, to investigate the relation between CD62L expression and the development of GVHD in the recipient samples after the engraftment, no differences were observed comparing patients with GVHD to those who did not develop the disease. Discussion: Our prospective study indicates that the CCR7+ T-cells from the donor, which include naïve and central memory T-cells, contain the alloreactive cells with a high ability to mediate GVHD (in the case of both migration and activation). Therefore we suggest that the proportion and functional properties of CCR7+CD4+ and CCR7+CD8+ T-cells in the apheresis could act as a predictive biomarker to both acute and chronic GVHD respectively. Importantly, our study precludes that CD62L is lost in the apheresis and therefore it is not a reliable biomarker for the development of GVHD.

Keywords: CCR7, CD62L, GVHD, SCT

Procedia PDF Downloads 286
6762 An Advanced Automated Brain Tumor Diagnostics Approach

Authors: Berkan Ural, Arif Eser, Sinan Apaydin

Abstract:

Medical image processing is generally become a challenging task nowadays. Indeed, processing of brain MRI images is one of the difficult parts of this area. This study proposes a hybrid well-defined approach which is consisted from tumor detection, extraction and analyzing steps. This approach is mainly consisted from a computer aided diagnostics system for identifying and detecting the tumor formation in any region of the brain and this system is commonly used for early prediction of brain tumor using advanced image processing and probabilistic neural network methods, respectively. For this approach, generally, some advanced noise removal functions, image processing methods such as automatic segmentation and morphological operations are used to detect the brain tumor boundaries and to obtain the important feature parameters of the tumor region. All stages of the approach are done specifically with using MATLAB software. Generally, for this approach, firstly tumor is successfully detected and the tumor area is contoured with a specific colored circle by the computer aided diagnostics program. Then, the tumor is segmented and some morphological processes are achieved to increase the visibility of the tumor area. Moreover, while this process continues, the tumor area and important shape based features are also calculated. Finally, with using the probabilistic neural network method and with using some advanced classification steps, tumor area and the type of the tumor are clearly obtained. Also, the future aim of this study is to detect the severity of lesions through classes of brain tumor which is achieved through advanced multi classification and neural network stages and creating a user friendly environment using GUI in MATLAB. In the experimental part of the study, generally, 100 images are used to train the diagnostics system and 100 out of sample images are also used to test and to check the whole results. The preliminary results demonstrate the high classification accuracy for the neural network structure. Finally, according to the results, this situation also motivates us to extend this framework to detect and localize the tumors in the other organs.

Keywords: image processing algorithms, magnetic resonance imaging, neural network, pattern recognition

Procedia PDF Downloads 416
6761 Initial Periodontal Therapy and Follow-up in a Periodontitis Patient: A Case Report

Authors: Yasir Karabacak

Abstract:

Objective: The aim of periodontal therapy is to control and eliminate inflammation in order halt disease progression. The initial periodontal therapy (IPT) including scaling and root planing (SRP) can control periodontal disease in most cases of periodontitis; also maintaining good oral hygiene by the patient is fundamental. The aim of this case report is to present IPT and to present 3-month follow-up results in a patient with periodontitis. Materials and Methods IPT of a 63-year-old non-smoker male with generalized periodontitis is presented. The patient had no history of systemic disease. The intraoral examination reveals marked gingival inflammation as well as plaque accumulation and significant calculus deposits. On radiographic examination, severe bone loss was evident. The patient was diagnosed with generalized advanced periodontitis. Initial periodontal therapy including oral hygiene instructions and quadrant-based SRP under local anesthesia was performed using hand and ultrasonic instruments. No antibiotics were prescribed. The patient was recalled 4 weeks after IPT. Results Favorable clinical improvement was obtained. Gingival inflammation was resolved significantly. A reduction of the mean probing depth from 2.4 mm at baseline to 1.9 mm was observed. The patient presented with a good standard of oral hygiene. The plaque scores decreased from 54.0% at baseline to 17.0%. In addition, the percentage of sites with bleeding on probing decreased from 80.0% at baseline to 44.0%. The patient was scheduled for maintenance therapy every three months. Conclusion: The level of oral hygiene has a great impact on periodontal treatment outcome and supports periodontal therapy properly.

Keywords: initial periodontal, therapy and follow-up in a periodontitis, patient, a case report

Procedia PDF Downloads 72
6760 Real-Time Classification of Hemodynamic Response by Functional Near-Infrared Spectroscopy Using an Adaptive Estimation of General Linear Model Coefficients

Authors: Sahar Jahani, Meryem Ayse Yucel, David Boas, Seyed Kamaledin Setarehdan

Abstract:

Near-infrared spectroscopy allows monitoring of oxy- and deoxy-hemoglobin concentration changes associated with hemodynamic response function (HRF). HRF is usually affected by natural physiological hemodynamic (systemic interferences) which occur in all body tissues including brain tissue. This makes HRF extraction a very challenging task. In this study, we used Kalman filter based on a general linear model (GLM) of brain activity to define the proportion of systemic interference in the brain hemodynamic. The performance of the proposed algorithm is evaluated in terms of the peak to peak error (Ep), mean square error (MSE), and Pearson’s correlation coefficient (R2) criteria between the estimated and the simulated hemodynamic responses. This technique also has the ability of real time estimation of single trial functional activations as it was applied to classify finger tapping versus resting state. The average real-time classification accuracy of 74% over 11 subjects demonstrates the feasibility of developing an effective functional near infrared spectroscopy for brain computer interface purposes (fNIRS-BCI).

Keywords: hemodynamic response function, functional near-infrared spectroscopy, adaptive filter, Kalman filter

Procedia PDF Downloads 161