Search results for: oxidation potential
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12122

Search results for: oxidation potential

10022 The Searching Artificial Intelligence: Neural Evidence on Consumers' Less Aversion to Algorithm-Recommended Search Product

Authors: Zhaohan Xie, Yining Yu, Mingliang Chen

Abstract:

As research has shown a convergent tendency for aversion to AI recommendation, it is imperative to find a way to promote AI usage and better harness the technology. In the context of e-commerce, this study has found evidence that people show less avoidance of algorithms when recommending search products compared to experience products. This is due to people’s different attribution of mind to AI versus humans, as suggested by mind perception theory. While people hold the belief that an algorithm owns sufficient capability to think and calculate, which makes it competent to evaluate search product attributes that can be obtained before actual use, they doubt its capability to sense and feel, which is essential for evaluating experience product attributes that must be assessed after experience in person. The result of the behavioral investigation (Study 1, N=112) validated that consumers show low purchase intention to experience products recommended by AI. Further consumer neuroscience study (Study 2, N=26) using Event-related potential (ERP) showed that consumers have a higher level of cognitive conflict when faced with AI recommended experience product as reflected by larger N2 component, while the effect disappears for search product. This research has implications for the effective employment of AI recommenders, and it extends the literature on e-commerce and marketing communication.

Keywords: algorithm recommendation, consumer behavior, e-commerce, event-related potential, experience product, search product

Procedia PDF Downloads 150
10021 Targeting APP IRE mRNA to Combat Amyloid -β Protein Expression in Alzheimer’s Disease

Authors: Mateen A Khan, Taj Mohammad, Md. Imtaiyaz Hassan

Abstract:

Alzheimer’s disease is characterized by the accumulation of the processing products of the amyloid beta peptide cleaved by amyloid precursor protein (APP). Iron increases the synthesis of amyloid beta peptides, which is why iron is present in Alzheimer's disease patients' amyloid plaques. Iron misregulation in the brain is linked to the overexpression of APP protein, which is directly related to amyloid-β aggregation in Alzheimer’s disease. The APP 5'-UTR region encodes a functional iron-responsive element (IRE) stem-loop that represents a potential target for modulating amyloid production. Targeted regulation of APP gene expression through the modulation of 5’-UTR sequence function represents a novel approach for the potential treatment of AD because altering APP translation can be used to improve both the protective brain iron balance and provide anti-amyloid efficacy. The molecular docking analysis of APP IRE RNA with eukaryotic translation initiation factors yields several models exhibiting substantial binding affinity. The finding revealed that the interaction involved a set of functionally active residues within the binding sites of eIF4F. Notably, APP IRE RNA and eIF4F interaction were stabilized by multiple hydrogen bonds with residues of APP IRE RNA and eIF4F. It was evident that APP IRE RNA exhibited a structural complementarity that tightly fit within binding pockets of eIF4F. The simulation studies further revealed the stability of the complexes formed between RNA and eIF4F, which is crucial for assessing the strength of these interactions and subsequent roles in the pathophysiology of Alzheimer’s disease. In addition, MD simulations would capture conformational changes in the IRE RNA and protein molecules during their interactions, illustrating the mechanism of interaction, conformational change, and unbinding events and how it may affect aggregation propensity and subsequent therapeutic implications. Our binding studies correlated well with the translation efficiency of APP mRNA. Overall, the outcome of this study suggests that the genomic modification and/or inhibiting the expression of amyloid protein by targeting APP IRE RNA can be a viable strategy to identify potential therapeutic targets for AD and subsequently be exploited for developing novel therapeutic approaches.

Keywords: Alzheimer's disease, Protein-RNA interaction analysis, molecular docking simulations, conformational dynamics, binding stability, binding kinetics, protein synthesis.

Procedia PDF Downloads 62
10020 Domestic Solar Hot Water Systems in Order to Reduce the Electricity Peak Demand in Assalouyeh

Authors: Roya Moradifar, Bijan Honarvar, Masoumeh Zabihi

Abstract:

The personal residential camps of South Pars gas complex are one of the few places where electric energy is used for the bath water heating. The widespread use of these devices is mainly responsible for the high peak of the electricity demand in the residential sector. In an attempt to deal with this issue, to reduce the electricity usage of the hot water, as an option, solar hot water systems have been proposed. However, despite the high incidence of solar radiation on the Assaloyeh about 20 MJ/m²/day, currently, there is no technical assessment quantifying the economic benefits on the region. The present study estimates the economic impacts resulting by the deployment of solar hot water systems in residential camp. Hence, the feasibility study allows assessing the potential of solar water heating as an alternative to reduce the peak on the electricity demand. In order to examine the potential of using solar energy in Bidkhoon residential camp two solar water heater packages as pilots were installed for restaurant and building. Restaurant package was damaged due to maintenance problems, but for the building package, we achieved the result of the solar fraction total 83percent and max energy saving 2895 kWh, the maximum reduction in CO₂ emissions calculated as 1634.5 kg. The results of this study can be used as a support tool to spread the use solar water heaters and create policies for South Pars Gas Complex.

Keywords: electrical energy, hot water, solar, South Pars Gas complex

Procedia PDF Downloads 200
10019 Major Depressive Disorder: Diagnosis based on Electroencephalogram Analysis

Authors: Wajid Mumtaz, Aamir Saeed Malik, Syed Saad Azhar Ali, Mohd Azhar Mohd Yasin

Abstract:

In this paper, a technique based on electroencephalogram (EEG) analysis is presented, aiming for diagnosing major depressive disorder (MDD) among a potential population of MDD patients and healthy controls. EEG is recognized as a clinical modality during applications such as seizure diagnosis, index for anesthesia, detection of brain death or stroke. However, its usability for psychiatric illnesses such as MDD is less studied. Therefore, in this study, for the sake of diagnosis, 2 groups of study participants were recruited, 1) MDD patients, 2) healthy people as controls. EEG data acquired from both groups were analyzed involving inter-hemispheric asymmetry and composite permutation entropy index (CPEI). To automate the process, derived quantities from EEG were utilized as inputs to classifier such as logistic regression (LR) and support vector machine (SVM). The learning of these classification models was tested with a test dataset. Their learning efficiency is provided as accuracy of classifying MDD patients from controls, their sensitivities and specificities were reported, accordingly (LR =81.7 % and SVM =81.5 %). Based on the results, it is concluded that the derived measures are indicators for diagnosing MDD from a potential population of normal controls. In addition, the results motivate further exploring other measures for the same purpose.

Keywords: major depressive disorder, diagnosis based on EEG, EEG derived features, CPEI, inter-hemispheric asymmetry

Procedia PDF Downloads 544
10018 Methylglyoxal Induced Glycoxidation of Human Low Density Lipoprotein: A Biophysical Perspective and Its Role in Diabetes and Periodontitis

Authors: Minhal Abidi, Moinuddin

Abstract:

Diabetes mellitus (DM) induced metabolic abnormalities causes oxidative stress which leads to the pathogenesis of complications associated with diabetes like retinopathy, nephropathy periodontitis etc. Combination of glycation and oxidation 'glycoxidation' occurs when oxidative reactions affect the early state of glycation products. Low density lipoprotein (LDL) is prone to glycoxidative attack by sugars and methylglyoxal (MGO) being a strong glycating agent may have severe impact on its structure and consequent role in diabetes. Pro-inflammatory cytokines like IL1β and TNFα produced by the action of gram negative bacteria in periodontits (PD) can in turn lead to insulin resistance. This work discusses modifications to LDL as a result of glycoxidation. The changes in the protein molecule have been characterized by various physicochemical techniques and the immunogenicity of the modified molecules was also evaluated as they presented neo-epitopes. Binding of antibodies present in diabetes patients to the native and glycated LDL has been evaluated. Role of modified epitopes in the generation of antibodies in diabetes and periodontitis has been discussed. The structural perturbations induced in LDL were analyzed by UV–Vis, fluorescence, circular dichroism and FTIR spectroscopy, molecular docking studies, thermal denaturation studies, Thioflavin T assay, isothermal titration calorimetry, comet assay. MALDI-TOF, ketoamine moieties, carbonyl content and HMF content were also quantitated in native and glycated LDL. IL1β and TNFα levels were also measured in the type 2 DM and PD patients. We report increased carbonyl content, ketoamine moieties and HMF content in glycated LDL as compared to native analogue. The results substantiate that in hyperglycemic state MGO modification of LDL causes structural perturbations making the protein antigenic which could obstruct normal physiological functions and might contribute in the development of secondary complications in diabetic patients like periodontitis.

Keywords: advanced glycation end products, diabetes mellitus, glycation, glycoxidation, low density lipoprotein, periodontitis

Procedia PDF Downloads 190
10017 Efficiency of Membrane Distillation to Produce Fresh Water

Authors: Sabri Mrayed, David Maccioni, Greg Leslie

Abstract:

Seawater desalination has been accepted as one of the most effective solutions to the growing problem of a diminishing clean drinking water supply. Currently, two desalination technologies dominate the market – the thermally driven multi-stage flash distillation (MSF) and the membrane based reverse osmosis (RO). However, in recent years membrane distillation (MD) has emerged as a potential alternative to the established means of desalination. This research project intended to determine the viability of MD as an alternative process to MSF and RO for seawater desalination. Specifically the project involves conducting a thermodynamic analysis of the process based on the second law of thermodynamics to determine the efficiency of the MD. Data was obtained from experiments carried out on a laboratory rig. In order to determine exergy values required for the exergy analysis, two separate models were built in Engineering Equation Solver – the ’Minimum Separation Work Model’ and the ‘Stream Exergy Model’. The efficiency of MD process was found to be 17.3 %, and the energy consumption was determined to be 4.5 kWh to produce one cubic meter of fresh water. The results indicate MD has potential as a technique for seawater desalination compared to RO and MSF. However, it was shown that this was only the case if an alternate energy source such as green or waste energy was available to provide the thermal energy input to the process. If the process was required to power itself, it was shown to be highly inefficient and in no way thermodynamically viable as a commercial desalination process.

Keywords: desalination, exergy, membrane distillation, second law efficiency

Procedia PDF Downloads 360
10016 Isolation and Screening of Fungal Strains for β-Galactosidase Production

Authors: Parmjit S. Panesar, Rupinder Kaur, Ram S. Singh

Abstract:

Enzymes are the biocatalysts which catalyze the biochemical processes and thus have a wide variety of applications in the industrial sector. β-Galactosidase (E.C. 3.2.1.23) also known as lactase, is one of the prime enzymes, which has significant potential in the dairy and food processing industries. It has the capability to catalyze both the hydrolytic reaction for the production of lactose hydrolyzed milk and transgalactosylation reaction for the synthesis of prebiotics such as lactulose and galactooligosaccharides. These prebiotics have various nutritional and technological benefits. Although, the enzyme is naturally present in almonds, peaches, apricots and other variety of fruits and animals, the extraction of enzyme from these sources increases the cost of enzyme. Therefore, focus has been shifted towards the production of low cost enzyme from the microorganisms such as bacteria, yeast and fungi. As compared to yeast and bacteria, fungal β-galactosidase is generally preferred as being extracellular and thermostable in nature. Keeping the above in view, the present study was carried out for the isolation of the β-galactosidase producing fungal strain from the food as well as the agricultural wastes. A total of more than 100 fungal cultures were examined for their potential in enzyme production. All the fungal strains were screened using X-gal and IPTG as inducers in the modified Czapek Dox Agar medium. Among the various isolated fungal strains, the strain exhibiting the highest enzyme activity was chosen for further phenotypic and genotypic characterization. The strain was identified as Rhizomucor pusillus on the basis of 5.8s RNA gene sequencing data.

Keywords: beta-galactosidase, enzyme, fungal, isolation

Procedia PDF Downloads 251
10015 Investigating the Potential of VR in Language Education: A Study of Cybersickness and Presence Metrics

Authors: Sakib Hasn, Shahid Anwar

Abstract:

This study highlights the vital importance of assessing the Simulator Sickness Questionnaire and presence measures as virtual reality (VR) incorporation into language teaching gains popularity. To address user discomfort, which prevents efficient learning in VR environments, the measurement of SSQ becomes crucial. Additionally, evaluating presence metrics is essential to determine the level of engagement and immersion, both crucial for rich language learning experiences. This paper designs a VR-based Chinese language application and proposes a thorough test technique aimed at systematically analyzing SSQ and presence measures. Subjective tests and data analysis were carried out to highlight the significance of addressing user discomfort in VR language education. The results of this study shed light on the difficulties posed by user discomfort in VR language learning and offer insightful advice on how to improve VR language learning applications. Furthermore, the outcome of the research explores ‘VR-based language education,’ ‘inclusive language learning platforms," and "cross-cultural communication,’ highlighting the potential for VR to facilitate language learning across diverse cultural backgrounds. Overall, the analysis results contribute to the enrichment of language learning experiences in the virtual realm and underscore the need for continued exploration and improvement in this field.

Keywords: virtual reality (VR), language education, simulator sickness questionnaire, presence metrics, VR-based Chinese language education

Procedia PDF Downloads 77
10014 The Glycitin and 38 Combination Inhibit the UV-Induced Wrinkle Fomation in Human Primary Fibroblast

Authors: Manh Tin Ho, Phorl Sophors, Ga Young Seo, Young Mee Kim, Youngho Lim, Moonjae Cho

Abstract:

UV radiation in sunlight is one of the most potential factor induced skin ageing and photocarcinogenesis. UV may induce the melanin production and wrinkle formation. Recently, the natural secondary compounds have been reported that had the beneficial protective effects from UV light. In this study, we investigated the effects of two different compounds, glycitin and 38, on human dermal fibroblast. We first only treated the 38 on melanocyte cell to test the proliferation inhibition of 38 on this cell line. Then, we induced the combination of glycitin and 38 on human dermal fibroblast in 48h and investigate the proliferation, collagen production and the metalloproteinase family expression. The 38 alone could inhibit the proliferation of melanocyte which indicated the reduction of melanin production. The combination of glycitin and 38 truly increased the fibroblast proliferation and even they could recover the UV-induced and H2O2-induced damaged fibroblast proliferation. The co-treatment also promoted the collagen IV expression significantly and accelerated the total collagen secretion. In addition, metalloproteinase (MMPs) family such as MMP1, MMP2, MMP7 was down-regulated in transcriptional level. In conclusion, the combination of glycitin and 38 has induced the fibroblast proliferation even when it was damaged by UV exposure and H2O2, whereas augmented collagen production and inhibited the MMPs caused the wrinkle formation and decreased the melanocyte proliferation, suggested an potential UV-protective therapy.

Keywords: UV radiation, wrinkle, ageing, glycitin, dermal fibroblast

Procedia PDF Downloads 236
10013 Improvisation of N₂ Foam with Black Rice Husk Ash in Enhanced Oil Recovery

Authors: Ishaq Ahmad, Zhaomin Li, Liu Chengwen, Song yan Li, Wang Lei, Zhoujie Wang, Zheng Lei

Abstract:

Because nanoparticles have the potential to improve foam stability, only a small amount of surfactant or polymer is required to control gas mobility in the reservoir. Numerous researches have revealed that this specific application is in use. The goal is to improve foam formation and foam stability. As a result, the foam stability and foam ability of black rice husk ash were investigated. By injecting N₂ gases into a core flood condition, black rice husk ash was used to produce stable foam. The properties of black rice husk ash were investigated using a variety of characterization techniques. The black rice husk ash was mixed with the best-performing anionic foaming surfactants at various concentrations (ppm). Sodium dodecyl benzene sulphonate was the anionic surfactant used (SDBS). In this article, the N₂ gas- black rice husk ash (BRHA) with high Silica content is shown to be beneficial for foam stability and foam ability. For the test, a 30 cm sand pack was prepared. For the experiment, N₂ gas cylinders and SDBS surfactant liquid cylinders were used. Two N₂ gas experiments were carried out: one without a sand pack and one with a sand pack and oil addition. The black rice husk and SDBS surfactant concentration was 0.5 percent. The high silica content of black rice husk ash has the potential to improve foam stability in sand pack conditions, which is beneficial. On N₂ foam, there is an increase in black rice husk ash particles, which may play an important role in oil recovery.

Keywords: black rice husk ash nanoparticle, surfactant, N₂ foam, sand pack

Procedia PDF Downloads 204
10012 Microbial Fuel Cells and Their Applications in Electricity Generating and Wastewater Treatment

Authors: Shima Fasahat

Abstract:

This research is an experimental research which was done about microbial fuel cells in order to study them for electricity generating and wastewater treatment. These days, it is very important to find new, clean and sustainable ways for energy supplying. Because of this reason there are many researchers around the world who are studying about new and sustainable energies. There are different ways to produce these kind of energies like: solar cells, wind turbines, geothermal energy, fuel cells and many other ways. Fuel cells have different types one of these types is microbial fuel cell. In this research, an MFC was built in order to study how it can be used for electricity generating and wastewater treatment. The microbial fuel cell which was used in this research is a reactor that has two tanks with a catalyst solution. The chemical reaction in microbial fuel cells is a redox reaction. The microbial fuel cell in this research is a two chamber MFC. Anode chamber is an anaerobic one (ABR reactor) and the other chamber is a cathode chamber. Anode chamber consists of stabilized sludge which is the source of microorganisms that do redox reaction. The main microorganisms here are: Propionibacterium and Clostridium. The electrodes of anode chamber are graphite pages. Cathode chamber consists of graphite page electrodes and catalysts like: O2, KMnO4 and C6N6FeK4. The membrane which separates the chambers is Nafion117. The reason of choosing this membrane is explained in the complete paper. The main goal of this research is to generate electricity and treating wastewater. It was found that when you use electron receptor compounds like: O2, MnO4, C6N6FeK4 the velocity of electron receiving speeds up and in a less time more current will be achieved. It was found that the best compounds for this purpose are compounds which have iron in their chemical formula. It is also important to pay attention to the amount of nutrients which enters to bacteria chamber. By adding extra nutrients in some cases the result will be reverse.  By using ABR the amount of chemical oxidation demand reduces per day till it arrives to a stable amount.

Keywords: anaerobic baffled reactor, bioenergy, electrode, energy efficient, microbial fuel cell, renewable chemicals, sustainable

Procedia PDF Downloads 226
10011 Phytochemical Screening and in vitro Antibacterial and Antioxidant Potential of Microalgal Strain, Cymbella

Authors: S. Beekrum, B. Odhav, R. Lalloo, E. O. Amonsou

Abstract:

Marine microalgae are rich sources of the novel and biologically active metabolites; therefore, they may be used in the food industry as natural food ingredients and functional foods. They have several biological applications related with health benefits, among others. In the past decades, food scientists have been searching for natural alternatives to replace synthetic antioxidants. The use of synthetic antioxidants has decreased due to their suspected activity as promoters of carcinogenesis, as well as consumer rejection of synthetic food additives. The aim of the study focused on screening of phytochemicals from Cymbella biomass extracts, and to examine the in vitro antioxidant and antimicrobial potential. Cymbella biomass was obtained from CSIR (South Africa), and four different solvents namely methanol, acetone, n-hexane and water were used for extraction. To take into account different antioxidant mechanisms, seven different antioxidant assays were carried out. These include free radical scavenging (DPPH assay), Trolox equivalent antioxidant capacity (TEAC assay), radical cation (ABTS assay), superoxide anion radical scavenging, reducing power, determination of total phenolic compounds and determination of total flavonoid content. The total content of phenol and flavonoid in extracts were determined as gallic acid equivalent, and as rutin equivalent, respectively. The in vitro antimicrobial effect of extracts were tested against some pathogens (Staphylococcus aureus, Listeria monocytogenes, Bacillus subtilis, Salmonella enteritidis, Escherichia coli, Pseudomonas aeruginosa and Candida albicans), using the disc diffusion assay. Qualitative analyses of phytochemicals were conducted by chemical tests to screen for the presence of tannins, flavonoids, terpenoids, phenols, steroids, saponins, glycosides and alkaloids. The present investigation revealed that all extracts showed relatively strong antibacterial activity against most of the tested bacteria. The methanolic extract of the biomass contained a significantly high phenolic content of 111.46 mg GAE/g, and the hexane extract contained 65.279 mg GAE/g. Results of the DPPH assay showed that the biomass contained strong antioxidant capacity, 79% in the methanolic extract and 85% in the hexane extract. Extracts have displayed effective reducing power and superoxide anion radical scavenging. Results of this study have highlighted potential antioxidant activity in the methanol and hexane extracts. The obtained results of the phytochemical screening showed the presence of terpenoids, flavonoids, phenols and saponins. The use of Cymbella as a natural antioxidant source and a potential source of antibacterial compounds and phytochemicals in the food industry appears promising and should be investigated further.

Keywords: antioxidants, antimicrobial, Cymbella, microalgae, phytochemicals

Procedia PDF Downloads 453
10010 Wastewater Treatment and Bio-Electricity Generation via Microbial Fuel Cell Technology Operating with Starch Proton Exchange Membrane

Authors: Livinus A. Obasi, Augustine N. Ajah

Abstract:

Biotechnology in recent times has tried to develop a mechanism whereby sustainable electricity can be generated by the activity of microorganisms on waste and renewable biomass (often regarded as “negative value”) in a device called microbial fuel cell, MFC. In this paper, we established how the biocatalytic activities of bacteria on organic matter (substrates) produced some electrons with the associated removal of some water pollution parameters; Biochemical oxygen demand (BOD), chemical oxygen demand (COD) to the tune of 77.2% and 88.3% respectively from a petrochemical sanitary wastewater. The electricity generation was possible by conditioning the bacteria to operate anaerobically in one chamber referred to as the anode while the electrons are transferred to the fully aerated counter chamber containing the cathode. Power densities ranging from 12.83 mW/m2 to 966.66 mW/m2 were achieved using a dual-chamber starch membrane MFC experimental set-up. The maximum power density obtained in this research shows an improvement in the use of low cost MFC set up to achieve power production. Also, the level of organic matter removal from the sanitary waste water by the operation of this device clearly demonstrates its potential benefit in achieving an improved benign environment. The beauty of the MFCs is their potential utility in areas lacking electrical infrastructures like in most developing countries.

Keywords: bioelectricity, COD, microbial fuel cell, sanitary wastewater, wheat starch

Procedia PDF Downloads 255
10009 Experimental Design for Formulation Optimization of Nanoparticle of Cilnidipine

Authors: Arti Bagada, Kantilal Vadalia, Mihir Raval

Abstract:

Cilnidipine is practically insoluble in water which results in its insufficient oral bioavailability. The purpose of the present investigation was to formulate cilnidipine nanoparticles by nanoprecipitation method to increase the aqueous solubility and dissolution rate and hence bioavailability by utilizing various experimental statistical design modules. Experimental design were used to investigate specific effects of independent variables during preparation cilnidipine nanoparticles and corresponding responses in optimizing the formulation. Plackett Burman design for independent variables was successfully employed for optimization of nanoparticles of cilnidipine. The influence of independent variables studied were drug concentration, solvent to antisolvent ratio, polymer concentration, stabilizer concentration and stirring speed. The dependent variables namely average particle size, polydispersity index, zeta potential value and saturation solubility of the formulated nanoparticles of cilnidipine. The experiments were carried out according to 13 runs involving 5 independent variables (higher and lower levels) employing Plackett-Burman design. The cilnidipine nanoparticles were characterized by average particle size, polydispersity index value, zeta potential value and saturation solubility and it results were 149 nm, 0.314, 43.24 and 0.0379 mg/ml, respectively. The experimental results were good correlated with predicted data analysed by Plackett-Burman statistical method.

Keywords: dissolution enhancement, nanoparticles, Plackett-Burman design, nanoprecipitation

Procedia PDF Downloads 158
10008 D3Advert: Data-Driven Decision Making for Ad Personalization through Personality Analysis Using BiLSTM Network

Authors: Sandesh Achar

Abstract:

Personalized advertising holds greater potential for higher conversion rates compared to generic advertisements. However, its widespread application in the retail industry faces challenges due to complex implementation processes. These complexities impede the swift adoption of personalized advertisement on a large scale. Personalized advertisement, being a data-driven approach, necessitates consumer-related data, adding to its complexity. This paper introduces an innovative data-driven decision-making framework, D3Advert, which personalizes advertisements by analyzing personalities using a BiLSTM network. The framework utilizes the Myers–Briggs Type Indicator (MBTI) dataset for development. The employed BiLSTM network, specifically designed and optimized for D3Advert, classifies user personalities into one of the sixteen MBTI categories based on their social media posts. The classification accuracy is 86.42%, with precision, recall, and F1-Score values of 85.11%, 84.14%, and 83.89%, respectively. The D3Advert framework personalizes advertisements based on these personality classifications. Experimental implementation and performance analysis of D3Advert demonstrate a 40% improvement in impressions. D3Advert’s innovative and straightforward approach has the potential to transform personalized advertising and foster widespread personalized advertisement adoption in marketing.

Keywords: personalized advertisement, deep Learning, MBTI dataset, BiLSTM network, NLP.

Procedia PDF Downloads 41
10007 Harnessing Artificial Intelligence for Early Detection and Management of Infectious Disease Outbreaks

Authors: Amarachukwu B. Isiaka, Vivian N. Anakwenze, Chinyere C. Ezemba, Chiamaka R. Ilodinso, Chikodili G. Anaukwu, Chukwuebuka M. Ezeokoli, Ugonna H. Uzoka

Abstract:

Infectious diseases continue to pose significant threats to global public health, necessitating advanced and timely detection methods for effective outbreak management. This study explores the integration of artificial intelligence (AI) in the early detection and management of infectious disease outbreaks. Leveraging vast datasets from diverse sources, including electronic health records, social media, and environmental monitoring, AI-driven algorithms are employed to analyze patterns and anomalies indicative of potential outbreaks. Machine learning models, trained on historical data and continuously updated with real-time information, contribute to the identification of emerging threats. The implementation of AI extends beyond detection, encompassing predictive analytics for disease spread and severity assessment. Furthermore, the paper discusses the role of AI in predictive modeling, enabling public health officials to anticipate the spread of infectious diseases and allocate resources proactively. Machine learning algorithms can analyze historical data, climatic conditions, and human mobility patterns to predict potential hotspots and optimize intervention strategies. The study evaluates the current landscape of AI applications in infectious disease surveillance and proposes a comprehensive framework for their integration into existing public health infrastructures. The implementation of an AI-driven early detection system requires collaboration between public health agencies, healthcare providers, and technology experts. Ethical considerations, privacy protection, and data security are paramount in developing a framework that balances the benefits of AI with the protection of individual rights. The synergistic collaboration between AI technologies and traditional epidemiological methods is emphasized, highlighting the potential to enhance a nation's ability to detect, respond to, and manage infectious disease outbreaks in a proactive and data-driven manner. The findings of this research underscore the transformative impact of harnessing AI for early detection and management, offering a promising avenue for strengthening the resilience of public health systems in the face of evolving infectious disease challenges. This paper advocates for the integration of artificial intelligence into the existing public health infrastructure for early detection and management of infectious disease outbreaks. The proposed AI-driven system has the potential to revolutionize the way we approach infectious disease surveillance, providing a more proactive and effective response to safeguard public health.

Keywords: artificial intelligence, early detection, disease surveillance, infectious diseases, outbreak management

Procedia PDF Downloads 65
10006 ORR Electrocatalyst for Batteries and Fuel Cells Development with SIO₂/Carbon Black Based Composite Nanomaterials

Authors: Maryam Kiani

Abstract:

This study focuses on the development of composite nanomaterials based on SiO₂ and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO₂/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO₂ into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO₂ facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO₂/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.

Keywords: ORR, fuel cells, batteries, electrocatalyst

Procedia PDF Downloads 111
10005 A Viable Approach for Biological Detoxification of Non Edible Oil Seed Cakes and Their Utilization in Food Production Using Aspergillus Niger

Authors: Kshitij Bhardwaj, R.K. Trivedi, Shipra Dixit

Abstract:

We used biological detoxification method that converts toxic residue waste of Jatropha curcas oil seeds (non edible oil seed) into industrial bio-products and animal feed material. Present study describes the complete degradation of phorbol esters by Aspergillus Niger strain during solid state fermentation (SSF) of deoiled Jatropha curcas seed cake. Phorbol esters were completely degraded in 15 days under the optimized SSF conditions viz deoiled cake 5.0 gm moistened with 5.0 ml distilled water; inoculum 2 ml of overnight grown Aspergillus niger; incubated at 30◦ C, pH 7.0. This method simultaneously induces the production of Protease enzyme by Aspergillus Niger which has high potential to be used in feedstuffs .The maximum Protease activities obtained were 709.16 mg/ml in Jatropha curcas oil seed cake. The protein isolate had small amounts of phorbol esters, phytic acid, and saponin without any lectin. Its minimum and maximum solubility were at pH 4.0&12.0. Water and oil binding capacities were 3.22 g water/g protein and 1.86 ml oil/g protein respectively.Emulsion activity showed high values in a range of basic pH. We concluded that Jatropha Curcas seed cake has a potential to be used as a novel source of functional protein for food or feed applications.

Keywords: solid state fermentation, Jatropha curcas, oil seed cake, phorbol ester

Procedia PDF Downloads 482
10004 Exploitation of Endophytes for the Management of Plant Pathogens

Authors: N. P. Eswara Reddy, S. Thahir Basha

Abstract:

Here, we report the success stories of potential leaf, seed and root endophytes against soil borne as well as foliar plant pathogens which are nutritionally adequate and safe for consumption. Endophytes are the microorganisms that reside asymptomatically in the tissues of higher plants are a robust source of potential biocontrol agents and it is presumed that the survival ability of endophytes may be better when compared to phylloplane microflora. Of all the 68 putative leaf endophytes, the endophytes viz., EB9 (100%), and EB35 (100%) which were superior in controlling Colletotrichum gloeosporioides causing mango anthracnose were identified as Brevundimonas bullata (EB09) and Bacillus thuringiensis (EB35) and further delayed in ripening of mango fruits up to 21 days. As a part, the seed endophyte GSE-4 was identified as Archoromobacter spp. against Sclerotium rolfsii causing stem rot of groundnut and the root endophyte REB-8 against Rhizoctonia bataticola causing dry root rot of chickpea was identified as Bacillus subtilis. Both recorded least percent disease incidence (PDI) and increased plant growth promotion, respectively. Further, the novel Bacillus subtilis (SEB-2) against Macrophomina pahseolina causing charcoal rot of sunflower provides an ample scope for exploring the endophytes at large scale. The talc-based formulations of these endophytes developed can be commercialized after toxicological studies. At the bottom line these unexplored endophytes are the need of the hour against aggressive plant pathogens and to maintain the quality and abundance of food and feed and also to fetch marginal economy to the farmers will be discussed.

Keywords: endophytes, plant pathogens, commercialization, abundance of food

Procedia PDF Downloads 416
10003 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis

Authors: Mehrnaz Mostafavi

Abstract:

The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.

Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans

Procedia PDF Downloads 98
10002 Devotional Informant and Diagenetic Alterations, Influences of Facies and Fine Kaolinite Formation Migration on Sandstone’ Reservoir Quality, Sarir Formation, Sirt

Authors: Faraj M. Elkhatri, Hana Ellafi

Abstract:

In recent years, there has been a growing recognition of the potential of marine-based functional foods and combination therapies in promoting a healthy lifestyle and exploring their effectiveness in preventing or treating diseases. The combination of marine bioactive compounds or extracts offers synergistic or enhancement effects through various mechanisms, including multi-target actions, improved bioavailability, enhanced bioactivity, and mitigation of potential adverse effects. Both the green-lipped mussel (GLM) and fucoidan derived from brown seaweed are rich in bioactivities. These two, mussel and fucoidan, have not been previously formulated together. This study aims to combine GLM oil from Perna canaliculus with low molecular weight fucoidan (LMWF) extracted from Undaria pinnatifida to investigate the unique mixture’s anti-inflammatory and antioxidant properties. The cytotoxicity of individual compounds and combinations was assessed using the MTT assay in (THP-1 and RAW264.7) cell lines. The anti-inflammatory activity of mussel-fucoidan was evaluated by treating LPS-stimulated human monocyte and macrophage (THP1-1) cells. Subsequently, the inflammatory cytokines released into the supernatant of these cell lines were quantified via ELISA. Antioxidant activity was determined by using the free radical scavenging assay (DPPH). DPPH assay demonstrated that the radical scavenging activity of the combinations, particularly at concentrations exceeding 1 mg/ml, showed a significantly higher percentage of inhibition when compared to the individual component. This suggests an enhancement effect when the two compounds are combined, leading to increased antioxidant activity. In terms of immunomodulatory activity, the individual compounds exhibited distinct behaviors. GLM oil displayed a higher ability to suppress the cytokine TNF- compared to LMWF. Interestingly, the LMWF fraction, when used individually, did not demonstrate TNF- suppression. However, when combined with GLM, the TNF- suppression (anti-inflammatory) activity of the combination was better than GLM or LWMF alone. This observation underscores the potential for enhancement interactions between the two components in terms of anti-inflammatory properties. This study revealed that each individual compound, LMWF, and GLM, possesses unique and notable bioactivity. The combination of these two individual compounds results in an enhancement effect, where the bioactivity of each is enhanced, creating a superior combination. This suggests that the combination of LMWF and GLM has the potential to offer a more potent and multifaceted therapeutic effect, particularly in the context of antioxidant and anti-inflammatory activities. These findings hold promise for the development of novel therapeutic interventions or supplements that harness the enhancement effects.

Keywords: formation damage, porosity loses, pore throat, quartz cement

Procedia PDF Downloads 54
10001 Reviving Arid Lands: The Transformative Potential of Biochar in Arab Countries' Agriculture

Authors: Ahmed Azizeldein Abubaker Abdelhafez

Abstract:

This review explores the application of biochar as a strategy for enhancing soil fertility in arid regions, with a focus on Arab countries. Biochar, derived from the carbonization of biomass under low-oxygen conditions, has shown promise in improving the physical and chemical properties of soil, such as increasing water retention and nutrient availability. Despite the challenging conditions of arid and semi-arid regions, characterized by poor soil fertility and severe land degradation, biochar application has emerged as a viable method to enhance agricultural productivity and mitigate environmental issues. This paper examines various aspects of biochar, including production methods, such as pyrolysis and gasification, and the effects of biochar on soil fertility. It discusses different application techniques and presents case studies from Arab countries like Egypt, the United Arab Emirates, Saudi Arabia, Qatar, Oman, and Kuwait, highlighting the successes and challenges faced in implementing biochar technology. The review also addresses the limitations of biochar use in arid regions and suggests future research directions to optimize its effectiveness. Overall, this study underscores the potential of biochar to contribute significantly to sustainable agriculture and ecological restoration in arid environments, advocating for integrated strategies that combine biochar application with other innovative agricultural practices.

Keywords: biochar, soil fertility, arid region, Arab countries, challenges and limitations

Procedia PDF Downloads 41
10000 Finding a Redefinition of the Relationship between Rural and Urban Knowledge

Authors: Bianca Maria Rulli, Lenny Valentino Schiaretti

Abstract:

The considerable recent urbanization has increasingly sharpened environmental and social problems all over the world. During the recent years, many answers to the alarming attitudes in modern cities have emerged: a drastic reduction in the rate of growth is becoming essential for future generations and small scale economies are considered more adaptive and sustainable. According to the concept of degrowth, cities should consider surpassing the centralization of urban living by redefining the relationship between rural and urban knowledge; growing food in cities fundamentally contributes to the increase of social and ecological resilience. Through an innovative approach, this research combines the benefits of urban agriculture (increase of biological diversity, shorter and thus more efficient supply chains, food security) and temporary land use. They stimulate collaborative practices to satisfy the changing needs of communities and stakeholders. The concept proposes a coherent strategy to create a sustainable development of urban spaces, introducing a productive green-network to link specific areas in the city. By shifting the current relationship between architecture and landscape, the former process of ground consumption is deeply revised. Temporary modules can be used as concrete tools to create temporal areas of innovation, transforming vacant or marginal spaces into potential laboratories for the development of the city. The only permanent ground traces, such as foundations, are minimized in order to allow future land re-use. The aim is to describe a new mindset regarding the quality of space in the metropolis which allows, in a completely flexible way, to bring back the green and the urban farming into the cities. The wide possibilities of the research are analyzed in two different case-studies. The first is a regeneration/connection project designated for social housing, the second concerns the use of temporary modules to answer to the potential needs of social structures. The intention of the productive green-network is to link the different vacant spaces to each other as well as to the entire urban fabric. This also generates a potential improvement of the current situation of underprivileged and disadvantaged persons.

Keywords: degrowth, green network, land use, temporary building, urban farming

Procedia PDF Downloads 502
9999 Investigation of Night Cooling Event, Experimental Radiator

Authors: Fatemeh Karampour

Abstract:

In the hot climate countries, especially those countries with great desert area, such as Iran, a considerable part of the energy is consumed due to cooling and air conditioning system in a hot season. So it is important to find a renewable energy supply for cooling systems. Although, there are few consistent researches in this field of renewable energy in compare with other fields. This research is presenting a study on performance of a night cooling radiator and working fluid storage for night time operation and day time resting periods. In these experiments, we didn’t expose any heating load but focused only on the possibility of system combination and its potential cooling effect. A very simple radiator has been designed in south of Iran, Shiraz, in order to perform this study. The radiator has been insulated with polystyrene foam and bubbled plastic sheets have been used as top cover. Using a single bubbled plastic sheet, the radiator temperature reached 0°C which is 20°C lower than minimum ambient temperature. Putting a small storage tank in the line increased the radiator’s minimum temperature at night; however, provided some cool fluid source for hot days of Shiraz that easily reaches 40°C. The results have shown very good cooling potential without heating load and acceptable temperature increasing during hot day with a small, short term storage tank. Future studies can make the system more effective and applicable.

Keywords: night cooling, experimental set up, cooling radiator, chill storage

Procedia PDF Downloads 150
9998 GIS-Based Spatial Distribution and Evaluation of Selected Heavy Metals Contamination in Topsoil around Ecton Mining Area, Derbyshire, UK

Authors: Zahid O. Alibrahim, Craig D. Williams, Clive L. Roberts

Abstract:

The study area (Ecton mining area) is located in the southern part of the Peak District in Derbyshire, England. It is bounded by the River Manifold from the west. This area has been mined for a long period. As a result, huge amounts of potentially toxic metals were released into the surrounding area and are most likely to be a significant source of heavy metal contamination to the local soil, water and vegetation. In order to appraise the potential heavy metal pollution in this area, 37 topsoil samples (5-20 cm depth) were collected and analysed for their total content of Cu, Pb, Zn, Mn, Cr, Ni and V using ICP (Inductively Coupled Plasma) optical emission spectroscopy. Multivariate Geospatial analyses using the GIS technique were utilised to draw geochemical maps of the metals of interest over the study area. A few hotspot points, areas of elevated concentrations of metals, were specified, which are presumed to be the results of anthropogenic activities. In addition, the soil’s environmental quality was evaluated by calculating the Mullers’ Geoaccumulation index (I geo), which suggests that the degree of contamination of the investigated heavy metals has the following trend: Pb > Zn > Cu > Mn > Ni = Cr = V. Furthermore, the potential ecological risk, using the enrichment factor (EF), was also specified. On the basis of the calculated amount or the EF, the levels of pollution for the studied metals in the study area have the following order: Pb>Zn>Cu>Cr>V>Ni>Mn.

Keywords: enrichment factor, geoaccumulation index, GIS, heavy metals, multivariate analysis

Procedia PDF Downloads 355
9997 Effects of Gelatin on Characteristics and Dental Pathogen Inhibition by Silver Nanoparticles Synthesized from Ascorbic Acid

Authors: Siriporn Okonogi, Temsiri Suwan, Sakornrat Khongkhunthian, Jakkapan Sirithunyalug

Abstract:

In this study, silver nanoparticles (AgNPs) were prepared using ascorbic acid as a reducing agent and silver nitrate as a precursor. The effects of gelatin (G) on particle characteristics and dental pathogen inhibition were investigated. The spectra of AgNPs and G-AgNPs were compared using UV-Vis and Energy-dispersive X-ray (EDX) spectroscopy. The obtained AgNPs and G-AgNPs showed the maximum absorption at 410 and 430 nm, respectively, and EDX spectra of both systems confirmed Ag element. Scanning electron microscope showed that AgNPs and G-AgNPs were spherical in shape. Particles size, size distribution, and zeta potential were determined using dynamic light scattering approach. The size of AgNPs and G-AgNPs were 56 ± 2.4 and 67 ± 3.6 nm, respectively with a size distribution of 0.23 ± 0.03 and 0.19 ± 0.02, respectively. AgNPs and G-AgNPs exhibited negative zeta potential of 24.1 ± 2.7 mV and 32.7 ± 1.2 mV, respectively. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the obtained AgNPs and G-AgNPs against three strains of dental pathogenic bacteria; Streptococcus gordonii, Streptococcus mutans, and Staphylococcus aureus were determined using broth dilution method. AgNPs and G-AgNPs showed the strongest inhibition against S. gordonii with the MIC of 0.05 and 0.025 mg/mL, respectively and the MBC of 0.1 and 0.05 mg/mL, respectively. Cytotoxicity test of AgNPs and G-AgNPs on human breast cancer cells using MTT assay indicated that G-AgNPs (0.1 mg/mL) was significantly stronger toxic than AgNPs with the cell inhibition of 91.1 ± 5.4%. G-AgNPs showed significantly less aggregation after storage at room temperature for 90 days than G-AgNPs.

Keywords: antipathogenic activity, ascorbic acid, cytotoxicity, stability

Procedia PDF Downloads 148
9996 Life Cycle Assessment of an Onshore Wind Turbine in Kuwait

Authors: Badriya Almutairi, Ashraf El-Hamalawi

Abstract:

Wind energy technologies are considered to be among the most promising types of renewable energy sources due to the growing concerns over climate change and energy security. Kuwait is amongst the countries that began realising the consequences of climate change and the long-term economic and energy security situation, considering options when oil runs out. Added to this are the fluctuating oil prices, rapid increase in population, high electricity consumption and protection of the environment It began to make efforts in the direction of greener solutions for energy needs by looking for alternative forms of energy and assessing potential renewable energy resources, including wind and solar. The aim of this paper is to examine wind energy as an alternative renewable energy source in Kuwait, due to its availability and low cost, reducing the dependency on fossil fuels compared to other forms of renewable energy. This paper will present a life cycle assessment of onshore wind turbine systems in Kuwait, comprising 4 stages; goal and scope of the analysis, inventory analysis, impact assessment and interpretation of the results. It will also provide an assessment of potential renewable energy resources and technologies applied for power generation and the environmental benefits for Kuwait. An optimum location for a site (Shagaya) will be recommended for reasons such as high wind speeds, land availability and distance to the next grid connection, and be the focus of this study. The potential environmental impacts and resources used throughout the wind turbine system’s life-cycle are then analysed using a Life Cycle Assessment (LCA). The results show the total carbon dioxide (CO₂) emission for a turbine with steel pile foundations is greater than emissions from a turbine with concrete foundations by 18 %. The analysis also shows the average CO₂ emissions from electricity generated using crude oil is 645gCO₂/kWh and the carbon footprint per functional unit for a wind turbine ranges between 6.6 g/kWh to 10 g/kWh, an increase of 98%, thus providing cost and environmental benefits by creating a wind farm in Kuwait. Using a cost-benefit analysis, it was also found that the electricity produced from wind energy in Kuwait would cost 17.6fils/kWh (0.05834 $/kWh), which is less than the cost of electricity currently being produced using conventional methods at 22 fils/kW (0.07$/kWh), i.e., a reduction of 20%.

Keywords: CO₂ emissions, Kuwait, life cycle assessment, renewable energy, wind energy

Procedia PDF Downloads 301
9995 Association of Sleep Duration and Insomnia with Body Mass Index Among Brazilian Adults

Authors: Giovana Longo-Silva, Risia Cristina Egito de Menezes, Renan Serenini, Márcia de Oliveira Lima, Júlia Souza de Melo, Larissa de Lima Soares

Abstract:

Introduction: Sleep duration and quality have been increasingly recognized as important factors affecting overall health and well-being, including their potential impact on body weight and composition. Previous research has shown inconsistent results regarding the association between sleep patterns and body mass index (BMI), particularly among diverse populations such as Brazilian adults. Understanding these relationships is crucial for developing targeted interventions to address obesity and related health issues. Objective: This study aimed to investigate the association between sleep duration, insomnia, and BMI among Brazilian adults using data from a large national survey focused on chronic nutrition and sleep habits. Materials and Methods: The study included 2050 participants from a population-based virtual survey. BMI was calculated using self-reported weight and height measurements. Participants also reported usual bedtime and wake time on weekdays and weekends and whether they experienced symptoms of insomnia. The average sleep duration across the entire week was calculated as follows: [(5×sleep duration on weekdays) + (2×sleep duration on weekends)]/7. Linear regression analyses were conducted to assess the association between sleep duration, insomnia, and BMI, adjusting for potential confounding factors, including age, sex, marital status, physical exercise duration, and diet quality. Results: After adjusting for confounding variables, the study found that BMI decreased by 0.19 kg/m² for each additional hour of sleep duration (95% CI = -0.37, -0.02; P = 0.03). Conversely, individuals with insomnia had a higher BMI, with an increase of 0.75 kg/m² (95% CI = 0.28, 1.22; P = 0.002) compared to those without insomnia. Conclusions: The findings suggest a significant association between sleep duration, insomnia, and BMI among Brazilian adults. Longer sleep duration was associated with lower BMI, while insomnia was associated with higher BMI. These results underscore the importance of considering sleep patterns in strategies aimed at preventing and managing obesity in this population. Further research is needed to explore the underlying mechanisms and potential interventions targeting sleep-related factors to promote healthier body weight outcomes.

Keywords: sleep, obesity, chronobiology, nutrition

Procedia PDF Downloads 42
9994 Physicochemical Characterization of Waste from Vegetal Extracts Industry for Use as Briquettes

Authors: Maíra O. Palm, Cintia Marangoni, Ozair Souza, Noeli Sellin

Abstract:

Wastes from a vegetal extracts industry (cocoa, oak, Guarana and mate) were characterized by particle size, proximate and ultimate analysis, lignocellulosic fractions, high heating value, thermal analysis (Thermogravimetric analysis – TGA, and Differential thermal analysis - DTA) and energy density to evaluate their potential as biomass in the form of briquettes for power generation. All wastes presented adequate particle sizes to briquettes production. The wastes showed high moisture content, requiring previous drying for use as briquettes. Cocoa and oak wastes had the highest volatile matter contents with maximum mass loss at 310 ºC and 450 ºC, respectively. The solvents used in the aroma extraction process influenced in the moisture content of the wastes, which was higher for mate due to water has been used as solvent. All wastes showed an insignificant loss mass after 565 °C, hence resulting in low ash content. High carbon and hydrogen contents and low sulfur and nitrogen contents were observed ensuring a low generation of sulfur and nitrous oxides. Mate and cocoa exhibited the highest carbon and lignin content, and high heating value. The dried wastes had high heating value, from 17.1 MJ/kg to 20.8 MJ/kg. The results indicate the energy potential of wastes for use as fuel in power generation.

Keywords: agro-industrial waste, biomass, briquettes, combustion

Procedia PDF Downloads 205
9993 Preparedness is Overrated: Community Responses to Floods in a Context of (Perceived) Low Probability

Authors: Kim Anema, Matthias Max, Chris Zevenbergen

Abstract:

For any flood risk manager the 'safety paradox' has to be a familiar concept: low probability leads to a sense of safety, which leads to more investments in the area, which leads to higher potential consequences: keeping the aggregated risk (probability*consequences) at the same level. Therefore, it is important to mitigate potential consequences apart from probability. However, when the (perceived) probability is so low that there is no recognizable trend for society to adapt to, addressing the potential consequences will always be the lagging point on the agenda. Preparedness programs fail because of lack of interest and urgency, policy makers are distracted by their day to day business and there's always a more urgent issue to spend the taxpayer's money on. The leading question in this study was how to address the social consequences of flooding in a context of (perceived) low probability. Disruptions of everyday urban life, large or small, can be caused by a variety of (un)expected things - of which flooding is only one possibility. Variability like this is typically addressed with resilience - and we used the concept of Community Resilience as the framework for this study. Drawing on face to face interviews, an extensive questionnaire and publicly available statistical data we explored the 'whole society response' to two recent urban flood events; the Brisbane Floods (AUS) in 2011 and the Dresden Floods (GE) in 2013. In Brisbane, we studied how the societal impacts of the floods were counteracted by both authorities and the public, and in Dresden we were able to validate our findings. A large part of the reactions, both public as institutional, to these two urban flood events were not fuelled by preparedness or proper planning. Instead, more important success factors in counteracting social impacts like demographic changes in neighborhoods and (non-)economic losses were dynamics like community action, flexibility and creativity from authorities, leadership, informal connections and a shared narrative. These proved to be the determining factors for the quality and speed of recovery in both cities. The resilience of the community in Brisbane was good, due to (i) the approachability of (local) authorities, (ii) a big group of ‘secondary victims’ and (iii) clear leadership. All three of these elements were amplified by the use of social media and/ or web 2.0 by both the communities and the authorities involved. The numerous contacts and social connections made through the web were fast, need driven and, in their own way, orderly. Similarly in Dresden large groups of 'unprepared', ad hoc organized citizens managed to work together with authorities in a way that was effective and speeded up recovery. The concept of community resilience is better fitted than 'social adaptation' to deal with the potential consequences of an (im)probable flood. Community resilience is built on capacities and dynamics that are part of everyday life and which can be invested in pre-event to minimize the social impact of urban flooding. Investing in these might even have beneficial trade-offs in other policy fields.

Keywords: community resilience, disaster response, social consequences, preparedness

Procedia PDF Downloads 352