Search results for: Nonlinear Channel equalization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2608

Search results for: Nonlinear Channel equalization

388 Parametric Optimization of High-Performance Electric Vehicle E-Gear Drive for Radiated Noise Using 1-D System Simulation

Authors: Sanjai Sureshkumar, Sathish G. Kumar, P. V. V. Sathyanarayana

Abstract:

For e-gear drivetrain, the transmission error and the resulting variation in mesh stiffness is one of the main source of excitation in High performance Electric Vehicle. These vibrations are transferred through the shaft to the bearings and then to the e-Gear drive housing eventually radiating noise. A parametrical model developed in 1-D system simulation by optimizing the micro and macro geometry along with bearing properties and oil filtration to achieve least transmission error and high contact ratio. Histogram analysis is performed to condense the actual road load data into condensed duty cycle to find the bearing forces. The structural vibration generated by these forces will be simulated in a nonlinear solver obtaining the normal surface velocity of the housing and the results will be carried forward to Acoustic software wherein a virtual environment of the surrounding (actual testing scenario) with accurate microphone position will be maintained to predict the sound pressure level of radiated noise and directivity plot of the e-Gear Drive. Order analysis will be carried out to find the root cause of the vibration and whine noise. Broadband spectrum will be checked to find the rattle noise source. Further, with the available results, the design will be optimized, and the next loop of simulation will be performed to build a best e-Gear Drive on NVH aspect. Structural analysis will be also carried out to check the robustness of the e-Gear Drive.

Keywords: 1-D system simulation, contact ratio, e-Gear, mesh stiffness, micro and macro geometry, transmission error, radiated noise, NVH

Procedia PDF Downloads 149
387 Free Vibration Analysis of Timoshenko Beams at Higher Modes with Central Concentrated Mass Using Coupled Displacement Field Method

Authors: K. Meera Saheb, K. Krishna Bhaskar

Abstract:

Complex structures used in many fields of engineering are made up of simple structural elements like beams, plates etc. These structural elements, sometimes carry concentrated masses at discrete points, and when subjected to severe dynamic environment tend to vibrate with large amplitudes. The frequency amplitude relationship is very much essential in determining the response of these structural elements subjected to the dynamic loads. For Timoshenko beams, the effects of shear deformation and rotary inertia are to be considered to evaluate the fundamental linear and nonlinear frequencies. A commonly used method for solving vibration problem is energy method, or a finite element analogue of the same. In the present Coupled Displacement Field method the number of undetermined coefficients is reduced to half when compared to the famous Rayleigh Ritz method, which significantly simplifies the procedure to solve the vibration problem. This is accomplished by using a coupling equation derived from the static equilibrium of the shear flexible structural element. The prime objective of the present paper here is to study, in detail, the effect of a central concentrated mass on the large amplitude free vibrations of uniform shear flexible beams. Accurate closed form expressions for linear frequency parameter for uniform shear flexible beams with a central concentrated mass was developed and the results are presented in digital form.

Keywords: coupled displacement field, coupling equation, large amplitude vibrations, moderately thick plates

Procedia PDF Downloads 226
386 Improvement Performances of the Supersonic Nozzles at High Temperature Type Minimum Length Nozzle

Authors: W. Hamaidia, T. Zebbiche

Abstract:

This paper presents the design of axisymmetric supersonic nozzles, in order to accelerate a supersonic flow to the desired Mach number and that having a small weight, in the same time gives a high thrust. The concerned nozzle gives a parallel and uniform flow at the exit section. The nozzle is divided into subsonic and supersonic regions. The supersonic portion is independent to the upstream conditions of the sonic line. The subsonic portion is used to give a sonic flow at the throat. In this case, nozzle gives a uniform and parallel flow at the exit section. It’s named by minimum length Nozzle. The study is done at high temperature, lower than the dissociation threshold of the molecules, in order to improve the aerodynamic performances. Our aim consists of improving the performances both by the increase of exit Mach number and the thrust coefficient and by reduction of the nozzle's mass. The variation of the specific heats with the temperature is considered. The design is made by the Method of Characteristics. The finite differences method with predictor-corrector algorithm is used to make the numerical resolution of the obtained nonlinear algebraic equations. The application is for air. All the obtained results depend on three parameters which are exit Mach number, the stagnation temperature, the chosen mesh in characteristics. A numerical simulation of nozzle through Computational Fluid Dynamics-FASTRAN was done to determine and to confirm the necessary design parameters.

Keywords: flux supersonic flow, axisymmetric minimum length nozzle, high temperature, method of characteristics, calorically imperfect gas, finite difference method, trust coefficient, mass of the nozzle, specific heat at constant pressure, air, error

Procedia PDF Downloads 150
385 On Crack Tip Stress Field in Pseudo-Elastic Shape Memory Alloys

Authors: Gulcan Ozerim, Gunay Anlas

Abstract:

In shape memory alloys, upon loading, stress increases around crack tip and a martensitic phase transformation occurs in early stages. In many studies the stress distribution in the vicinity of the crack tip is represented by using linear elastic fracture mechanics (LEFM) although the pseudo-elastic behavior results in a nonlinear stress-strain relation. In this study, the HRR singularity (Hutchinson, Rice and Rosengren), that uses Rice’s path independent J-integral, is tried to formulate the stress distribution around the crack tip. In HRR approach, the Ramberg-Osgood model for the stress-strain relation of power-law hardening materials is used to represent the elastic-plastic behavior. Although it is recoverable, the inelastic portion of the deformation in martensitic transformation (up to the end of transformation) resembles to that of plastic deformation. To determine the constants of the Ramberg-Osgood equation, the material’s response is simulated in ABAQUS using a UMAT based on ZM (Zaki-Moumni) thermo-mechanically coupled model, and the stress-strain curve of the material is plotted. An edge cracked shape memory alloy (Nitinol) plate is loaded quasi-statically under mode I and modeled using ABAQUS; the opening stress values ahead of the cracked tip are calculated. The stresses are also evaluated using the asymptotic equations of both LEFM and HRR. The results show that in the transformation zone around the crack tip, the stress values are much better represented when the HRR singularity is used although the J-integral does not show path independent behavior. For the nodes very close to the crack tip, the HRR singularity is not valid due to the non-proportional loading effect and high-stress values that go beyond the transformation finish stress.

Keywords: crack, HRR singularity, shape memory alloys, stress distribution

Procedia PDF Downloads 325
384 Meta Model for Optimum Design Objective Function of Steel Frames Subjected to Seismic Loads

Authors: Salah R. Al Zaidee, Ali S. Mahdi

Abstract:

Except for simple problems of statically determinate structures, optimum design problems in structural engineering have implicit objective functions where structural analysis and design are essential within each searching loop. With these implicit functions, the structural engineer is usually enforced to write his/her own computer code for analysis, design, and searching for optimum design among many feasible candidates and cannot take advantage of available software for structural analysis, design, and searching for the optimum solution. The meta-model is a regression model used to transform an implicit objective function into objective one and leads in turn to decouple the structural analysis and design processes from the optimum searching process. With the meta-model, well-known software for structural analysis and design can be used in sequence with optimum searching software. In this paper, the meta-model has been used to develop an explicit objective function for plane steel frames subjected to dead, live, and seismic forces. Frame topology is assumed as predefined based on architectural and functional requirements. Columns and beams sections and different connections details are the main design variables in this study. Columns and beams are grouped to reduce the number of design variables and to make the problem similar to that adopted in engineering practice. Data for the implicit objective function have been generated based on analysis and assessment for many design proposals with CSI SAP software. These data have been used later in SPSS software to develop a pure quadratic nonlinear regression model for the explicit objective function. Good correlations with a coefficient, R2, in the range from 0.88 to 0.99 have been noted between the original implicit functions and the corresponding explicit functions generated with meta-model.

Keywords: meta-modal, objective function, steel frames, seismic analysis, design

Procedia PDF Downloads 243
383 Remaining Useful Life Estimation of Bearings Based on Nonlinear Dimensional Reduction Combined with Timing Signals

Authors: Zhongmin Wang, Wudong Fan, Hengshan Zhang, Yimin Zhou

Abstract:

In data-driven prognostic methods, the prediction accuracy of the estimation for remaining useful life of bearings mainly depends on the performance of health indicators, which are usually fused some statistical features extracted from vibrating signals. However, the existing health indicators have the following two drawbacks: (1) The differnet ranges of the statistical features have the different contributions to construct the health indicators, the expert knowledge is required to extract the features. (2) When convolutional neural networks are utilized to tackle time-frequency features of signals, the time-series of signals are not considered. To overcome these drawbacks, in this study, the method combining convolutional neural network with gated recurrent unit is proposed to extract the time-frequency image features. The extracted features are utilized to construct health indicator and predict remaining useful life of bearings. First, original signals are converted into time-frequency images by using continuous wavelet transform so as to form the original feature sets. Second, with convolutional and pooling layers of convolutional neural networks, the most sensitive features of time-frequency images are selected from the original feature sets. Finally, these selected features are fed into the gated recurrent unit to construct the health indicator. The results state that the proposed method shows the enhance performance than the related studies which have used the same bearing dataset provided by PRONOSTIA.

Keywords: continuous wavelet transform, convolution neural net-work, gated recurrent unit, health indicators, remaining useful life

Procedia PDF Downloads 133
382 Advancement in Scour Protection with Flexible Solutions: Interpretation of Hydraulic Tests Data for Reno Mattresses in Open Channel Flow

Authors: Paolo Di Pietro, Matteo Lelli, Kinjal Parmar

Abstract:

Water hazards are consistently identified as among the highest global risks in terms of impact. Riverbank protection plays a key role in flood risk management. For erosion control and scour protection, flexible solutions like gabions & mattresses are being used since quite some time now. The efficacy of erosion control systems depends both on the ability to prevent soil loss underneath, as well as to maintain their integrity under the effects of the water flow. The paper presents the results of a research carried out at the Colorado State University on the performance of double twisted wire mesh products, known as Reno Mattresses, used as soil erosion control system. Mattresses were subjected to various flow conditions on a 10m long flume where they were placed on a 0.30 m thick soil layer. The performance against erosion was evaluated by assessing the effect of the stone motion inside the mattress combined with the condition of incipient soil erosion underneath, in relationship to the mattress thickness, the filling stone properties and under variable hydraulic flow regimes. While confirming the stability obtained using a conventional design approach (commonly referred to tractive force theories), the results of the research allowed to introduce a new performance limit based on incipient soil erosion underneath the revetment. Based on the research results, the authors propose to express the shear resistance of mattresses used as soil erosion control system as a function of the size of the filling stones, their uniformity, their unit weight, the thickness of the mattress, and the presence of vertical connecting elements between the mattress lid and bottom.

Keywords: Reno Mattress, riverbank protection, hydraulics, full scale tests

Procedia PDF Downloads 24
381 Computation of Residual Stresses in Human Face Due to Growth

Authors: M. A. Askari, M. A. Nazari, P. Perrier, Y. Payan

Abstract:

Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of the living tissues to the mechanical loads is necessary for a wide range of developing fields such as, designing of prosthetics and optimized surgery operations. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically growth and remodeling is one of the main sources. Extracting body organs from medical imaging, does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is the gravity since an organ grows under its influence from its birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. In this paper, we have implemented a computational framework based on fixed-point iteration to determine the residual stresses due to growth. Using nonlinear continuum mechanics and the concept of fictitious configuration we find the unknown stress-free reference configuration which is necessary for mechanical analysis. To illustrate the method, we apply it to a finite element model of healthy human face whose geometry has been extracted from medical images. We have computed the distribution of residual stress in facial tissues, which can overcome the effect of gravity and cause that tissues remain firm. Tissue wrinkles caused by aging could be a consequence of decreasing residual stress and not counteracting the gravity. Considering these stresses has important application in maxillofacial surgery. It helps the surgeons to predict the changes after surgical operations and their consequences.

Keywords: growth, soft tissue, residual stress, finite element method

Procedia PDF Downloads 354
380 Inverse Prediction of Thermal Parameters of an Annular Hyperbolic Fin Subjected to Thermal Stresses

Authors: Ashis Mallick, Rajeev Ranjan

Abstract:

The closed form solution for thermal stresses in an annular fin with hyperbolic profile is derived using Adomian decomposition method (ADM). The conductive-convective fin with variable thermal conductivity is considered in the analysis. The nonlinear heat transfer equation is efficiently solved by ADM considering insulated convective boundary conditions at the tip of fin. The constant of integration in the solution is to be estimated using minimum decomposition error method. The solution of temperature field is represented in a polynomial form for convenience to use in thermo-elasticity equation. The non-dimensional thermal stress fields are obtained using the ADM solution of temperature field coupled with the thermo-elasticity solution. The influence of the various thermal parameters in temperature field and stress fields are presented. In order to show the accuracy of the ADM solution, the present results are compared with the results available in literature. The stress fields in fin with hyperbolic profile are compared with those of uniform thickness profile. Result shows that hyperbolic fin profile is better choice for enhancing heat transfer. Moreover, less thermal stresses are developed in hyperbolic profile as compared to rectangular profile. Next, Nelder-Mead based simplex search method is employed for the inverse estimation of unknown non-dimensional thermal parameters in a given stress fields. Owing to the correlated nature of the unknowns, the best combinations of the model parameters which are satisfying the predefined stress field are to be estimated. The stress fields calculated using the inverse parameters give a very good agreement with the stress fields obtained from the forward solution. The estimated parameters are suitable to use for efficient and cost effective fin designing.

Keywords: Adomian decomposition, inverse analysis, hyperbolic fin, variable thermal conductivity

Procedia PDF Downloads 327
379 Forecast of the Small Wind Turbines Sales with Replacement Purchases and with or without Account of Price Changes

Authors: V. Churkin, M. Lopatin

Abstract:

The purpose of the paper is to estimate the US small wind turbines market potential and forecast the small wind turbines sales in the US. The forecasting method is based on the application of the Bass model and the generalized Bass model of innovations diffusion under replacement purchases. In the work an exponential distribution is used for modeling of replacement purchases. Only one parameter of such distribution is determined by average lifetime of small wind turbines. The identification of the model parameters is based on nonlinear regression analysis on the basis of the annual sales statistics which has been published by the American Wind Energy Association (AWEA) since 2001 up to 2012. The estimation of the US average market potential of small wind turbines (for adoption purchases) without account of price changes is 57080 (confidence interval from 49294 to 64866 at P = 0.95) under average lifetime of wind turbines 15 years, and 62402 (confidence interval from 54154 to 70648 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 90,7%, while in the second - 91,8%. The effect of the wind turbines price changes on their sales was estimated using generalized Bass model. This required a price forecast. To do this, the polynomial regression function, which is based on the Berkeley Lab statistics, was used. The estimation of the US average market potential of small wind turbines (for adoption purchases) in that case is 42542 (confidence interval from 32863 to 52221 at P = 0.95) under average lifetime of wind turbines 15 years, and 47426 (confidence interval from 36092 to 58760 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 95,3%, while in the second –95,3%.

Keywords: bass model, generalized bass model, replacement purchases, sales forecasting of innovations, statistics of sales of small wind turbines in the United States

Procedia PDF Downloads 348
378 Classification on Statistical Distributions of a Complex N-Body System

Authors: David C. Ni

Abstract:

Contemporary models for N-body systems are based on temporal, two-body, and mass point representation of Newtonian mechanics. Other mainstream models include 2D and 3D Ising models based on local neighborhood the lattice structures. In Quantum mechanics, the theories of collective modes are for superconductivity and for the long-range quantum entanglement. However, these models are still mainly for the specific phenomena with a set of designated parameters. We are therefore motivated to develop a new construction directly from the complex-variable N-body systems based on the extended Blaschke functions (EBF), which represent a non-temporal and nonlinear extension of Lorentz transformation on the complex plane – the normalized momentum spaces. A point on the complex plane represents a normalized state of particle momentums observed from a reference frame in the theory of special relativity. There are only two key parameters, normalized momentum and nonlinearity for modelling. An algorithm similar to Jenkins-Traub method is adopted for solving EBF iteratively. Through iteration, the solution sets show a form of σ + i [-t, t], where σ and t are the real numbers, and the [-t, t] shows various distributions, such as 1-peak, 2-peak, and 3-peak etc. distributions and some of them are analog to the canonical distributions. The results of the numerical analysis demonstrate continuum-to-discreteness transitions, evolutional invariance of distributions, phase transitions with conjugate symmetry, etc., which manifest the construction as a potential candidate for the unification of statistics. We hereby classify the observed distributions on the finite convergent domains. Continuous and discrete distributions both exist and are predictable for given partitions in different regions of parameter-pair. We further compare these distributions with canonical distributions and address the impacts on the existing applications.

Keywords: blaschke, lorentz transformation, complex variables, continuous, discrete, canonical, classification

Procedia PDF Downloads 309
377 On the Solution of Boundary Value Problems Blended with Hybrid Block Methods

Authors: Kizito Ugochukwu Nwajeri

Abstract:

This paper explores the application of hybrid block methods for solving boundary value problems (BVPs), which are prevalent in various fields such as science, engineering, and applied mathematics. Traditionally, numerical approaches such as finite difference and shooting methods, often encounter challenges related to stability and convergence, particularly in the context of complex and nonlinear BVPs. To address these challenges, we propose a hybrid block method that integrates features from both single-step and multi-step techniques. This method allows for the simultaneous computation of multiple solution points while maintaining high accuracy. Specifically, we employ a combination of polynomial interpolation and collocation strategies to derive a system of equations that captures the behavior of the solution across the entire domain. By directly incorporating boundary conditions into the formulation, we enhance the stability and convergence properties of the numerical solution. Furthermore, we introduce an adaptive step-size mechanism to optimize performance based on the local behavior of the solution. This adjustment allows the method to respond effectively to variations in solution behavior, improving both accuracy and computational efficiency. Numerical tests on a variety of boundary value problems demonstrate the effectiveness of the hybrid block methods. These tests showcase significant improvements in accuracy and computational efficiency compared to conventional methods, indicating that our approach is robust and versatile. The results suggest that this hybrid block method is suitable for a wide range of applications in real-world problems, offering a promising alternative to existing numerical techniques.

Keywords: hybrid block methods, boundary value problem, polynomial interpolation, adaptive step-size control, collocation methods

Procedia PDF Downloads 31
376 Alcohol Septal Ablation in a 19-Year-Old with Hypertrophic Obstructive Cardiomyopathy Patient: A Case Report

Authors: Christine Ysabelle G. Roman, Pauline Torres

Abstract:

Background: Hypertrophic cardiomyopathy is a disease of marked heterogeneity. It is a genetically determined heart disease characterized by significant myocardium hypertrophy that results in diastolic dysfunction, left ventricular outflow tract obstruction, and an increased risk of arrhythmias. The primary treatment in patients with such conditions is negative inotropic drugs, such as beta-blockers, calcium channel antagonists, and disopyramide. However, for those who remain symptomatic and need septal reduction therapy, surgical septal myectomy or alcohol septal ablation are options. Case Summary: A 19 – year old female presented in the authors’ institution with easy fatigability. The consult was done a year prior, and 2D echocardiography was requested which showed concentric left ventricular hypertrophy, asymmetrically hypertrophied interventricular septum (IVS) with the largest diameter of 3.3cm & subaortic dynamic obstruction with a maximum gradient of 47 mmHg. A repeat echo a year later showed asymmetric septal hypertrophy (IVS measuring at 3cm) with the systolic anterior motion of anterior mitral valve leaflet and left ventricular outflow tract obstruction (peak gradient of 50mmHg). The patient then underwent alcohol septal ablation and was discharged stable after four days of admission. Conclusion: Hypertrophic obstructive cardiomyopathy, a cardiovascular genetic disease, results in various patterns of left ventricular hypertrophy and abnormality of mitral valve apparatus. The patient is managed medically initially. However, despite optimal drug therapy and significant left ventricular outflow tract obstruction, significant heart failure symptoms or syncope require invasive treatment.

Keywords: hypertrophic obstructive cardiomyopathy, left ventricular outflow tract obstruction, alcohol septal ablation, alcohol

Procedia PDF Downloads 80
375 Parameters Identification and Sensitivity Study for Abrasive WaterJet Milling Model

Authors: Didier Auroux, Vladimir Groza

Abstract:

This work is part of STEEP Marie-Curie ITN project, and it focuses on the identification of unknown parameters of the proposed generic Abrasive WaterJet Milling (AWJM) PDE model, that appears as an ill-posed inverse problem. The necessity of studying this problem comes from the industrial milling applications where the possibility to predict and model the final surface with high accuracy is one of the primary tasks in the absence of any knowledge of the model parameters that should be used. In this framework, we propose the identification of model parameters by minimizing a cost function, measuring the difference between experimental and numerical solutions. The adjoint approach based on corresponding Lagrangian gives the opportunity to find out the unknowns of the AWJM model and their optimal values that could be used to reproduce the required trench profile. Due to the complexity of the nonlinear problem and a large number of model parameters, we use an automatic differentiation software tool (TAPENADE) for the adjoint computations. By adding noise to the artificial data, we show that in fact the parameter identification problem is highly unstable and strictly depends on input measurements. Regularization terms could be effectively used to deal with the presence of data noise and to improve the identification correctness. Based on this approach we present results in 2D and 3D of the identification of the model parameters and of the surface prediction both with self-generated data and measurements obtained from the real production. Considering different types of model and measurement errors allows us to obtain acceptable results for manufacturing and to expect the proper identification of unknowns. This approach also gives us the ability to distribute the research on more complex cases and consider different types of model and measurement errors as well as 3D time-dependent model with variations of the jet feed speed.

Keywords: Abrasive Waterjet Milling, inverse problem, model parameters identification, regularization

Procedia PDF Downloads 316
374 Search for APN Permutations in Rings ℤ_2×ℤ_2^k

Authors: Daniel Panario, Daniel Santana de Freitas, Brett Stevens

Abstract:

Almost Perfect Nonlinear (APN) permutations with optimal resistance against differential cryptanalysis can be found in several domains. The permutation used in the standard for symmetric cryptography (the AES), for example, is based on a special kind of inversion in GF(28). Although very close to APN (2-uniform), this permutation still contains one number 4 in its differential spectrum, which means that, rigorously, it must be classified as 4-uniform. This fact motivates the search for fully APN permutations in other domains of definition. The extremely high complexity associated to this kind of problem precludes an exhaustive search for an APN permutation with 256 elements to be performed without the support of a suitable mathematical structure. On the other hand, in principle, there is nothing to indicate which mathematically structured domains can effectively help the search, and it is necessary to test several domains. In this work, the search for APN permutations in rings ℤ2×ℤ2k is investigated. After a full, exhaustive search with k=2 and k=3, all possible APN permutations in those rings were recorded, together with their differential profiles. Some very promising heuristics in these cases were collected so that, when used as a basis to prune backtracking for the same search in ℤ2×ℤ8 (search space with size 16! ≅244), just a few tenths of a second were enough to produce an APN permutation in a single CPU. Those heuristics were empirically extrapolated so that they could be applied to a backtracking search for APNs over ℤ2×ℤ16 (search space with size 32! ≅2117). The best permutations found in this search were further refined through Simulated Annealing, with a definition of neighbors suitable to this domain. The best result produced with this scheme was a 3-uniform permutation over ℤ2×ℤ16 with only 24 values equal to 3 in the differential spectrum (all the other 968 values were less than or equal 2, as it should be the case for an APN permutation). Although far from being fully APN, this result is technically better than a 4-uniform permutation and demanded only a few seconds in a single CPU. This is a strong indication that the use of mathematically structured domains, like the rings described in this work, together with heuristics based on smaller cases, can lead to dramatic cuts in the computational resources involved in the complexity of the search for APN permutations in extremely large domains.

Keywords: APN permutations, heuristic searches, symmetric cryptography, S-box design

Procedia PDF Downloads 159
373 A Ku/K Band Power Amplifier for Wireless Communication and Radar Systems

Authors: Meng-Jie Hsiao, Cam Nguyen

Abstract:

Wide-band devices in Ku band (12-18 GHz) and K band (18-27 GHz) have received significant attention for high-data-rate communications and high-resolution sensing. Especially, devices operating around 24 GHz is attractive due to the 24-GHz unlicensed applications. One of the most important components in RF systems is power amplifier (PA). Various PAs have been developed in the Ku and K bands on GaAs, InP, and silicon (Si) processes. Although the PAs using GaAs or InP process could have better power handling and efficiency than those realized on Si, it is very hard to integrate the entire system on the same substrate for GaAs or InP. Si, on the other hand, facilitates single-chip systems. Hence, good PAs on Si substrate are desirable. Especially, Si-based PA having good linearity is necessary for next generation communication protocols implemented on Si. We report a 16.5 to 25.5 GHz Si-based PA having flat saturated power of 19.5 ± 1.5 dBm, output 1-dB power compression (OP1dB) of 16.5 ± 1.5 dBm, and 15-23 % power added efficiency (PAE). The PA consists of a drive amplifier, two main amplifiers, and lump-element Wilkinson power divider and combiner designed and fabricated in TowerJazz 0.18µm SiGe BiCMOS process having unity power gain frequency (fMAX) of more than 250 GHz. The PA is realized as a cascode amplifier implementing both heterojunction bipolar transistor (HBT) and n-channel metal–oxide–semiconductor field-effect transistor (NMOS) devices for gain, frequency response, and linearity consideration. Particularly, a body-floating technique is utilized for the NMOS devices to improve the voltage swing and eliminate parasitic capacitances. The developed PA has measured flat gain of 20 ± 1.5 dB across 16.5-25.5 GHz. At 24 GHz, the saturated power, OP1dB, and maximum PAE are 20.8 dBm, 18.1 dBm, and 23%, respectively. Its high performance makes it attractive for use in Ku/K-band, especially 24 GHz, communication and radar systems. This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: power amplifiers, amplifiers, communication systems, radar systems

Procedia PDF Downloads 111
372 Fabrication of Glucose/O₂ Microfluidic Biofuel Cell with Double Layer of Electrodes

Authors: Haroon Khan, Chul Min Kim, Sung Yeol Kim, Sanket Goel, Prabhat K. Dwivedi, Ashutosh Sharma, Gyu Man Kim

Abstract:

Enzymatic biofuel cells (EBFCs) have drawn the attention of researchers due to its demanding application in medical implants. In EBFCs, electricity is produced with the help of redox enzymes. In this study, we report the fabrication of membraneless EBFC with new design of electrodes to overcome microchannel related limitations. The device consists of double layer of electrodes on both sides of Y-shaped microchannel to reduce the effect of oxygen depletion layer and diffusion of fuel and oxidant at the end of microchannel. Moreover, the length of microchannel was reduced by half keeping the same area of multiwalled carbon nanotubes (MWCNT) electrodes. Polydimethylsiloxane (PDMS) stencils were used to pattern MWCNT electrodes on etched Indium Tin Oxide (ITO) glass. PDMS casting was used to fabricate microchannel of the device. Both anode and cathode were modified with glucose oxidase and laccase. Furthermore, these enzymes were covalently bound to carboxyl MWCNTs with the help of EDC/NHS. Glucose used as fuel was oxidized by glucose oxidase at anode while oxygen was reduced to water at the cathode side. The resulted devices were investigated with the help of polarization curves obtained from Chronopotentiometry technique by using potentiostat. From results, we conclude that the performance of double layer EBFC is improved 15 % as compared to single layer EBFC delivering maximum power density of 71.25 µW cm-2 at a cell potential of 0.3 V and current density of 250 µA cm-2 at micro channel height of 450-µm and flow rate of 25 ml hr-1. However, the new device was stable only for three days after which its power output was rapidly dropped by 75 %. This work demonstrates that the power output of membraneless EBFC is improved comparatively, but still efforts will be needed to make the device stable over long period of time.

Keywords: EBFC, glucose, MWCNT, microfluidic

Procedia PDF Downloads 325
371 The Effect of Addition of Some Rare Earth Materials to Zinc Aluminum Alloy ZA-22

Authors: Adnan I. O. Zaid

Abstract:

Zinc aluminum alloys are versatile materials which are widely used in manufacturing several parts in the automobile and aircraft industries. The effect of grain refinement of these alloys by rare earth elements on their mechanical characteristics is scarce. The equal channel angular pressing is relatively recent method for producing severe plastic deformation in materials subjected to it resulting in refinement of their structure and enhancement of their mechanical characteristics. The phase diagram of these alloys indicates that large dendrites of large grain size can be formed during their solidification of the cast which tends to deteriorate their mechanical strength and surface quality. To overcome this problem they are normally grain refined by either titanium or titanium + boron to their melt prior to solidification. In this paper, comparison between the effect of adding either titanium, (Ti), titanium+boron, (Ti+B), or Molybdenum, Mo, to zinc-aluminum22, alloy, (ZA22) on its metallurgical and mechanical characteristics in the cast condition and after pressing by the ECAP process is investigated. It was found that addition of either Ti, Ti+B, or Mo to the ZA22 alloy in the cast condition resulted in refining of their structure being more refined by the addition of Mo, then .Ti+B and less refining by Ti addition. Furthermore, the ECAP process resulted in further refinement of the alloy micro structure except in case of Ti+B addition where poisoning i.e. coarsening of the grains has occurred. Regarding the addition of these element on the mechanical behavior; it was found that addition of Ti Or Ti+B resulted in little enhancement of the alloy strength factor and its flow stress at 20% true strain; whereas, the addition of resulted in deteriorating of its mechanical behavior as % decrease in the strength factor and % in its flow stress of 20%. As for the strain hardening index; addition of any of these elements resulted in decreasing the strain hardening index.

Keywords: addition, grain refinement, mechanical characteristics, microstructure, rare earth elements, ZA-22, Zinc- aluminum alloy

Procedia PDF Downloads 524
370 Seismic Vulnerability Analysis of Arch Dam Based on Response Surface Method

Authors: Serges Mendomo Meye, Li Guowei, Shen Zhenzhong

Abstract:

Earthquake is one of the main loads threatening dam safety. Once the dam is damaged, it will bring huge losses of life and property to the country and people. Therefore, it is very important to research the seismic safety of the dam. Due to the complex foundation conditions, high fortification intensity, and high scientific and technological content, it is necessary to adopt reasonable methods to evaluate the seismic safety performance of concrete arch dams built and under construction in strong earthquake areas. Structural seismic vulnerability analysis can predict the probability of structural failure at all levels under different intensity earthquakes, which can provide a scientific basis for reasonable seismic safety evaluation and decision-making. In this paper, the response surface method (RSM) is applied to the seismic vulnerability analysis of arch dams, which improves the efficiency of vulnerability analysis. Based on the central composite test design method, the material-seismic intensity samples are established. The response surface model (RSM) with arch crown displacement as performance index is obtained by finite element (FE) calculation of the samples, and then the accuracy of the response surface model (RSM) is verified. To obtain the seismic vulnerability curves, the seismic intensity measure ??(?1) is chosen to be 0.1~1.2g, with an interval of 0.1g and a total of 12 intensity levels. For each seismic intensity level, the arch crown displacement corresponding to 100 sets of different material samples can be calculated by algebraic operation of the response surface model (RSM), which avoids 1200 times of nonlinear dynamic calculation of arch dam; thus, the efficiency of vulnerability analysis is improved greatly.

Keywords: high concrete arch dam, performance index, response surface method, seismic vulnerability analysis, vector-valued intensity measure

Procedia PDF Downloads 240
369 Adoption of Risk and Insurance among Aquaculture Producers in Khuzestan Province, Iran

Authors: Kiyanoush Ghalavand

Abstract:

Aquaculture production is inherently a risky business, and farmers face a variety of weather, pest, disease, inptut supply, and market related risks. There are many factors out farmers control and unpredictable. Insurance has an important role in aquaculture production and is a tool to support farmers against threats. Investigation of factors affecting aquaculture farmers' adoption of aquaculture insurance strategy was the objective of this study. The purpose of this study was determining the related factors to adoption of insurance by aquaculture farmers in Khuzestan province, Iran. The research design was a descriptive and correlation surveying method. Aquaculture farmers in Khuzestan province were the target population for this study. A random sample of aquaculture selected (N=1830, n =139). The main result of the study reveled that exist correlation between the level of education, knowledge about purpose of insurance, participation in extension course, visit with insurance organization, and contact with extension agents to the adoption of insurance by aquaculture farmers were significantly positive. By using Bartlett's test and KMO test, determine whether research variables are appropriate for factor analysis (Sig = 0.000, Bartlett test = 0.9724, KMO = 0.74). The number of factors was determined using a split plot, eigenvalue, and percent of variance. An examination of the items and their factors loadings was used to understand the nature of the nine factors. To reduce subjectivity, items with factor loading equal to or greater than 0.5 were considered most important when factors were labeled. The nine factors were labeled (1) Extension and education activities, (2) Economical characteristics, (3) Governmental support, (4) communicational channel, (5) local leaders, (6) Facilitate in given damage (7) Motivation establishing, (8) Given damage in appropriate methods and (9) Appropriate activities by insurance organization. The results obtained from the factors analysis reveal that the nine factors explain percentage75 of the variation of the adoption of insurance of the adoption of insurance by aquaculture farmers in Khuzestan province.

Keywords: aquaculture farmers, insurance, factorial analysis, Khuzestan province, risks

Procedia PDF Downloads 151
368 Nonlinear Multivariable Analysis of CO2 Emissions in China

Authors: Hsiao-Tien Pao, Yi-Ying Li, Hsin-Chia Fu

Abstract:

This paper addressed the impacts of energy consumption, economic growth, financial development, and population size on environmental degradation using grey relational analysis (GRA) for China, where foreign direct investment (FDI) inflows is the proxy variable for financial development. The more recent historical data during the period 2004–2011 are used, because the use of very old data for data analysis may not be suitable for rapidly developing countries. The results of the GRA indicate that the linkage effects of energy consumption–emissions and GDP–emissions are ranked first and second, respectively. These reveal that energy consumption and economic growth are strongly correlated with emissions. Higher economic growth requires more energy consumption and increasing environmental pollution. Likewise, more efficient energy use needs a higher level of economic development. Therefore, policies to improve energy efficiency and create a low-carbon economy can reduce emissions without hurting economic growth. The finding of FDI–emissions linkage is ranked third. This indicates that China do not apply weak environmental regulations to attract inward FDI. Furthermore, China’s government in attracting inward FDI should strengthen environmental policy. The finding of population–emissions linkage effect is ranked fourth, implying that population size does not directly affect CO2 emissions, even though China has the world’s largest population, and Chinese people are very economical use of energy-related products. Overall, the energy conservation, improving efficiency, managing demand, and financial development, which aim at curtailing waste of energy, reducing both energy consumption and emissions, and without loss of the country’s competitiveness, can be adopted for developing economies. The GRA is one of the best way to use a lower data to build a dynamic analysis model.

Keywords: China, CO₂ emissions, foreign direct investment, grey relational analysis

Procedia PDF Downloads 403
367 Influence of Convective Boundary Condition on Chemically Reacting Micropolar Fluid Flow over a Truncated Cone Embedded in Porous Medium

Authors: Pradeepa Teegala, Ramreddy Chitteti

Abstract:

This article analyzes the mixed convection flow of chemically reacting micropolar fluid over a truncated cone embedded in non-Darcy porous medium with convective boundary condition. In addition, heat generation/absorption and Joule heating effects are taken into consideration. The similarity solution does not exist for this complex fluid flow problem, and hence non-similarity transformations are used to convert the governing fluid flow equations along with related boundary conditions into a set of nondimensional partial differential equations. Many authors have been applied the spectral quasi-linearization method to solve the ordinary differential equations, but here the resulting nonlinear partial differential equations are solved for non-similarity solution by using a recently developed method called the spectral quasi-linearization method (SQLM). Comparison with previously published work on special cases of the problem is performed and found to be in excellent agreement. The effect of pertinent parameters namely, Biot number, mixed convection parameter, heat generation/absorption, Joule heating, Forchheimer number, chemical reaction, micropolar and magnetic field on physical quantities of the flow are displayed through graphs and the salient features are explored in detail. Further, the results are analyzed by comparing with two special cases, namely, vertical plate and full cone wherever possible.

Keywords: chemical reaction, convective boundary condition, joule heating, micropolar fluid, mixed convection, spectral quasi-linearization method

Procedia PDF Downloads 277
366 Numerical Investigation of Entropy Signatures in Fluid Turbulence: Poisson Equation for Pressure Transformation from Navier-Stokes Equation

Authors: Samuel Ahamefula Mba

Abstract:

Fluid turbulence is a complex and nonlinear phenomenon that occurs in various natural and industrial processes. Understanding turbulence remains a challenging task due to its intricate nature. One approach to gain insights into turbulence is through the study of entropy, which quantifies the disorder or randomness of a system. This research presents a numerical investigation of entropy signatures in fluid turbulence. The work is to develop a numerical framework to describe and analyse fluid turbulence in terms of entropy. This decomposes the turbulent flow field into different scales, ranging from large energy-containing eddies to small dissipative structures, thus establishing a correlation between entropy and other turbulence statistics. This entropy-based framework provides a powerful tool for understanding the underlying mechanisms driving turbulence and its impact on various phenomena. This work necessitates the derivation of the Poisson equation for pressure transformation of Navier-Stokes equation and using Chebyshev-Finite Difference techniques to effectively resolve it. To carry out the mathematical analysis, consider bounded domains with smooth solutions and non-periodic boundary conditions. To address this, a hybrid computational approach combining direct numerical simulation (DNS) and Large Eddy Simulation with Wall Models (LES-WM) is utilized to perform extensive simulations of turbulent flows. The potential impact ranges from industrial process optimization and improved prediction of weather patterns.

Keywords: turbulence, Navier-Stokes equation, Poisson pressure equation, numerical investigation, Chebyshev-finite difference, hybrid computational approach, large Eddy simulation with wall models, direct numerical simulation

Procedia PDF Downloads 94
365 Seismic Performance of Steel Shear Wall Using Experimental and Numerical Analysis

Authors: Wahab Abdul Ghafar, Tao Zhong, Baba Kalan Enamullah

Abstract:

Steel plate shear walls (SPSWs) are a robust lateral load resistance structure because of their high flexibility and efficient energy dissipation when subjected to seismic loads. This research investigates the seismic Performance of an innovative infill web strip (IWS-SPSW) and a typical unstiffened steel plate shear wall (USPSW). As a result, two 1:3 scale specimens of an IWS-SPSW and USPSW with a single story and a single bay were built and subjected to a cyclic lateral loading methodology. In the prototype, the beam-to-column connections were accomplished with the assistance of semi-rigid end-plate connectors. IWS-SPSW demonstrated exceptional ductility and shear load-bearing capacity during the testing process, with no cracks or other damage occurring. In addition, the IWS-SPSW could effectively dissipate energy without causing a significant amount of beam-column connection distortion. The shear load-bearing capacity of the USPSW was exceptional. However, it exhibited low ductility, severe infill plate corner ripping, and huge infill web plate cracks. The FE models were created and then confirmed using the experimental data. It has been demonstrated that the infill web strips of an SPSW system can affect the system's high Performance and total energy dissipation. In addition, a parametric analysis was carried out to evaluate the material qualities of the IWS, which can considerably improve the system's seismic performances. These properties include the steel's strength as well as its thickness.

Keywords: steel shear walls, seismic performance, failure mode, hysteresis response, nonlinear finite element analysis, parametric study.

Procedia PDF Downloads 106
364 All-Optical Gamma-Rays and Positrons Source by Ultra-Intense Laser Irradiating an Al Cone

Authors: T. P. Yu, J. J. Liu, X. L. Zhu, Y. Yin, W. Q. Wang, J. M. Ouyang, F. Q. Shao

Abstract:

A strong electromagnetic field with E>1015V/m can be supplied by an intense laser such as ELI and HiPER in the near future. Exposing in such a strong laser field, laser-matter interaction enters into the near quantum electrodynamics (QED) regime and highly non-linear physics may occur during the laser-matter interaction. Recently, the multi-photon Breit-Wheeler (BW) process attracts increasing attention because it is capable to produce abundant positrons and it enhances the positron generation efficiency significantly. Here, we propose an all-optical scheme for bright gamma rays and dense positrons generation by irradiating a 1022 W/cm2 laser pulse onto an Al cone filled with near-critical-density plasmas. Two-dimensional (2D) QED particle-in-cell (PIC) simulations show that, the radiation damping force becomes large enough to compensate for the Lorentz force in the cone, causing radiation-reaction trapping of a dense electron bunch in the laser field. The trapped electrons oscillate in the laser electric field and emits high-energy gamma photons in two ways: (1) nonlinear Compton scattering due to the oscillation of electrons in the laser fields, and (2) Compton backwardscattering resulting from the bunch colliding with the reflected laser by the cone tip. The multi-photon Breit-Wheeler process is thus initiated and abundant electron-positron pairs are generated with a positron density ~1027m-3. The scheme is finally demonstrated by full 3D PIC simulations, which indicate the positron flux is up to 109. This compact gamma ray and positron source may have promising applications in future.

Keywords: BW process, electron-positron pairs, gamma rays emission, ultra-intense laser

Procedia PDF Downloads 260
363 Size Optimization of Microfluidic Polymerase Chain Reaction Devices Using COMSOL

Authors: Foteini Zagklavara, Peter Jimack, Nikil Kapur, Ozz Querin, Harvey Thompson

Abstract:

The invention and development of the Polymerase Chain Reaction (PCR) technology have revolutionised molecular biology and molecular diagnostics. There is an urgent need to optimise their performance of those devices while reducing the total construction and operation costs. The present study proposes a CFD-enabled optimisation methodology for continuous flow (CF) PCR devices with serpentine-channel structure, which enables the trade-offs between competing objectives of DNA amplification efficiency and pressure drop to be explored. This is achieved by using a surrogate-enabled optimisation approach accounting for the geometrical features of a CF μPCR device by performing a series of simulations at a relatively small number of Design of Experiments (DoE) points, with the use of COMSOL Multiphysics 5.4. The values of the objectives are extracted from the CFD solutions, and response surfaces created using the polyharmonic splines and neural networks. After creating the respective response surfaces, genetic algorithm, and a multi-level coordinate search optimisation function are used to locate the optimum design parameters. Both optimisation methods produced similar results for both the neural network and the polyharmonic spline response surfaces. The results indicate that there is the possibility of improving the DNA efficiency by ∼2% in one PCR cycle when doubling the width of the microchannel to 400 μm while maintaining the height at the value of the original design (50μm). Moreover, the increase in the width of the serpentine microchannel is combined with a decrease in its total length in order to obtain the same residence times in all the simulations, resulting in a smaller total substrate volume (32.94% decrease). A multi-objective optimisation is also performed with the use of a Pareto Front plot. Such knowledge will enable designers to maximise the amount of DNA amplified or to minimise the time taken throughout thermal cycling in such devices.

Keywords: PCR, optimisation, microfluidics, COMSOL

Procedia PDF Downloads 161
362 A Prediction of Cutting Forces Using Extended Kienzle Force Model Incorporating Tool Flank Wear Progression

Authors: Wu Peng, Anders Liljerehn, Martin Magnevall

Abstract:

In metal cutting, tool wear gradually changes the micro geometry of the cutting edge. Today there is a significant gap in understanding the impact these geometrical changes have on the cutting forces which governs tool deflection and heat generation in the cutting zone. Accurate models and understanding of the interaction between the work piece and cutting tool leads to improved accuracy in simulation of the cutting process. These simulations are useful in several application areas, e.g., optimization of insert geometry and machine tool monitoring. This study aims to develop an extended Kienzle force model to account for the effect of rake angle variations and tool flank wear have on the cutting forces. In this paper, the starting point sets from cutting force measurements using orthogonal turning tests of pre-machined flanches with well-defined width, using triangular coated inserts to assure orthogonal condition. The cutting forces have been measured by dynamometer with a set of three different rake angles, and wear progression have been monitored during machining by an optical measuring collaborative robot. The method utilizes the measured cutting forces with the inserts flank wear progression to extend the mechanistic cutting forces model with flank wear as an input parameter. The adapted cutting forces model is validated in a turning process with commercial cutting tools. This adapted cutting forces model shows the significant capability of prediction of cutting forces accounting for tools flank wear and different-rake-angle cutting tool inserts. The result of this study suggests that the nonlinear effect of tools flank wear and interaction between the work piece and the cutting tool can be considered by the developed cutting forces model.

Keywords: cutting force, kienzle model, predictive model, tool flank wear

Procedia PDF Downloads 108
361 Dairy Value Chain: Assessing the Inter Linkage of Dairy Farm and Small-Scale Dairy Processing in Tigray: Case Study of Mekelle City

Authors: Weldeabrha Kiros Kidanemaryam, DepaTesfay Kelali Gidey, Yikaalo Welu Kidanemariam

Abstract:

Dairy services are considered as sources of income, employment, nutrition and health for smallholder rural and urban farmers. The main objective of this study is to assess the interlinkage of dairy farms and small-scale dairy processing in Mekelle, Tigray. To achieve the stated objective, a descriptive research approach was employed where data was collected from 45 dairy farmers and 40 small-scale processors and analyzed by calculating the mean values and percentages. Findings show that the dairy business in the study area is characterized by a shortage of feed and water for the farm. The dairy farm is dominated by breeds of hybrid type, followed by the so called ‘begait’. Though the farms have access to medication and vaccination for the cattle, they fell short of hygiene practices, reliable shade for the cattle and separate space for the claves. The value chain at the milk production stage is characterized by a low production rate, selling raw milk without adding value and a very meager traditional processing practice. Furthermore, small-scale milk processors are characterized by collecting milk from farmers and producing cheese, butter, ghee and sour milk. They do not engage in modern milk processing like pasteurized milk, yogurt and table butter. Most small-scale milk processors are engaged in traditional production systems. Additionally, the milk consumption and marketing part of the chain is dominated by the informal market (channel), where market problems, lack of skill and technology, shortage of loans and weak policy support are being faced as the main challenges. Based on the findings, recommendations and future research areas are forwarded.

Keywords: value-chain, dairy, milk production, milk processing

Procedia PDF Downloads 32
360 Improved Benzene Selctivity for Methane Dehydroaromatization via Modifying the Zeolitic Pores by Dual Templating Approach

Authors: Deepti Mishra, K. K Pant, Xiu Song Zhao, Muxina Konarova

Abstract:

Catalytic transformation of simplest hydrocarbon methane into benzene and valuable chemicals over Mo/HZSM-5 has a great economic potential, however, it suffers serious hurdles due to the blockage in the micropores because of extensive coking at high temperature during methane dehydroaromatization (MDA). Under such conditions, it necessitates the design of micro/mesoporous ZSM-5, which has the advantages viz. uniform dispersibility of MoOx species, consequently the formation of active Mo sites in the micro/mesoporous channel and lower carbon deposition because of improved mass transfer rate within the hierarchical pores. In this study, we report a unique strategy to control the porous structures of ZSM-5 through a dual templating approach, utilizing C6 and C12 -surfactants as porogen. DFT studies were carried out to correlate the ZSM-5 framework development using the C6 and C12 surfactants with structure directing agent. The structural and morphological parameters of the synthesized ZSM-5 were explored in detail to determine the crystallinity, porosity, Si/Al ratio, particle shape, size, and acidic strength, which were further correlated with the physicochemical and catalytic properties of Mo modified HZSM-5 catalysts. After Mo incorporation, all the catalysts were tested for MDA reaction. From the activity test, it was observed that C6 surfactant-modified hierarchically porous Mo/HZSM-5(H) showed the highest benzene formation rate (1.5 μmol/gcat. s) and longer catalytic stability up to 270 min of reaction as compared to the conventional microporous Mo/HZSM-5(C). In contrary, C12 surfactant modified Mo/HZSM-5(D) is inferior towards MDA reaction (benzene formation rate: 0.5 μmol/gcat. s). We ascribed that the difference in MDA activity could be due to the hierarchically interconnected meso/microporous feature of Mo/HZSM-5(H) that precludes secondary reaction of coking from benzene and hence contributing substantial stability towards MDA reaction.

Keywords: hierarchical pores, Mo/HZSM-5, methane dehydroaromatization, coke deposition

Procedia PDF Downloads 82
359 Electrical Machine Winding Temperature Estimation Using Stateful Long Short-Term Memory Networks (LSTM) and Truncated Backpropagation Through Time (TBPTT)

Authors: Yujiang Wu

Abstract:

As electrical machine (e-machine) power density re-querulents become more stringent in vehicle electrification, mounting a temperature sensor for e-machine stator windings becomes increasingly difficult. This can lead to higher manufacturing costs, complicated harnesses, and reduced reliability. In this paper, we propose a deep-learning method for predicting electric machine winding temperature, which can either replace the sensor entirely or serve as a backup to the existing sensor. We compare the performance of our method, the stateful long short-term memory networks (LSTM) with truncated backpropagation through time (TBTT), with that of linear regression, as well as stateless LSTM with/without residual connection. Our results demonstrate the strength of combining stateful LSTM and TBTT in tackling nonlinear time series prediction problems with long sequence lengths. Additionally, in industrial applications, high-temperature region prediction accuracy is more important because winding temperature sensing is typically used for derating machine power when the temperature is high. To evaluate the performance of our algorithm, we developed a temperature-stratified MSE. We propose a simple but effective data preprocessing trick to improve the high-temperature region prediction accuracy. Our experimental results demonstrate the effectiveness of our proposed method in accurately predicting winding temperature, particularly in high-temperature regions, while also reducing manufacturing costs and improving reliability.

Keywords: deep learning, electrical machine, functional safety, long short-term memory networks (LSTM), thermal management, time series prediction

Procedia PDF Downloads 99