Search results for: solid recovered fuels
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3086

Search results for: solid recovered fuels

956 Topics of Blockchain Technology to Teach at Community College

Authors: Penn P. Wu, Jeannie Jo

Abstract:

Blockchain technology has rapidly gained popularity in industry. This paper attempts to assist academia to answer four questions. First, should community colleges begin offering education to nurture blockchain-literate students for the job market? Second, what are the appropriate topical areas to cover? Third, should it be an individual course? And forth, should it be a technical or management course? This paper starts with identifying the knowledge domains of blockchain technology and the topical areas each domain has, and continues with placing them in appropriate academic territories (Computer Sciences vs. Business) and subjects (programming, management, marketing, and laws), and then develops an evaluation model to determine the appropriate topical area for community colleges to teach. The evaluation is based on seven factors: maturity of technology, impacts on management, real-world applications, subject classification, knowledge prerequisites, textbook readiness, and recommended pedagogies. The evaluation results point to an interesting direction that offering an introductory course is an ideal option to guide students through the learning journey of what blockchain is and how it applies to business. Such an introductory course does not need to engage students in the discussions of mathematics and sciences that make blockchain technologies possible. While it is inevitable to brief technical topics to help students build a solid knowledge foundation of blockchain technologies, community colleges should avoid offering students a course centered on the discussion of developing blockchain applications.

Keywords: blockchain, pedagogies, blockchain technologies, blockchain course, blockchain pedagogies

Procedia PDF Downloads 126
955 Efficiency of Microbial Metabolites on Quality Milk Production in Nili Ravi Breed of Buffalos

Authors: Sajjad Ur Rahman, Muhammad Tahir, Mukarram Bashir, Jawad, Aoun Muhammad, Muhammad Zohaib, Hannan Khan, Seemal Javaid, Mariam Azam

Abstract:

The efficiency of natural metabolites obtained from partially fermented soya hulls and wheat bran using Saccharomyces cerevisiae (DL-22 S/N) ensures a potential impact on the total milk yield and quality of milk production. On attaining a moderate number of Saccharomyces cerevisiae cells around 1×10⁹ CFU/ml, the concentrate was further elevated under in-vivo conditions to study the quality of milk production in lactating buffalo. Ten lactating buffalos of the Nili Ravi breed having the same physical factors were given 12 gm of microbial metabolites daily, along with the palleted feed having 22 % proteins. Another group of 10 lactating animals with the same characteristics was maintained without metabolites. The body score, overall health, incidence of mastitis, milk fat, milk proteins, ash and solid not fat (SNF) were elevated on a weekly basis up to thirty days of trial. It was recorded that the average total increase in quality milk production was 0.9 liter/h/d, whereas SNF in the milk was enhanced to 0.71, and fats were decreased to 0.09 %. Moreover, during all periods of the trial, the overall non-specific immunity of buffalo was increased, as indicated by less than 0.2 % of mastitis incidence compared to 1.8% in the untreated buffalos.

Keywords: natural metabolites, quality milk, milk yield, microorganisms, fermentation, nonspecific immunity, better performing animals

Procedia PDF Downloads 82
954 Impact Assessment of Phosphogypsum on the Groundwater of Sfax-Agareb Aquifer, in Southeast of Tunisia

Authors: Samira Melki, Moncef Gueddari

Abstract:

In Tunisia, solid wastes storage continue to be uncontrolled. It is eliminated by land raising without any protection measurement against water table and soil contamination. Several industries are located in Sfax area, especially those of the Tunisian Chemical Group (TCG) for the enrichment and transformation of phosphate. The activity of the TCG focuses primarily on the production of chemical fertilizers and phosphoric acid, by transforming natural phosphates. This production generates gaseous emissions, liquid discharges and huge amounts of phosphogypsum (PG) stored directly on the soil surface. Groundwater samples were collected from Tunisian Chemical Group (TCG) site, to assess the effects of phosphogypsum leatchate on groundwater quality. The measurements of various physicochemical parameters including heavy metals (Al, Fe, Zn and F) and stable isotopes of the water molecule (¹⁸O, ²H) were determined in groundwater samples and are reported. The moderately high concentrations of SO₄⁼, Ortho-P, NH₄⁺ Al and F⁻ in groundwater particularly near to the phosphogypsum storage site, likely indicate that groundwater quality is being significantly affected by leachate percolation. The effect of distance of the piezometers from the pollution source was also investigated. The isotopic data of water molecule, showed that the waters of the Sfax-Agreb aquifer amount to recent-evaporation induced rainfall.

Keywords: phosphogypsum leatchate, groundwater quality, pollution, stable isotopes, Sfax-Agareb, Tunisia

Procedia PDF Downloads 187
953 Numerical Study of Wettability on the Triangular Micro-pillared Surfaces Using Lattice Boltzmann Method

Authors: Ganesh Meshram, Gloria Biswal

Abstract:

In this study, we present the numerical investigation of surface wettability on triangular micropillar surfaces by using a two-dimensional (2D) pseudo-potential multiphase lattice Boltzmann method with a D2Q9 model for various interaction parameters of the range varies from -1.40 to -2.50. Initially, simulation of the equilibrium state of a water droplet on a flat surface is considered for various interaction parameters to examine the accuracy of the present numerical model. We then imposed the microscale pillars on the bottom wall of the surface with different heights of the pillars to form the hydrophobic and superhydrophobic surfaces which enable the higher contact angle. The wettability of surfaces is simulated with water droplets of radius 100 lattice units in the domain of 800x800 lattice units. The present study shows that increasing the interaction parameter of the pillared hydrophobic surfaces dramatically reduces the contact area between water droplets and solid walls due to the momentum redirection phenomenon. Contact angles for different values of interaction strength have been validated qualitatively with the analytical results.

Keywords: contact angle, lattice boltzmann method, d2q9 model, pseudo-potential multiphase method, hydrophobic surfaces, wenzel state, cassie-baxter state, wettability

Procedia PDF Downloads 63
952 A Dynamic Model for Circularity Assessment of Nutrient Recovery from Domestic Sewage

Authors: Anurag Bhambhani, Jan Peter Van Der Hoek, Zoran Kapelan

Abstract:

The food system depends on the availability of Phosphorus (P) and Nitrogen (N). Growing population, depleting Phosphorus reserves and energy-intensive industrial nitrogen fixation are threats to their future availability. Recovering P and N from domestic sewage water offers a solution. Recovered P and N can be applied to agricultural land, replacing virgin P and N. Thus, recovery from sewage water offers a solution befitting a circular economy. To ensure minimum waste and maximum resource efficiency a circularity assessment method is crucial to optimize nutrient flows and minimize losses. Material Circularity Indicator (MCI) is a useful method to quantify the circularity of materials. It was developed for materials that remain within the market and recently extended to include biotic materials that may be composted or used for energy recovery after end-of-use. However, MCI has not been used in the context of nutrient recovery. Besides, MCI is time-static, i.e., it cannot account for dynamic systems such as the terrestrial nutrient cycles. Nutrient application to agricultural land is a highly dynamic process wherein flows and stocks change with time. The rate of recycling of nutrients in nature can depend on numerous factors such as prevailing soil conditions, local hydrology, the presence of animals, etc. Therefore, a dynamic model of nutrient flows with indicators is needed for the circularity assessment. A simple substance flow model of P and N will be developed with the help of flow equations and transfer coefficients that incorporate the nutrient recovery step along with the agricultural application, the volatilization and leaching processes, plant uptake and subsequent animal and human uptake. The model is then used for calculating the proportions of linear and restorative flows (coming from reused/recycled sources). The model will simulate the adsorption process based on the quantity of adsorbent and nutrient concentration in the water. Thereafter, the application of the adsorbed nutrients to agricultural land will be simulated based on adsorbate release kinetics, local soil conditions, hydrology, vegetation, etc. Based on the model, the restorative nutrient flow (returning to the sewage plant following human consumption) will be calculated. The developed methodology will be applied to a case study of resource recovery from wastewater. In the aforementioned case study located in Italy, biochar or zeolite is to be used for recovery of P and N from domestic sewage through adsorption and thereafter, used as a slow-release fertilizer in agriculture. Using this model, information regarding the efficiency of nutrient recovery and application can be generated. This can help to optimize the recovery process and application of the nutrients. Consequently, this will help to optimize nutrient recovery and application and reduce the dependence of the food system on the virgin extraction of P and N.

Keywords: circular economy, dynamic substance flow, nutrient cycles, resource recovery from water

Procedia PDF Downloads 192
951 Assessment of Metal and Nano-Metal Doped TiO₂ Nanoparticles for Photocatalytic Degradation of Methylene Blue in Almeda Textile Industry, Tigray, Ethiopia

Authors: Mulugeta Gurum Gerechal

Abstract:

Nowadays, the photocatalytic mechanism of water purification using nanoparticles has gained wider acceptance. For this purpose, the Crystal form of N- TiO₂ and Ag-TiO₂ was prepared from TiCl₄, Urea, NH₄OH and AgNO₃ by sol-gel method and simple solid phase reaction followed by calcination at a temperature of 400 °C for 4h at each. The synthesized photocatalysts were characterized using XRD, SEM and UV-visible diffuse reflectance spectra. In the experiment, it was found that the absorption edge of N-TiO₂ was a well efficient shift to visible light as compared to Ag-TiO₂. The XRD diffraction makes the particle size of N-TiO₂ smaller than Ag-TiO₂. The effect of catalyst loading and the effect of temperature on the photocatalytic efficiency of the prepared samples was tested using methylene blue as a target pollutant. The photocatalytic degradation efficiency of the catalysts for methylene blue was increased from 57.05 to 96.02% under solar radiation as the amount of the catalyst increased from 0.15 to 0.45 gram for N-TiO₂. Similarly, photocatalytic degradation of methylene blue was increased from 40.32 to 81.21% as the amount of Ag-TiO₂ increased from 0.05g to 0.1g. In addition, the photocatalytic degradation efficiency of the catalysts for the removal of methylene blue was increased from 58.00 to 98.00 and 47.00 to 81.21 % under solar radiation as the calcination temperature of the catalyst increased from 300 to 500 for N-TiO₂ for Ag-TiO₂ 300 to 4000C. However, a further increase in catalyst loading and calcination temperature was found to decrease the degradation efficiency.

Keywords: photocatalysis, degradation, nanoparticles, catalyst loading, calcination and methylene blue

Procedia PDF Downloads 54
950 Highly Robust Crosslinked BIAN-based Binder to Stabilize High-Performance Silicon Anode in Lithium-Ion Secondary Battery

Authors: Agman Gupta, Rajashekar Badam, Noriyoshi Matsumi

Abstract:

Introduction: Recently, silicon has been recognized as one of the potential alternatives as anode active material in Li-ion batteries (LIBs) to replace the conventionally used graphite anodes. Silicon is abundantly present in the nature, it can alloy with lithium metal, and has a higher theoretical capacity (~4200 mAhg-1) that is approximately 10 times higher than graphite. However, because of a large volume expansion (~400%) upon repeated de-/alloying, the pulverization of Si particles causes the exfoliation of electrode laminate leading to the loss of electrical contact and adversely affecting the formation of solid-electrolyte interface (SEI).1 Functional polymers as binders have emerged as a competitive strategy to mitigate these drawbacks and failure mechanism of silicon anodes.1 A variety of aqueous/non-aqueous polymer binders like sodium carboxy-methyl cellulose (CMC-Na), styrene butadiene rubber (SBR), poly(acrylic acid), and other variants like mussel inspired binders have been investigated to overcome these drawbacks.1 However, there are only a few reports that mention the attempt of addressing all the drawbacks associated with silicon anodes effectively using a single novel functional polymer system as a binder. In this regard, here, we report a novel highly robust n-type bisiminoacenaphthenequinone (BIAN)-paraphenylene-based crosslinked polymer as a binder for Si anodes in lithium-ion batteries (Fig. 1). On its application, crosslinked-BIAN binder was evaluated to provide mechanical robustness to the large volume expansion of Si particles, maintain electrical conductivity within the electrode laminate, and facilitate in the formation of a thin SEI by restricting the extent of electrolyte decomposition on the surface of anode. The fabricated anodic half-cells were evaluated electrochemically for their rate capability, cyclability, and discharge capacity. Experimental: The polymerized BIAN (P-BIAN) copolymer was synthesized as per the procedure reported by our group.2 The synthesis of crosslinked P-BIAN: a solution of P-BIAN copolymer (1.497 g, 10 mmol) in N-methylpyrrolidone (NMP) (150 ml) was set-up to stir under reflux in nitrogen atmosphere. To this, 1,6-dibromohexane (5 mmol, 0.77 ml) was added dropwise. The resultant reaction mixture was stirred and refluxed at 150 °C for 24 hours followed by refrigeration for 3 hours at 5 °C. The product was obtained by evaporating the NMP solvent under reduced pressure and drying under vacuum at 120 °C for 12 hours. The obtained product was a black colored sticky compound. It was characterized by 1H-NMR, XPS, and FT-IR techniques. Results and Discussion: The N 1s XPS spectrum of the crosslinked BIAN polymer showed two characteristic peaks corresponding to the sp2 hybridized nitrogen (-C=N-) at 399.6 eV of the diimine backbone in the BP and quaternary nitrogen at 400.7 eV corresponding to the crosslinking of BP via dibromohexane. The DFT evaluation of the crosslinked BIAN binder showed that it has a low lying lowest unoccupied molecular orbital (LUMO) that enables it to get doped in the reducing environment and influence the formation of a thin (SEI). Therefore, due to the mechanically robust crosslinked matrices as well as its influence on the formation of a thin SEI, the crosslinked BIAN binder stabilized the Si anode-based half-cell for over 1000 cycles with a reversible capacity of ~2500 mAhg-1 and ~99% capacity retention as shown in Fig. 2. The dynamic electrochemical impedance spectroscopy (DEIS) characterization of crosslinked BIAN-based anodic half-cell confirmed that the SEI formed was thin in comparison with the conventional binder-based anodes. Acknowledgement: We are thankful to the financial support provided by JST-Mirai Program, Grant Number: JP18077239

Keywords: self-healing binder, n-type binder, thin solid-electrolyte interphase (SEI), high-capacity silicon anodes, low-LUMO

Procedia PDF Downloads 159
949 Cytotoxic Effect of Neem Seed Extract (Azadirachta indica) in Comparison with Artificial Insecticide Novastar on Haemocytes (THC and DHC) of Musca domestica

Authors: Muhammad Zaheer Awan, Adnan Qadir, Zeeshan Anjum

Abstract:

Housefly, Musca domestica Linnaeus is ubiquitous and hazardous for Homo sapiens and livestock in sundry venerations. Musca domestica cart 100 different pathogens, such as typhoid, salmonella, bacillary dysentery, tuberculosis, anthrax and parasitic worms. The flies in rural areas usually carry more pathogens. Houseflies feed on liquid or semi-liquid substances besides solid materials which are softened by saliva. Neem botanically known as Azadirachta indica belongs to the family Meliaceae and is an indigenous tree to Pakistan. The neem tree is also one such tree which has been revered by the Pakistanis and Kashmiris for its medicinal properties. Present study showed neem seed extract has potentially toxic ability that affect Total Haemocyte Count (THC) and Differential Haemocytes Count (DHC) in insect’s blood cells, of the housefly. A significant variation in haemolymph density was observed just after application, 30 minutes and 60 minutes post treatment in term of THC and DHC in comparison with novastar. The study strappingly acclaim use of neem seed extract as insecticide as compare to artificial insecticides.

Keywords: neem, Azadirachta indica, Musca domestica, differential haemocyte count (DHC), total haemocytes count (DHC), novastar

Procedia PDF Downloads 198
948 Cladding Technology for Metal-Hybrid Composites with Network-Structure

Authors: Ha-Guk Jeong, Jong-Beom Lee

Abstract:

Cladding process is very typical technology for manufacturing composite materials by the hydrostatic extrusion. Because there is no friction between the metal and the container, it can be easily obtained in uniform flow during the deformation. The general manufacturing process for a metal-matrix composite in the solid state, mixing metal powders and ceramic powders with a suited volume ratio, prior to be compressed or extruded at the cold or hot condition in a can. Since through a plurality of unit processing steps of dispersing the materials having a large difference in their characteristics and physical mixing, the process is complicated and leads to non-uniform dispersion of ceramics. It is difficult and hard to reach a uniform ideal property in the coherence problems at the interface between the metal and the ceramic reinforcements. Metal hybrid composites, which presented in this report, are manufactured through the traditional plastic deformation processes like hydrostatic extrusion, caliber-rolling, and drawing. By the previous process, the realization of uniform macro and microstructure is surely possible. In this study, as a constituent material, aluminum, copper, and titanium have been used, according to the component ratio, excellent characteristics of each material were possible to produce a metal hybrid composite that appears to maximize. MgB₂ superconductor wire also fabricated via the same process. It will be introduced to their unique artistic and thermal characteristics.

Keywords: cladding process, metal-hybrid composites, hydrostatic extrusion, electronic/thermal characteristics

Procedia PDF Downloads 173
947 Biostratigraphic Significance of Shaanxilithes ningqiangensis from the Tal Group (Cambrian), Nigalidhar Syncline, Lesser Himalaya, India and Its GC-MS Analysis

Authors: C. A. Sharma, Birendra P. Singh

Abstract:

We recovered 40 well preserved ribbon-shaped, meandering specimens of S. ningqiangensis from the Earthy Dolomite Member (Krol Group) and calcareous siltstone beds of the Earthy Siltstone Member (Tal Group) showing closely spaced annulations that lacked branching. The beginning and terminal points are indistinguishable. In certain cases, individual specimens are characterized by irregular, low-angle to high-angle sinuosity. It has been variously described as body fossil, ichnofossil and algae. Detailed study of this enigmatic fossil is needed to resolve the long standing controversy regarding its phylogenetic and stratigraphic placements, which will be an important contribution to the evolutionary history of metazoans. S. ningqiangensis has been known from the late Neoproterozoic (Ediacaran) of southern and central China (Sichuan, Shaanxi, Quinghai and Guizhou provinces and Ningxia Hui Autonomous region), Siberian platform and across Pc/C Boundary from latest Neoprterozoic to earliest Cambrian of northern India. Shaanxilithes is considered an Ediacaran organism that spans the Precambrian–Cambrian boundary, an interval marked by significant taphonomic and ecological transformations that include not only innovation but also probable extinction. All the past well constrained finds of S. ningqiangensis are restricted to Ediacaran age. However, due to the new recoveries of the fossil from Nigalidhar Syncline, the stratigraphic status of S. ningqiangensis-bearing Earthy Siltstone Member of the Shaliyan Formation of the Tal Group (Cambrian) is rendered uncertain, though the overlying Chert Member in the adjoining Korgai Syncline has yielded definite early Cambrian acritarchs. The moot question is whether the Earthy Siltstone Member represents an Ediacaran or an early Cambrian age?. It would be interesting to find if Shaanxilithes, so far known from Ediacaran sequences, could it transgress to the early Cambrian or in simple words could it withstand the Pc/C Boundary event? GC-MS data shows the S. ningqiangensis structure is formed by hydrocarbon organic compounds which are filled with inorganic elements filler like silica, Calcium, phosphorus etc. The S. ningqiangensis structure is a mixture of organic compounds of high molecular weight, containing several saturated rings with hydrocarbon chains having an occasional isolated carbon-carbon double bond and also containing, in addition, to small amounts of nitrogen, sulfur and oxygen. Data also revealed that the presence of nitrogen which would be either in the form of peptide chains means amide/amine or chemical form i.e. nitrates/nitrites etc. The formula weight and the weight ratio of C/H shows that it would be expected for algae derived organics, since algae produce fatty acids as well as other hydrocarbons such as cartenoids.

Keywords: GC-MS Analysis, lesser himalaya, Pc/C Boundary, shaanxilithes

Procedia PDF Downloads 250
946 The Effect of Internal Electrical Ion Mobility on Molten Salts through Atomistic Simulations

Authors: Carlos F. Sanz-Navarro, Sonia Fereres

Abstract:

Binary and ternary mixtures of molten salts are excellent thermal energy storage systems and have been widely used in commercial tanks both in nuclear and solar thermal applications. However, the energy density of the commercially used mixtures is still insufficient, and therefore, new systems based on latent heat storage (or phase change materials, PCM) are currently being investigated. In order to shed some light on the macroscopic physical properties of the molten salt phases, knowledge of the microscopic structure and dynamics is required. Several molecular dynamics (MD) simulations have been performed to model the thermal behavior of (Li,K)2CO3 mixtures. Up to this date, this particular molten salt mixture has not been extensively studied but it is of fundamental interest for understanding the behavior of other commercial salts. Molten salt diffusivities, the internal electrical ion mobility, and the physical properties of the solid-liquid phase transition have been calculated and compared to available data from literature. The effect of anion polarization and the application of a strong external electric field have also been investigated. The influence of electrical ion mobility on local composition is explained through the Chemla effect, well known in electrochemistry. These results open a new way to design optimal high temperature energy storage materials.

Keywords: atomistic simulations, thermal storage, latent heat, molten salt, ion mobility

Procedia PDF Downloads 321
945 Boosting Profits and Enhancement of Environment through Adsorption of Methane during Upstream Processes

Authors: Sudipt Agarwal, Siddharth Verma, S. M. Iqbal, Hitik Kalra

Abstract:

Natural gas as a fuel has created wonders, but on the contrary, the ill-effects of methane have been a great worry for professionals. The largest source of methane emission is the oil and gas industry among all industries. Methane depletes groundwater and being a greenhouse gas has devastating effects on the atmosphere too. Methane remains for a decade or two in the atmosphere and later breaks into carbon dioxide and thus damages it immensely, as it warms up the atmosphere 72 times more than carbon dioxide in those two decades and keeps on harming after breaking into carbon dioxide afterward. The property of a fluid to adhere to the surface of a solid, better known as adsorption, can be a great boon to minimize the hindrance caused by methane. Adsorption of methane during upstream processes can save the groundwater and atmospheric depletion around the site which can be hugely lucrative to earn profits which are reduced due to environmental degradation leading to project cancellation. The paper would deal with reasons why casing and cementing are not able to prevent leakage and would suggest methods to adsorb methane during upstream processes with mathematical explanation using volumetric analysis of adsorption of methane on the surface of activated carbon doped with copper oxides (which increases the absorption by 54%). The paper would explain in detail (through a cost estimation) how the proposed idea can be hugely beneficial not only to environment but also to the profits earned.

Keywords: adsorption, casing, cementing, cost estimation, volumetric analysis

Procedia PDF Downloads 182
944 Occurrence of Antibiotics of Veterinary Use in Water of the Lake Titicaca: Its Environmental Implication and Human Health

Authors: Franz Zirena Vilca, Nestor Cahui Galarza, Walter Alejandro Zamalloa Cuba, Edith Tello Palma, Teofilo Donaires Flores, Valdemar Luiz Tornisielo

Abstract:

The production of rainbow trout in the Lake Titicaca represents an important economic activity for Peru. The city of Puno is responsible for 83% of this production, so the use of antibiotics within the aquaculture system is not alien to this reality. Meanwhile, the waters of Lake Titicaca represent an important source for the supply of drinking water for 80% of the population of the Puno city. In this paper, twelve antibiotics for veterinary use were monitored in water samples during two seasons: dry (July 2015) and rainy (February 2016), water samples from trout production systems, near the water catching point in the lake and drinking water in the city house of Puno were considered. The samples were analyzed using liquid chromatography coupled to mass spectrometry and solid online phase extraction (On-line SPE-LC-MS/MS), all samples analyzed showed concentrations of Ciprofloxacin up to 65.2 ng L⁻¹ at the rainy season. On the other hand, 63% of water samples from the dry season and 36 % from the rainy season showed Chlortetracycline up to 8.7 and 6.1 ng L⁻¹, respectively. The presence of residues of veterinary antibiotics in drinking water means a serious health risk for 80% of the population of Puno since all these people are supplied from this source.

Keywords: chromatography, DNA damage, environmental risk, water pollution

Procedia PDF Downloads 218
943 Identifying the True Extend of Glioblastoma Based on Preoperative FLAIR Images

Authors: B. Shukir, L. Szivos, D. Kis, P. Barzo

Abstract:

Glioblastoma is the most malignant brain tumor. In general, the survival rate varies between (14-18) months. Glioblastoma consists a solid and infiltrative part. The standard therapeutic management of glioblastoma is maximum safe resection followed by chemo-radiotherapy. It’s hypothesized that the pretumoral hyperintense region in fluid attenuated inversion recovery (FLAIR) images includes both vasogenic edema and infiltrated tumor cells. In our study, we aimed to define the sensitivity and specificity of hyperintense FLAIR images preoperatively to examine how well it can define the true extent of glioblastoma. (16) glioblastoma patients included in this study. Hyperintense FLAIR region were delineated preoperatively as tumor mask. The infiltrative part of glioblastoma considered the regions where the tumor recurred on the follow up MRI. The recurrence on the CE-T1 images was marked as the recurrence masks. According to (AAL3) and (JHU white matter labels) atlas, the brain divided into cortical and subcortical regions respectively. For calculating specificity and sensitivity, the FLAIR and the recurrence masks overlapped counting how many regions affected by both . The average sensitivity and specificity was 83% and 85% respectively. Individually, the sensitivity and specificity varied between (31-100)%, and (100-58)% respectively. These results suggest that despite FLAIR being as an effective radiologic imaging tool its prognostic value remains controversial and probabilistic tractography remain more reliable available method for identifying the true extent of glioblastoma.

Keywords: brain tumors, glioblastoma, MRI, FLAIR

Procedia PDF Downloads 39
942 Experimental Investigation on Effect of Different Heat Treatments on Phase Transformation and Superelasticity of NiTi Alloy

Authors: Erfan Asghari Fesaghandis, Reza Ghaffari Adli, Abbas Kianvash, Hossein Aghajani, Homa Homaie

Abstract:

NiTi alloys possess magnificent superelastic, shape memory, high strength and biocompatible properties. For improving mechanical properties, foremost, superelasticity behavior, heat treatment process is carried out. In this paper, two different heat treatment methods were undertaken: (1) solid solution, and (2) aging. The effect of each treatment in a constant time is investigated. Five samples were prepared to study the structure and optimize mechanical properties under different time and temperature. For measuring the upper plateau stress, lower plateau stress and residual strain, tensile test is carried out. The samples were aged at two different temperatures to see difference between aging temperatures. The sample aged at 500 °C has a bigger crystallite size and lower amount of Ni which causes the mentioned sample to possess poor pseudo elasticity behaviour than the other aged sample. The sample aged at 460 °C has shown remarkable superelastic properties. The mentioned sample’s higher plateau is 580 MPa with the lowest residual strain (0.17%) while other samples have possessed higher residual strains. X-ray diffraction was used to investigate the produced phases.

Keywords: heat treatment, phase transformation, superelasticity, NiTi alloy

Procedia PDF Downloads 125
941 The Decline of Islamic Influence in the Global Geopolitics

Authors: M. S. Riyazulla

Abstract:

Since the dawn of the 21st century, there has been a perceptible decline in Islamic supremacy in world affairs, apart from the gradual waning of the amiable relations and relevance of Islamic countries in the International political arena. For a long, Islamic countries have been marginalised by the superpowers in the global conflicting issues. This was evident in the context of their recent invasions and interference in Afghanistan, Syria, Iraq, and Libya. The leading International Islamic organizations like the Arab League, Organization of Islamic Cooperation, Gulf Cooperation Council, and Muslim World League did not play any prominent role there in resolving the crisis that ensued due to the exogenous and endogenous causes. Hence, there is a need for Islamic countries to create a credible International Islamic organization that could dictate its terms and shape a new Islamic world order. The prominent Islamic countries are divided on ideological and religious fault lines. Their concord is indispensable to enhance their image and placate the relations with other countries and communities. The massive boon of oil and gas could be synergistically utilised to exhibit their omnipotence and eminence through constructive ways. The prevailing menace of Islamophobia could be abated through syncretic messages, discussions, and deliberations by the sagacious Islamic scholars with the other community leaders. Presently, as Muslims are at a crossroads, a dynamic leadership could navigate the agitated Muslim community on the constructive path and herald political stability around the world. The present political disorder, chaos, and economic challenges necessities a paradigm shift in approach to worldly affairs. This could also be accomplished through the advancement in science and technology, particularly space exploration, for peaceful purposes. The Islamic world, in order to regain its lost preeminence, should rise to the occasion in promoting peace and tranquility in the world and should evolve a rational and human-centric solution to global disputes and concerns. As a splendid contribution to humanity and for amicable international relations, they should devote all their resources and scientific intellect towards space exploration and should safely transport man from the Earth to the nearest and most accessible cosmic body, the Moon, within one hundred years as the mankind is facing the existential threat on the planet.

Keywords: carboniferous period, Earth, extinction, fossil fuels, global leaders, Islamic glory, international order, life, marginalization, Moon, natural catastrophes

Procedia PDF Downloads 64
940 Shear Behaviour of RC Deep Beams with Openings Strengthened with Carbon Fiber Reinforced Polymer

Authors: Mannal Tariq

Abstract:

Construction industry is making progress at a high pace. The trend of the world is getting more biased towards the high rise buildings. Deep beams are one of the most common elements in modern construction having small span to depth ratio. Deep beams are mostly used as transfer girders. This experimental study consists of 16 reinforced concrete (RC) deep beams. These beams were divided into two groups; A and B. Groups A and B consist of eight beams each, having 381 mm (15 in) and 457 mm (18 in) depth respectively. Each group was further subdivided into four sub groups each consisting of two identical beams. Each subgroup was comprised of solid/control beam (without opening), opening above neutral axis (NA), at NA and below NA. Except for control beams, all beams with openings were strengthened with carbon fibre reinforced polymer (CFRP) vertical strips. These eight groups differ from each other based on depth and location of openings. For testing sake, all beams have been loaded with two symmetrical point loads. All beams have been designed based on strut and tie model concept. The outcome of experimental investigation elaborates the difference in the shear behaviour of deep beams based on depth and location of circular openings variation. 457 mm (18 in) deep beam with openings above NA show the highest strength and 381 mm (15 in) deep beam with openings below NA show the least strength. CFRP sheets played a vital role in increasing the shear capacity of beams.

Keywords: CFRP, deep beams, openings in deep beams, strut and tie modal, shear behaviour

Procedia PDF Downloads 296
939 Synthesis of Cellulose Nanocrystals from Oil Palm Empty Fruit Bunch by Using Phosphotungstic Acid

Authors: Yogi Wibisono Budhi, Ferry Iskandar, Veinardi Suendo, Muhammad Fakhrudin, Neng Tresna Umi Culsum

Abstract:

Oil palm empty fruit bunch (OPEFB), an abundant agro-waste in Indonesia, is being studied as raw material of Cellulose Nanocrystals (CNC) synthesis. Instead of conventional acid mineral, phosphotungstic acid (H₃PW₁₂O₄₀, HPW) was used to hydrolyze cellulose due to recycling ability and easy handling. Before hydrolysis process, dried EFB was treated by 4% NaOH solution at 90oC for 2 hours and then bleached using 2% NaClO₂ solution at 80oC for 3 hours to remove hemicellulose and lignin. Hydrolysis reaction parameters such as temperature, acid concentration, and reaction time were optimized with fixed solid-liquid ratio of 1:40. Response surface method was used for experimental design to determine the optimum condition of each parameter. HPW was extracted from the mixed solution and recycled with diethyl ether. CNC was separated from the solution by centrifuging and washing with distilled water and ethanol to remove degraded sugars and unreacted celluloses. In this study, pulp from dried EFB produced 44.8% yield of CNC. Dynamic Light Scattering (DLS) analysis showed that most of CNC equivalent diameter was 140 nm. Crystallinity index was observed at 73.3% using X-ray Diffraction (XRD) analysis. Thus, a green established process for the preparation of CNC was achieved.

Keywords: acid hydrolysis, cellulose nanocrystals, oil palm empty fruit bunch, phosphotungstic acid

Procedia PDF Downloads 214
938 Effect of Inoculum Ratio on Dark Fermentative Hydrogen Production

Authors: Zeynep Yilmazer Hitit, Patrick C. Hallenbeck

Abstract:

Fuel reserve requirements due to depletion of fossil fuels have increased interest in biohydrogen since the 1990’s. In fermentative hydrogen production, pure, mixed, and co-cultures can be used to produce hydrogen. Several previous studies have evaluated hydrogen production by pure cultures of Clostridium butyricum or Enterobacter aerogenes. Evaluating hydrogen production by co-culture of these microorganisms is an interestıng approach since E. aerogenes is a facultative microorganism with resistance to oxygen in contrast to the strict anaerobe C. butyricum, and therefore has the ability to maintain anaerobic conditions. It was found that using co-cultures of facultative E. aerogenes (as a reducing agent and H2 producer) and the obligate anaerobe C. butyricum for producing hydrogen increases the yield of hydrogen by about 50% compared to C. butyricum by itself. Also, using different types of microorganisms for hydrogen production eliminates the need to use expensive reducing agents. C. butyricum strain pre-cultured anaerobically at 37 0C for 15h by inoculating 100 mL of GP medium (pH 6.8) consisting of 1% glucose, 2% polypeptone, 0.2% KH2PO4, 0.05% yeast extract, 0.05% MgSO4. 7H2O and E. aerogenes strain was pre-cultured aerobically at 30 0C, 150 rpm for 9 h by inoculating 100 mL of TGY medium (pH 6.8), consisting of 0.1% glucose, 0.5% tryptone, 0.1% K2HPO4, 0.5% yeast extract. All duplicate batch experiments were conducted in 100 mL bottles with different inoculum ratios of Clostridium butyricum and Enterobater aerogenes (C:E) using 5x diluted rich media (GP) consisting of 2 g/L glucose, 4g/L polypeptone, 0.4 g/L KH2PO4, 0.1 g/L yeast extract, 0.1 MgSO4.7H2O. The range of inoculum ratio of C. butyricum to E. aerogenes were 2:1,4:1,8:1, 1:2,1:4, 1:8, 1:0, 0:1. Using glucose as a carbon source aided in the observation of microbial behavior as well as making the effect of inoculum ratio more evident. Nearly all the glucose in the medium was used to produce hydrogen, except at a 1:0 ratio of inoculum (i.e. containing only C. butyricum). Low glucose consumption leads to a higher hydrogen yield due to cumulative hydrogen production and consumption of glucose, but not as much as C:E, 8:1. The lowest hydrogen yield was achieved in 1:8 inoculum ratio of C:E, 71.9 mL, 1.007±0.01 mol H2/mol glucose and the highest cumulative hydrogen, hydrogen yield and dry cell weight were achieved in 8:1 inoculum ratio of C:E, 117.4 mL, 2.035±0.082 mol H2/mol glucose, 0.4 g/L respectively. In this study effect of inoculum ratio on dark fermentative biohydrogen production using C. butyricum and E. aerogenes was investigated. The maximum hydrogen yield of 2.035mol H2/mol glucose was obtained using 2g/L glucose, an initial pH of 6 and an inoculum ratio of C. butyricum to E. aerogenes of 8:1. Results showed that inoculum ratio is an important parameter on hydrogen production due to competition between the two microorganisms in using substrate for growth and production of by-products. The results presented here could be of great significance for further waste management studies using co-culture hydrogen production.

Keywords: biohydrogen, Clostridium butyricum, dark fermentation, Enterobacter aerogenes, inoculum ratio in biohydrogen production

Procedia PDF Downloads 229
937 Assessment of Biofuel Feedstock Production on Arkansas State Highway Transportation Department's Marginalized Lands

Authors: Ross J. Maestas

Abstract:

Biofuels are derived from multiple renewable bioenergy feedstocks including animal fats, wood, starchy grains, and oil seeds. Transportation agencies have considered growing the latter two on underutilized and nontraditional lands that they manage, such as in the Right of Way (ROW), abandoned weigh stations, and at maintenance yards. These crops provide the opportunity to generate revenue or supplement fuel once converted and offer a solution to increasing fuel costs and instability by creating a ‘home-grown’ alternative. Biofuels are non-toxic, biodegradable, and emit less Green House Gasses (GHG) than fossil fuels, therefore allowing agencies to meet sustainability goals and regulations. Furthermore, they enable land managers to achieve soil erosion and roadside aesthetic strategies. The research sought to understand if the cultivation of a biofuel feedstock within the Arkansas State Highway Transportation Department’s (AHTD) managed and marginalized lands is feasible by identifying potential land areas and crops. To determine potential plots the parcel data was downloaded from Arkansas’s GIS office. ArcGIS was used to query the data for all variations of the names of property owned by AHTD and a KML file was created that identifies the queried parcel data in Google Earth. Furthermore, biofuel refineries in the state were identified to optimize the harvest to transesterification process. Agricultural data was collected from federal and state agencies and universities to assess various oil seed crops suitable for conversion and suited to grow in Arkansas’s climate and ROW conditions. Research data determined that soybean is the best adapted biofuel feedstock for Arkansas with camelina and canola showing possibilities as well. Agriculture is Arkansas’s largest industry and soybean is grown in over half of the state’s counties. Successful cultivation of a feedstock in the aforementioned areas could potentially offer significant employment opportunity for which the skilled farmers already exist. Based on compiled data, AHTD manages 21,489 acres of marginalized land. The result of the feasibility assessment offer suggestions and guidance should AHTD decide to further investigate this type of initiative.

Keywords: Arkansas highways, biofuels, renewable energy initiative, marginalized lands

Procedia PDF Downloads 320
936 Surface Engineering and Characterization of S-Phase Formed in AISI 304 By Low-Temperature Nitrocarburizing

Authors: Jeet Vijay Sah, Alphonsa Joseph, Pravin Kumari Dwivedi, Ghanshyam Jhala, Subroto Mukherjee

Abstract:

AISI 304 is known for its corrosion resistance which comes from Cr that forms passive Cr₂O₃ on the surface. But its poor hardness makes it unsuitable for applications where the steel also requires high wear resistance. This can be improved by surface hardening using nitrocarburizing processes, which form ε-Fe2-3N, γ’-Fe4N, nitrides, and carbides of Cr and Fe on the surface and subsurface. These formed phases give the surface greater hardness, but the corrosion resistance drops because of the lack of Cr2O3 passivation as a result. To overcome this problem, plasma nitrocarburizing processes are being developed where the process temperatures are kept below 723 K to avoid Cr-N precipitation. In the presented work, low-temperature pulsed-DC plasma nitrocarburizing utilizing a discharge of N₂-H₂-C₂H₂ at 500 Pa with varying N₂:H₂ ratios was conducted on AISI 304 samples at 673 K. The process durations were also varied, and the samples were characterized by microindentation using Vicker’s hardness tester, corrosion resistances were established from electrochemical impedance studies, and corrosion potentials and corrosion currents were obtained by potentiodynamic polarization testing. XRD revealed S-phase, which is a supersaturated solid solution of N and C in the γ phase. The S-phase was observed to be composed of the expanded phases of γ; γN, γC, and γ’N and ε’N phases. Significant improvement in surface hardness was achieved after every process, which is attributed to the S-phase. Corrosion resistance was also found to improve after the processes. The samples were also characterized by XPS, SEM, and GDOES.

Keywords: AISI 304, surface engineering, nitrocarburizing, S-phase

Procedia PDF Downloads 96
935 Nanostructured Transition Metal Oxides Doped Graphene for High Performance Solid-State Supercapacitor Electrodes

Authors: G. Nyongombe, Guy L. Kabongo, B. M. Mothudi, M. S. Dhlamini

Abstract:

A series of Transition Metals Oxides (TMOs) doped graphene were synthesized and successfully used as supercapacitor electrode materials. The as-synthesized materials exhibited exceptional electrochemical properties owing to the combined properties of its constituents; high surface area and good conductivity were achieved. Several analytical characterization techniques were employed to investigate the morphology, crystal structure atomic arrangement and elemental chemical state in the materials for which scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were conducted, respectively. Moreover, the electrochemical properties of the as-synthesized materials were examined by performing cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) measurements. Furthermore, the effect of doping concentration on the interlayer distance of the graphene materials and the charge transfer resistance are investigated and correlated to the exceptional current density which was multiplied by a factor of ~80 after TMOs doping in graphene. Finally, the resulting high capacitance obtained confirms the contribution of grapheme exceptional electronic conductivity and large surface area on the electrode materials. Such good-performing electrode materials are highly promising for supercapacitors and other energy storage devices.

Keywords: energy density, graphene, supercapacitors, TMOs

Procedia PDF Downloads 250
934 Preservative Potentials of Piper Guineense on Roma Tomato (Solanum lycopersicum) Fruit

Authors: Grace O. Babarinde, Adegoke O.Gabriel, Rahman Akinoso, Adekanye Bosede R.

Abstract:

Health risks associated with the use of synthetic chemicals to control post-harvest losses in fruit calls for use of natural biodegradable compounds. The potential of Piper guineense as postharvest preservative for Roma tomato (Solanum lycopersicum L.) was investigated. Freshly harvested red tomato (200 g) was dipped into five concentrations (1, 2, 3, 4 and 5% w/v) of P. guineense aqueous extract, while untreated fruits served as control. The samples were stored under refrigeration and analysed at 5-day interval for physico-chemical properties. P. guineense essential oil (EO) was characterised using GC-MS and its tomato preservative potential was evaluated. Percentage weight loss (PWL) in extract-treated tomato ranged from 0.0-0.68% compared to control (0.3-19.97%) during storage. Values obtained for firmness ranged from 8.23-16.88 N and 8.4 N in extract-treated and control. pH reduced from 5.4 to 4.5 and 3.7 in extract-treated and untreated samples, respectively. Highest value of Total Soluble Solid (1.8 °Brix) and maximum retention of Ascorbic acid (13.0 mg/100 g) were observed in 4% P. guineense-treated samples. Predominant P. guineense EO components were zingiberene (9.9%), linalool (10.7%), β-caryophyllene (12.6%), 1, 5-Heptadiene, 6-methyl-2-(4-methyl-3-cyclohexene-l-yl) (16.4%) and β-sesquiphellandrene (23.7%). Tomatoes treated with EO had lower PWL (5.2%) and higher firmness (14.2 N) than controls (15.3% and 11.9 N) respectively. The result indicates that P. guineense can be incorporated in to post harvest technology of Roma tomato fruit.

Keywords: aqueous extract, essential oil, piper guineense, Roma tomato, storage condition

Procedia PDF Downloads 461
933 The Hydro-Geology and Drinking Water Quality of Ikogosi Warm Spring in South West Nigeria

Authors: Ikudayisi Akinola, Adeyemo Folasade, Adeyemo Josiah

Abstract:

This study focuses on the hydro-geology and chemistry of Ikogosi Warm Spring in South West Nigeria. Ikogosi warm spring is a global tourist attraction because it has both warm and cold spring sources. Water samples from the cold spring, warm spring and the meeting point were collected, analyzed and the result shows close similarity in temperature, hydrogen iron concentration (pH), alkalinity, hardness, Calcium, Magnesium, Sodium, Iron, total dissolved solid and heavy metals. The measured parameters in the water samples are within World Health Organisation standards for fresh water. The study of the geology of the warm spring reveals that the study area is underlain by a group of slightly migmatised to non-migmatised paraschists and meta-igneous rocks. The concentration levels of selected heavy metals, (Copper, Cadmium, Zinc, Arsenic and Cromium) were determined in the water (ppm) samples. Chromium had the highest concentration value of 1.52ppm (an average of 49.67%) and Cadmium had the lowest concentration with value of 0.15ppm (an average of 4.89%). Comparison of these results showed that, their mean levels are within the standard values obtained in Nigeria. It can be concluded that both warm and spring water are safe for drinking.

Keywords: cold spring, Ikogosi, melting point, warm spring, water samples

Procedia PDF Downloads 538
932 Conceptual Model of a Residential Waste Collection System Using ARENA Software

Authors: Bruce G. Wilson

Abstract:

The collection of municipal solid waste at the curbside is a complex operation that is repeated daily under varying circumstances around the world. There have been several attempts to develop Monte Carlo simulation models of the waste collection process dating back almost 50 years. Despite this long history, the use of simulation modeling as a planning or optimization tool for waste collection is still extremely limited in practice. Historically, simulation modeling of waste collection systems has been hampered by the limitations of computer hardware and software and by the availability of representative input data. This paper outlines the development of a Monte Carlo simulation model that overcomes many of the limitations contained in previous models. The model uses a general purpose simulation software program that is easily capable of modeling an entire waste collection network. The model treats the stops on a waste collection route as a queue of work to be processed by a collection vehicle (or server). Input data can be collected from a variety of sources including municipal geographic information systems, global positioning system recorders on collection vehicles, and weigh scales at transfer stations or treatment facilities. The result is a flexible model that is sufficiently robust that it can model the collection activities in a large municipality, while providing the flexibility to adapt to changing conditions on the collection route.

Keywords: modeling, queues, residential waste collection, Monte Carlo simulation

Procedia PDF Downloads 396
931 Effect of Particles Size and Volume Fraction Concentration on the Thermal Conductivity and Thermal Diffusivity of Al2O3 Nanofluids Measured Using Transient Hot–Wire Laser Beam Deflection Technique

Authors: W. Mahmood Mat Yunus, Faris Mohammed Ali, Zainal Abidin Talib

Abstract:

In this study we present new data for the thermal conductivity enhancement in four nanofluids containing 11, 25, 50, 63 nm diameter aluminum oxide (Al2O3) nanoparticles in distilled water. The nanofluids were prepared using single step method (i.e. by dispersing nanoparticle directly in base fluid) which was gathered in ultrasonic device for approximately 7 hours. The transient hot-wire laser beam displacement technique was used to measure the thermal conductivity and thermal diffusivity of the prepared nanofluids. The thermal conductivity and thermal diffusivity were obtained by fitting the experimental data to the numerical data simulated for aluminum oxide in distilled water. The results show that the thermal conductivity and thermal diffusivity of nanofluids increases in non-linear behavior as the particle size increases. While, the thermal conductivity and thermal diffusivity of Al2O3 nanofluids was observed increasing linearly with concentration as the volume fraction concentration increases. We believe that the interfacial layer between solid/fluid is the main factor for the enhancement of thermal conductivity and thermal diffusivity of Al2O3 nanofluids in the present work.

Keywords: transient hot wire-laser beam technique, Al2O3 nanofluid, particle size, volume fraction concentration

Procedia PDF Downloads 541
930 Effect of Cabbage and Cauliflower Emitted Volatile Organic Compounds on Foraging Response of Plutella xylostella

Authors: Sumbul Farhat, Pratyay Vaibhav, Sarah Jain, Kapinder Kumar, Archna Kumar

Abstract:

The Diamondback Moth, Plutella xylostella (Linnaeus), is a major pest of cole crops that causes approximately 50% loss in global production. The utilization of inorganic pesticides is reflected in the development of resistance to this pest. Thus, there is a great need for an eco-friendly, sustainable strategy for the control of this pest. Although this pest, several natural enemies are reported worldwide, none of them can control it efficiently. Therefore, a proposed study is planned to understand the Volatile Organic Compounds (VOCs) mediated signaling interaction mechanism of the plant, pest, and natural enemy. For VOCs collection during different deployment stages of Cabbage POI, Green Ball, Pusa Cabbage, Cabbage Local, Snowball 16, Kanchan Plus, Pusa Meghna, Farm Sona Hybrid F1, and Samridhi F1 Hybrid, the Solid-phase microextraction (SPME) method was employed. Characterization of VOCs was conducted by Gas Chromatography-Mass Spectrometry (GC-MS). The impact of collected VOCs was assessed through Y-Tube Bioassays. The results indicate that the Cabbage variety Green Ball shows maximum repellency for P. xylostella (-100%). The cues present in this variety may be exploited for efficient management of P. xylostella in the cole crop ecosystem.

Keywords: Plutella xylostella, cole crops, volatile organic compounds, GC-MS, Green Ball

Procedia PDF Downloads 118
929 A Feasibility Study of Producing Biofuels from Textile Sludge by Torrefaction Technology

Authors: Hua-Shan Tai, Yu-Ting Zeng

Abstract:

In modern and industrial society, enormous amounts of sludge from various of industries are constantly produced; currently, most of the sludge are treated by landfill and incineration. However, both treatments are not ideal because of the limited land for landfill and the secondary pollution caused by incineration. Consequently, treating industrial sludge appropriately has become an urgent issue of environmental protection. In order to solve the problem of the massive sludge, this study uses textile sludge which is the major source of waste sludge in Taiwan as raw material for torrefaction treatments. To investigate the feasibility of producing biofuels from textile sludge by torrefaction, the experiments were conducted with temperatures at 150, 200, 250, 300, and 350°C, with heating rates of 15, 20, 25 and 30°C/min, and with residence time of 30 and 60 minutes. The results revealed that the mass yields after torrefaction were approximately in the range of 54.9 to 93.4%. The energy densification ratios were approximately in the range of 0.84 to 1.10, and the energy yields were approximately in the range of 45.9 to 98.3%. The volumetric densities were approximately in the range of 0.78 to 1.14, and the volumetric energy densities were approximately in the range of 0.65 to 1.18. To sum up, the optimum energy yield (98.3%) can be reached with terminal temperature at 150 °C, heating rate of 20°C/min, and residence time of 30 minutes, and the mass yield, energy densification ratio as well as volumetric energy density were 92.2%, 1.07, and 1.15, respectively. These results indicated that the solid products after torrefaction are easy to preserve, which not only enhance the quality of the product, but also achieve the purpose of developing the material into fuel.

Keywords: biofuel, biomass energy, textile sludge, torrefaction

Procedia PDF Downloads 316
928 The Analysis of Secondary Case Studies as a Starting Point for Grounded Theory Studies: An Example from the Enterprise Software Industry

Authors: Abilio Avila, Orestis Terzidis

Abstract:

A fundamental principle of Grounded Theory (GT) is to prevent the formation of preconceived theories. This implies the need to start a research study with an open mind and to avoid being absorbed by the existing literature. However, to start a new study without an understanding of the research domain and its context can be extremely challenging. This paper presents a research approach that simultaneously supports a researcher to identify and to focus on critical areas of a research project and prevent the formation of prejudiced concepts by the current body of literature. This approach comprises of four stages: Selection of secondary case studies, analysis of secondary case studies, development of an initial conceptual framework, development of an initial interview guide. The analysis of secondary case studies as a starting point for a research project allows a researcher to create a first understanding of a research area based on real-world cases without being influenced by the existing body of theory. It enables a researcher to develop through a structured course of actions a firm guide that establishes a solid starting point for further investigations. Thus, the described approach may have significant implications for GT researchers who aim to start a study within a given research area.

Keywords: grounded theory, interview guide, qualitative research, secondary case studies, secondary data analysis

Procedia PDF Downloads 259
927 Thermal Performance of Plate-Fin Heat Sink with Lateral Perforation

Authors: Sakkarin Chingulpitak, Somchai Wongwises

Abstract:

Over the past several decades, the development of electronic devices has led to higher performance. Therefore, an electronic cooling system is important for the electronic device. A heat sink which is a part of the electronic cooling system is continuously studied in the research field to enhance the heat transfer. To author’s best knowledge, there have been only a few articles which reported the thermal performance of plate-fin heat sink with perforation. This research aims to study on the flow and heat transfer characteristics of the solid-fin heat sink (SFHS) and laterally perforated plate-fin heat sink (LAP-PFHS). The SFHS and LAP-PFHSs are investigated on the same fin dimensions. The LAP-PFHSs are performed with a 27 perforation number and two different diameters of circular perforation (3 mm and 5 mm). The experimental study is conducted under various Reynolds numbers from 900 to 2,000 and the heat input of 50W. The experimental results show that the LAP-PFHS with perforation diameter of 5 mm gives the minimum thermal resistance about 25% lower than SFHS. The thermal performance factor which takes into account the ratio of the Nusselt number and ratio of friction factor is used to find the suitable design parameters. The experimental results show that the LAP-PFHS with the perforation diameter of 3 mm provides the thermal performance of 15% greater than SFHS. In addition, the simulation study is presented to investigate the effect of the air flow behavior inside the perforation on the thermal performance of LAP-PFHS.

Keywords: heat sink, parallel flow, circular perforation, non-bypass flow

Procedia PDF Downloads 144