Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7012

Search results for: boundary value problem

7012 Existence of Positive Solutions to a Dirichlet Second Order Boundary Value Problem

Authors: Muhammad Sufian Jusoh, Mesliza Mohamed


In this paper, we investigate the existence of positive solutions for a Dirichlet second order boundary value problem by applying the Krasnosel'skii fixed point theorem on compression and expansion of cones.

Keywords: Krasnosel'skii fixed point theorem, positive solutions, Dirichlet boundary value problem, Dirichlet second order boundary problem

Procedia PDF Downloads 349
7011 Existence Solutions for Three Point Boundary Value Problem for Differential Equations

Authors: Mohamed Houas, Maamar Benbachir


In this paper, under weak assumptions, we study the existence and uniqueness of solutions for a nonlinear fractional boundary value problem. New existence and uniqueness results are established using Banach contraction principle. Other existence results are obtained using scheafer and krasnoselskii's fixed point theorem. At the end, some illustrative examples are presented.

Keywords: caputo derivative, boundary value problem, fixed point theorem, local conditions

Procedia PDF Downloads 363
7010 Existence of Positive Solutions for Second-Order Difference Equation with Discrete Boundary Value Problem

Authors: Thanin Sitthiwirattham, Jiraporn Reunsumrit


We study the existence of positive solutions to the three points difference summation boundary value problem. We show the existence of at least one positive solution if f is either superlinear or sublinear by applying the fixed point theorem due to Krasnoselskii in cones.

Keywords: positive solution, boundary value problem, fixed point theorem, cone

Procedia PDF Downloads 375
7009 Collocation Method for Coupled System of Boundary Value Problems with Cubic B-Splines

Authors: K. N. S. Kasi Viswanadham


Coupled system of second order linear and nonlinear boundary value problems occur in various fields of Science and Engineering. In the formulation of the problem, any one of 81 possible types of boundary conditions may occur. These 81 possible boundary conditions are written as a combination of four boundary conditions. To solve a coupled system of boundary value problem with these converted boundary conditions, a collocation method with cubic B-splines as basis functions has been developed. In the collocation method, the mesh points of the space variable domain have been selected as the collocation points. The basis functions have been redefined into a new set of basis functions which in number match with the number of mesh points in the space variable domain. The solution of a non-linear boundary value problem has been obtained as the limit of a sequence of solutions of linear boundary value problems generated by quasilinearization technique. Several linear and nonlinear boundary value problems are presented to test the efficiency of the proposed method and found that numerical results obtained by the present method are in good agreement with the exact solutions available in the literature.

Keywords: collocation method, coupled system, cubic b-splines, mesh points

Procedia PDF Downloads 136
7008 Existence and Uniqueness of Solutions to Singular Higher Order Two-Point BVPs on Time Scales

Authors: Zhenjie Liu


This paper investigates the existence and uniqueness of solutions for singular higher order boundary value problems on time scales by using mixed monotone method. The theorems obtained are very general. For the different time scale, the problem may be the corresponding continuous or discrete boundary value problem.

Keywords: mixed monotone operator, boundary value problem, time scale, green's function, positive solution, singularity

Procedia PDF Downloads 197
7007 Numerical Computation of Sturm-Liouville Problem with Robin Boundary Condition

Authors: Theddeus T. Akano, Omotayo A. Fakinlede


The modelling of physical phenomena, such as the earth’s free oscillations, the vibration of strings, the interaction of atomic particles, or the steady state flow in a bar give rise to Sturm-Liouville (SL) eigenvalue problems. The boundary applications of some systems like the convection-diffusion equation, electromagnetic and heat transfer problems requires the combination of Dirichlet and Neumann boundary conditions. Hence, the incorporation of Robin boundary condition in the analyses of Sturm-Liouville problem. This paper deals with the computation of the eigenvalues and eigenfunction of generalized Sturm-Liouville problems with Robin boundary condition using the finite element method. Numerical solutions of classical Sturm–Liouville problems are presented. The results show an agreement with the exact solution. High results precision is achieved with higher number of elements.

Keywords: Sturm-Liouville problem, Robin boundary condition, finite element method, eigenvalue problems

Procedia PDF Downloads 295
7006 Multiple Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation

Authors: A. Guezane-Lakoud, S. Bensebaa


In this paper, we study a boundary value problem of nonlinear fractional differential equation. Existence and positivity results of solutions are obtained.

Keywords: positive solution, fractional caputo derivative, Banach contraction principle, Avery and Peterson fixed point theorem

Procedia PDF Downloads 343
7005 Inverse Cauchy Problem of Doubly Connected Domains via Spectral Meshless Radial Point Interpolation

Authors: Elyas Shivanian


In this paper, the spectral meshless radial point interpolation (SMRPI) technique is applied to the Cauchy problems of two-dimensional elliptic PDEs in doubly connected domains. It is obtained the unknown data on the inner boundary of the domain while overspecified boundary data are imposed on the outer boundary of the domain by using the SMRPI. Shape functions, which are constructed through point interpolation method using the radial basis functions, help us to treat problem locally with the aim of high order convergence rate. In this way, localization in SMRPI can reduce the ill-conditioning for Cauchy problem. Furthermore, we improve previous results and it is revealed the SMRPI is more accurate and stable by adding strong perturbations.

Keywords: cauchy problem, doubly connected domain, radial basis function, shape function

Procedia PDF Downloads 218
7004 Noise Reduction by Energising the Boundary Layer

Authors: Kiran P. Kumar, H. M. Nayana, R. Rakshitha, S. Sushmitha


Aircraft noise is a highly concerned problem in the field of the aviation industry. It is necessary to reduce the noise in order to be environment-friendly. Air-frame noise is caused because of the quick separation of the boundary layer over an aircraft body. So, we have to delay the boundary layer separation of an air-frame and engine nacelle. By following a certain procedure boundary layer separation can be reduced by converting laminar into turbulent and hence early separation can be prevented that leads to the noise reduction. This method has a tendency to reduce the noise of the aircraft hence it can prove efficient and environment-friendly than the present Aircraft.

Keywords: airframe, boundary layer, noise, reduction

Procedia PDF Downloads 374
7003 A Non-Iterative Shape Reconstruction of an Interface from Boundary Measurement

Authors: Mourad Hrizi


In this paper, we study the inverse problem of reconstructing an interior interface D appearing in the elliptic partial differential equation: Δu+χ(D)u=0 from the knowledge of the boundary measurements. This problem arises from a semiconductor transistor model. We propose a new shape reconstruction procedure that is based on the Kohn-Vogelius formulation and the topological sensitivity method. The inverse problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a function. The unknown subdomain D is reconstructed using a level-set curve of the topological gradient. Finally, we give several examples to show the viability of our proposed method.

Keywords: inverse problem, topological optimization, topological gradient, Kohn-Vogelius formulation

Procedia PDF Downloads 175
7002 Divergence Regularization Method for Solving Ill-Posed Cauchy Problem for the Helmholtz Equation

Authors: Benedict Barnes, Anthony Y. Aidoo


A Divergence Regularization Method (DRM) is used to regularize the ill-posed Helmholtz equation where the boundary deflection is inhomogeneous in a Hilbert space H. The DRM incorporates a positive integer scaler which homogenizes the inhomogeneous boundary deflection in Cauchy problem of the Helmholtz equation. This ensures the existence, as well as, uniqueness of solution for the equation. The DRM restores all the three conditions of well-posedness in the sense of Hadamard.

Keywords: divergence regularization method, Helmholtz equation, ill-posed inhomogeneous Cauchy boundary conditions

Procedia PDF Downloads 82
7001 Inverse Mode Shape Problem of Hand-Arm Vibration (Humerus Bone) for Bio-Dynamic Response Using Varying Boundary Conditions

Authors: Ajay R, Rammohan B, Sridhar K S S, Gurusharan N


The objective of the work is to develop a numerical method to solve the inverse mode shape problem by determining the cross-sectional area of a structure for the desired mode shape via the vibration response study of the humerus bone, which is in the form of a cantilever beam with anisotropic material properties. The humerus bone is the long bone in the arm that connects the shoulder to the elbow. The mode shape is assumed to be a higher-order polynomial satisfying a prescribed set of boundary conditions to converge the numerical algorithm. The natural frequency and the mode shapes are calculated for different boundary conditions to find the cross-sectional area of humerus bone from Eigenmode shape with the aid of the inverse mode shape algorithm. The cross-sectional area of humerus bone validates the mode shapes of specific boundary conditions. The numerical method to solve the inverse mode shape problem is validated in the biomedical application by finding the cross-sectional area of a humerus bone in the human arm.

Keywords: Cross-sectional area, Humerus bone, Inverse mode shape problem, Mode shape

Procedia PDF Downloads 51
7000 Topological Sensitivity Analysis for Reconstruction of the Inverse Source Problem from Boundary Measurement

Authors: Maatoug Hassine, Mourad Hrizi


In this paper, we consider a geometric inverse source problem for the heat equation with Dirichlet and Neumann boundary data. We will reconstruct the exact form of the unknown source term from additional boundary conditions. Our motivation is to detect the location, the size and the shape of source support. We present a one-shot algorithm based on the Kohn-Vogelius formulation and the topological gradient method. The geometric inverse source problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a source function. Then, we present a non-iterative numerical method for the geometric reconstruction of the source term with unknown support using a level curve of the topological gradient. Finally, we give several examples to show the viability of our presented method.

Keywords: geometric inverse source problem, heat equation, topological optimization, topological sensitivity, Kohn-Vogelius formulation

Procedia PDF Downloads 211
6999 Fourier Galerkin Approach to Wave Equation with Absorbing Boundary Conditions

Authors: Alexandra Leukauf, Alexander Schirrer, Emir Talic


Numerical computation of wave propagation in a large domain usually requires significant computational effort. Hence, the considered domain must be truncated to a smaller domain of interest. In addition, special boundary conditions, which absorb the outward travelling waves, need to be implemented in order to describe the system domains correctly. In this work, the linear one dimensional wave equation is approximated by utilizing the Fourier Galerkin approach. Furthermore, the artificial boundaries are realized with absorbing boundary conditions. Within this work, a systematic work flow for setting up the wave problem, including the absorbing boundary conditions, is proposed. As a result, a convenient modal system description with an effective absorbing boundary formulation is established. Moreover, the truncated model shows high accuracy compared to the global domain.

Keywords: absorbing boundary conditions, boundary control, Fourier Galerkin approach, modal approach, wave equation

Procedia PDF Downloads 279
6998 On Transferring of Transient Signals along Hollow Waveguide

Authors: E. Eroglu, S. Semsit, E. Sener, U.S. Sener


In Electromagnetics, there are three canonical boundary value problem with given initial conditions for the electromagnetic field sought, namely: Cavity Problem, Waveguide Problem, and External Problem. The Cavity Problem and Waveguide Problem were rigorously studied and new results were arised at original works in the past decades. In based on studies of an analytical time domain method Evolutionary Approach to Electromagnetics (EAE), electromagnetic field strength vectors produced by a time dependent source function are sought. The fields are took place in L2 Hilbert space. The source function that performs signal transferring, energy and surplus of energy has been demonstrated with all clarity. Depth of the method and ease of applications are emerged needs of gathering obtained results. Main discussion is about perfect electric conductor and hollow waveguide. Even if well studied time-domain modes problems are mentioned, specifically, the modes which have a hollow (i.e., medium-free) cross-section domain are considered.

Keywords: evolutionary approach to electromagnetics, time-domain waveguide mode, Neumann problem, Dirichlet boundary value problem, Klein-Gordon

Procedia PDF Downloads 251
6997 A Numerical Solution Based on Operational Matrix of Differentiation of Shifted Second Kind Chebyshev Wavelets for a Stefan Problem

Authors: Rajeev, N. K. Raigar


In this study, one dimensional phase change problem (a Stefan problem) is considered and a numerical solution of this problem is discussed. First, we use similarity transformation to convert the governing equations into ordinary differential equations with its boundary conditions. The solutions of ordinary differential equation with the associated boundary conditions and interface condition (Stefan condition) are obtained by using a numerical approach based on operational matrix of differentiation of shifted second kind Chebyshev wavelets. The obtained results are compared with existing exact solution which is sufficiently accurate.

Keywords: operational matrix of differentiation, similarity transformation, shifted second kind chebyshev wavelets, stefan problem

Procedia PDF Downloads 338
6996 Analysis of an Error Estimate for the Asymptotic Solution of the Heat Conduction Problem in a Dilated Pipe

Authors: E. Marušić-Paloka, I. Pažanin, M. Prša


Subject of this study is the stationary heat conduction problem through a pipe filled with incompressible viscous fluid. In previous work, we observed the existence and uniqueness theorems for the corresponding boundary-value problem and within we have taken into account the effects of the pipe's dilatation due to the temperature of the fluid inside of the pipe. The main difficulty comes from the fact that flow domain changes depending on the solution of the observed heat equation leading to a non-standard coupled governing problem. The goal of this work is to find solution estimate since the exact solution of the studied problem is not possible to determine. We use an asymptotic expansion in order of a small parameter which is presented as a heat expansion coefficient of the pipe's material. Furthermore, an error estimate is provided for the mentioned asymptotic approximation of the solution for inner area of the pipe. Close to the boundary, problem becomes more complex so different approaches are observed, mainly Theory of Perturbations and Separations of Variables. In view of that, error estimate for the whole approximation will be provided with additional software simulations of gotten situation.

Keywords: asymptotic analysis, dilated pipe, error estimate, heat conduction

Procedia PDF Downloads 160
6995 A Study of Evolutional Control Systems

Authors: Ti-Jun Xiao, Zhe Xu


Controllability is one of the fundamental issues in control systems. In this paper, we study the controllability of second order evolutional control systems in Hilbert spaces with memory and boundary controls, which model dynamic behaviors of some viscoelastic materials. Transferring the control problem into a moment problem and showing the Riesz property of a family of functions related to Cauchy problems for some integrodifferential equations, we obtain a general boundary controllability theorem for these second order evolutional control systems. This controllability theorem is applicable to various concrete 1D viscoelastic systems and recovers some previous related results. It is worth noting that Riesz sequences can be used for numerical computations of the control functions and the identification of new Riesz sequence is of independent interest for the basis-function theory. Moreover, using the Riesz sequences, we obtain the existence and uniqueness of (weak) solutions to these second order evolutional control systems in Hilbert spaces. Finally, we derive the exact boundary controllability of a viscoelastic beam equation, as an application of our abstract theorem.

Keywords: evolutional control system, controllability, boundary control, existence and uniqueness

Procedia PDF Downloads 154
6994 Analytical Solution of Blassius Equation Using the Kourosh Method

Authors: Mohammad Reza Shahnazari, Reza Kazemi, Ali Saberi


Most of the engineering problems are in nonlinear forms. Nonlinear boundary layer problems defined in infinite intervals contain specific complexities, especially in boundary layer condition conformance. As an example of these nonlinear complex problems, the well-known Blasius equation can be mentioned, which itself is one of the classic boundary layer problems. No analytical solution has been proposed yet for the Blasius equation due to its complexity. In this paper, an analytical method, namely the Kourosh method, based on the singularity perturbation method and the Liao homotopy analysis is utilized to solve the Blasius problem. In this method, an inner solution is developed in the [0,1] interval to expedite the solution convergence. The magnitude of the f ˝(0), as an essential quantity for determining the physical parameters, is directly calculated from the solution of the boundary condition problem. The advantages of this solution are that it does not need any numerical solution, it has a closed form and that its validation is shown in the entire [0,∞] interval. Furthermore, all of the desirable parameters could be extracted through a series of simple analytical operations from the final solution. This solution also satisfies the continuity conditions, which is one of the main contributions of this paper in comparison with most of the other proposed analytical solutions available in the literature. Comparison with numerical solutions reveals that the proposed method is highly accurate and convenient for application.

Keywords: Blasius equation, boundary layer, Kourosh method, analytical solution

Procedia PDF Downloads 282
6993 On One New Solving Approach of the Plane Mixed Problem for an Elastic Semistrip

Authors: Natalia D. Vaysfel’d, Zinaida Y. Zhuravlova


The loaded plane elastic semistrip, the lateral boundaries of which are fixed, is considered. The integral transformations are applied directly to Lame’s equations. It leads to one dimensional boundary value problem in the transformations’ domain which is formulated as a vector one. With the help of the matrix differential calculation’s apparatus and apparatus of Green matrix function the exact solution of a vector problem is constructed. After the satisfying the boundary condition at the semi strip’s edge the problem is reduced to the solving of the integral singular equation with regard of the unknown stress at the semis trip’s edge. The equation is solved with the orthogonal polynomials method that takes into consideration the real singularities of the solution at the ends of integration interval. The normal stress at the edge of the semis trip were calculated and analyzed.

Keywords: semi strip, Green's Matrix, fourier transformation, orthogonal polynomials method

Procedia PDF Downloads 340
6992 A Boundary Backstepping Control Design for 2-D, 3-D and N-D Heat Equation

Authors: Aziz Sezgin


We consider the problem of stabilization of an unstable heat equation in a 2-D, 3-D and generally n-D domain by deriving a generalized backstepping boundary control design methodology. To stabilize the systems, we design boundary backstepping controllers inspired by the 1-D unstable heat equation stabilization procedure. We assume that one side of the boundary is hinged and the other side is controlled for each direction of the domain. Thus, controllers act on two boundaries for 2-D domain, three boundaries for 3-D domain and ”n” boundaries for n-D domain. The main idea of the design is to derive ”n” controllers for each of the dimensions by using ”n” kernel functions. Thus, we obtain ”n” controllers for the ”n” dimensional case. We use a transformation to change the system into an exponentially stable ”n” dimensional heat equation. The transformation used in this paper is a generalized Volterra/Fredholm type with ”n” kernel functions for n-D domain instead of the one kernel function of 1-D design.

Keywords: backstepping, boundary control, 2-D, 3-D, n-D heat equation, distributed parameter systems

Procedia PDF Downloads 312
6991 Solving the Nonlinear Heat Conduction in a Spherical Coordinate with Electrical Simulation

Authors: A. M. Gheitaghy, H. Saffari, G. Q. Zhang


Numerical approach based on the electrical simulation method is proposed to solve a nonlinear transient heat conduction problem with nonlinear boundary for a spherical body. This problem represents a strong nonlinearity in both the governing equation for temperature dependent thermal property and the boundary condition for combined convective and radiative cooling. By analysing the equivalent electrical model using the electrical circuit simulation program HSPICE, transient temperature and heat flux distributions at sphere can be obtained easily and fast. The solutions clearly illustrate the effect of the radiation-conduction parameter Nrc, the Biot number and the linear coefficient of temperature dependent conductivity and heat capacity. On comparing the results with corresponding numerical solutions, the accuracy and efficiency of this computational method are found to be good.

Keywords: convective and radiative boundary, electrical simulation method, nonlinear heat conduction, spherical coordinate

Procedia PDF Downloads 259
6990 A Continuous Boundary Value Method of Order 8 for Solving the General Second Order Multipoint Boundary Value Problems

Authors: T. A. Biala


This paper deals with the numerical integration of the general second order multipoint boundary value problems. This has been achieved by the development of a continuous linear multistep method (LMM). The continuous LMM is used to construct a main discrete method to be used with some initial and final methods (also obtained from the continuous LMM) so that they form a discrete analogue of the continuous second order boundary value problems. These methods are used as boundary value methods and adapted to cope with the integration of the general second order multipoint boundary value problems. The convergence, the use and the region of absolute stability of the methods are discussed. Several numerical examples are implemented to elucidate our solution process.

Keywords: linear multistep methods, boundary value methods, second order multipoint boundary value problems, convergence

Procedia PDF Downloads 309
6989 An Approximation Method for Exact Boundary Controllability of Euler-Bernoulli

Authors: A. Khernane, N. Khelil, L. Djerou


The aim of this work is to study the numerical implementation of the Hilbert uniqueness method for the exact boundary controllability of Euler-Bernoulli beam equation. This study may be difficult. This will depend on the problem under consideration (geometry, control, and dimension) and the numerical method used. Knowledge of the asymptotic behaviour of the control governing the system at time T may be useful for its calculation. This idea will be developed in this study. We have characterized as a first step the solution by a minimization principle and proposed secondly a method for its resolution to approximate the control steering the considered system to rest at time T.

Keywords: boundary control, exact controllability, finite difference methods, functional optimization

Procedia PDF Downloads 268
6988 Searching the Efficient Frontier for the Coherent Covering Location Problem

Authors: Felipe Azocar Simonet, Luis Acosta Espejo


In this article, we will try to find an efficient boundary approximation for the bi-objective location problem with coherent coverage for two levels of hierarchy (CCLP). We present the mathematical formulation of the model used. Supported efficient solutions and unsupported efficient solutions are obtained by solving the bi-objective combinatorial problem through the weights method using a Lagrangean heuristic. Subsequently, the results are validated through the DEA analysis with the GEM index (Global efficiency measurement).

Keywords: coherent covering location problem, efficient frontier, lagragian relaxation, data envelopment analysis

Procedia PDF Downloads 258
6987 The Musical Imagination: Re-Imagining a Sound Education through Musical Boundary Play

Authors: Michael J. Cutler


This paper presents what musical boundary play can look like when beginning music learners work with professional musicians with an emphasis on composition. Music education can be re-imagined through the lenses of boundary objects and boundary play by engaging non-professional musicians in collaborative sound creation, improvisation and composition along with professional musicians. To the author’s best knowledge, no similar study exists on boundary objects and boundary play in music education. The literature reviewed for this paper explores the epistemological perspectives connected to music education and situates musical boundary play as an alternative approach to the more prevalent paradigms of music education in K-12 settings. A qualitative multiple-case study design was chosen to seek an in-depth understanding of the role of boundary objects and musical boundary play. The constant comparative method was utilized in analyzing and interpreting the data resulting in the development of effective, transferable theory. The study gathered relevant data using audio and video recordings of musical boundary play, artifacts, interviews, and observations. Findings from this study offer insight into the development of a more inclusive music education and yield a pedagogical framework for music education based on musical boundary play. Through the facilitation of musical boundary play, it is possible for music learners to experience musical sound creation, improvisation and composition in the same way an instrumentalist or vocalist would without the acquisition of complex component operations required to play a traditional instrument or sing in a proficient manner.

Keywords: boundary play, boundary objects, music education, music pedagogy, musical boundary play

Procedia PDF Downloads 31
6986 Robust Numerical Method for Singularly Perturbed Semilinear Boundary Value Problem with Nonlocal Boundary Condition

Authors: Habtamu Garoma Debela, Gemechis File Duressa


In this work, our primary interest is to provide ε-uniformly convergent numerical techniques for solving singularly perturbed semilinear boundary value problems with non-local boundary condition. These singular perturbation problems are described by differential equations in which the highest-order derivative is multiplied by an arbitrarily small parameter ε (say) known as singular perturbation parameter. This leads to the existence of boundary layers, which are basically narrow regions in the neighborhood of the boundary of the domain, where the gradient of the solution becomes steep as the perturbation parameter tends to zero. Due to the appearance of the layer phenomena, it is a challenging task to provide ε-uniform numerical methods. The term 'ε-uniform' refers to identify those numerical methods in which the approximate solution converges to the corresponding exact solution (measured to the supremum norm) independently with respect to the perturbation parameter ε. Thus, the purpose of this work is to develop, analyze, and improve the ε-uniform numerical methods for solving singularly perturbed problems. These methods are based on nonstandard fitted finite difference method. The basic idea behind the fitted operator, finite difference method, is to replace the denominator functions of the classical derivatives with positive functions derived in such a way that they capture some notable properties of the governing differential equation. A uniformly convergent numerical method is constructed via nonstandard fitted operator numerical method and numerical integration methods to solve the problem. The non-local boundary condition is treated using numerical integration techniques. Additionally, Richardson extrapolation technique, which improves the first-order accuracy of the standard scheme to second-order convergence, is applied for singularly perturbed convection-diffusion problems using the proposed numerical method. Maximum absolute errors and rates of convergence for different values of perturbation parameter and mesh sizes are tabulated for the numerical example considered. The method is shown to be ε-uniformly convergent. Finally, extensive numerical experiments are conducted which support all of our theoretical findings. A concise conclusion is provided at the end of this work.

Keywords: nonlocal boundary condition, nonstandard fitted operator, semilinear problem, singular perturbation, uniformly convergent

Procedia PDF Downloads 64
6985 Instability by Weak Precession of the Flow in a Rapidly Rotating Sphere

Authors: S. Kida


We consider the flow of an incompressible viscous fluid in a precessing sphere whose spin and precession axes are orthogonal to each other. The flow is characterized by two non-dimensional parameters, the Reynolds number Re and the Poincare number Po. For which values of (Re, Po) will the flow approach a steady state from an arbitrary initial condition? To answer it we are searching the instability boundary of the steady states in the whole (Re, Po) plane. Here, we focus the rapidly rotating and weakly precessing limit, i.e., Re >> 1 and Po << 1. The steady flow was obtained by the asymptotic expansion for small ε=Po Re¹/² << 1. The flow exhibits nearly a solid-body rotation in the whole sphere except for a thin boundary layer which develops over the sphere surface. The thickness of this boundary layer is of O(δ), where δ=Re⁻¹/², except where two circular critical bands of thickness of O(δ⁴/⁵) and of width of O(δ²/⁵) which are located away from the spin axis by about 60°. We perform the linear stability analysis of the steady flow. We assume that the disturbances are localized in the critical bands and make an expansion analysis in terms of ε to derive the eigenvalue problem for the growth rate of the disturbance, which is solved numerically. As the solution, we obtain an asymptote of the stability boundary as Po=28.36Re⁻⁰.⁸. This agrees excellently with the corresponding laboratory experiments and numerical simulations. One of the most popular instability mechanisms so far is the parametric instability, which turns out, however, not to give the correct stability boundary. The present instability is different from the parametric instability.

Keywords: boundary layer, critical band, instability, precessing sphere

Procedia PDF Downloads 85
6984 Boundary Feedback Stabilization of an Overhead Crane Model

Authors: Abdelhadi Elharfi


A problem of boundary feedback (exponential) stabilization of an overhead crane model represented by a PDE is considered. For any $r>0$, the exponential stability at the desired decay rate $r$ is solved in semi group setting by a collocated-type stabiliser of a target system combined with a term involving the solution of an appropriate PDE.

Keywords: feedback stabilization, semi group and generator, overhead crane system

Procedia PDF Downloads 339
6983 Nonlinear Analysis with Failure Using the Boundary Element Method

Authors: Ernesto Pineda Leon, Dante Tolentino Lopez, Janis Zapata Lopez


The current paper shows the application of the boundary element method for the analysis of plates under shear stress causing plasticity. In this case, the shear deformation of a plate is considered by means of the Reissner’s theory. The probability of failure of a Reissner’s plate due to a proposed index plastic behavior is calculated taken into account the uncertainty in mechanical and geometrical properties. The problem is developed in two dimensions. The classic plasticity’s theory is applied and a formulation for initial stresses that lead to the boundary integral equations due to plasticity is also used. For the plasticity calculation, the Von Misses criteria is used. To solve the non-linear equations an incremental method is employed. The results show a relatively small failure probability for the ranges of loads between 0.6 and 1.0. However, for values between 1.0 and 2.5, the probability of failure increases significantly. Consequently, for load bigger than 2.5 the plate failure is a safe event. The results are compared to those that were found in the literature and the agreement is good.

Keywords: boundary element method, failure, plasticity, probability

Procedia PDF Downloads 214