Search results for: diagnostic accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4657

Search results for: diagnostic accuracy

2557 An Approach for Modeling CMOS Gates

Authors: Spyridon Nikolaidis

Abstract:

A modeling approach for CMOS gates is presented based on the use of the equivalent inverter. A new model for the inverter has been developed using a simplified transistor current model which incorporates the nanoscale effects for the planar technology. Parametric expressions for the output voltage are provided as well as the values of the output and supply current to be compatible with the CCS technology. The model is parametric according the input signal slew, output load, transistor widths, supply voltage, temperature and process. The transistor widths of the equivalent inverter are determined by HSPICE simulations and parametric expressions are developed for that using a fitting procedure. Results for the NAND gate shows that the proposed approach offers sufficient accuracy with an average error in propagation delay about 5%.

Keywords: CMOS gate modeling, inverter modeling, transistor current mode, timing model

Procedia PDF Downloads 420
2556 An Autopilot System for Static Zone Detection

Authors: Yanchun Zuo, Yingao Liu, Wei Liu, Le Yu, Run Huang, Lixin Guo

Abstract:

Electric field detection is important in many application scenarios. The traditional strategy is measuring the electric field with a man walking around in the area under test. This strategy cannot provide a satisfactory measurement accuracy. To solve the mentioned problem, an autopilot measurement system is divided. A mini-car is produced, which can travel in the area under test according to respect to the program within the CPU. The electric field measurement platform (EFMP) carries a central computer, two horn antennas, and a vector network analyzer. The mini-car stop at the sampling points according to the preset. When the car stops, the EFMP probes the electric field and stores data on the hard disk. After all the sampling points are traversed, an electric field map can be plotted. The proposed system can give an accurate field distribution description of the chamber.

Keywords: autopilot mini-car measurement system, electric field detection, field map, static zone measurement

Procedia PDF Downloads 99
2555 Model Order Reduction Using Hybrid Genetic Algorithm and Simulated Annealing

Authors: Khaled Salah

Abstract:

Model order reduction has been one of the most challenging topics in the past years. In this paper, a hybrid solution of genetic algorithm (GA) and simulated annealing algorithm (SA) are used to approximate high-order transfer functions (TFs) to lower-order TFs. In this approach, hybrid algorithm is applied to model order reduction putting in consideration improving accuracy and preserving the properties of the original model which are two important issues for improving the performance of simulation and computation and maintaining the behavior of the original complex models being reduced. Compared to conventional mathematical methods that have been used to obtain a reduced order model of high order complex models, our proposed method provides better results in terms of reducing run-time. Thus, the proposed technique could be used in electronic design automation (EDA) tools.

Keywords: genetic algorithm, simulated annealing, model reduction, transfer function

Procedia PDF Downloads 142
2554 The Role of Chemokine Family, CXCL-10 Urine as a Marker Diagnosis of Active Lung Tuberculosis in HIV/AIDS Patients

Authors: Dwitya Elvira, Raveinal Masri, Rohayat Bilmahdi

Abstract:

Human Immunodeficiency Virus (HIV) pandemic increased significantly worldwide. The rise in cases of HIV/AIDS was also followed by an increase in the incidence of opportunistic infection, with tuberculosis being the most opportunistic infection found in HIV/AIDS and the main cause of mortality in HIV/AIDS patients. Diagnosis of tuberculosis in HIV/AIDS patients is often difficult because of the uncommon symptom in HIV/AIDS patients compared to those without the disease. Thus, diagnostic tools are required that are more effective and efficient to diagnose tuberculosis in HIV/AIDS. CXCL-10/IP-10 is a chemokine that binds to the CXCR3 receptor found in HIV/AIDS patients with a weakened immune system. Tuberculosis infection in HIV/AIDS activates chemokine IP-10 in urine, which is used as a marker for diagnosis of infection. The aim of this study was to prove whether IP-10 urine can be a biomarker diagnosis of active lung tuberculosis in HIV-AIDS patients. Design of this study is a cross sectional study involving HIV/AIDS patients with lung tuberculosis as the subject of this study. Forty-seven HIV/AIDS patients with tuberculosis based on clinical and biochemical laboratory were asked to collect urine samples and IP-10/CXCL-10 urine being measured using ELISA method with 18 healthy human urine samples as control. Forty-seven patients diagnosed as HIV/AIDS were included as a subject of this study. HIV/AIDS were more common in male than in women with the percentage in male 85.1% vs. 14.5% of women. In this study, most diagnosed patients were aged 31-40 years old, followed by those 21-30 years, and > 40 years old, with one case diagnosed at age less than 20 years of age. From the result of the urine IP-10 using ELISA method, there was significant increase of the mean value of IP-10 urine in patients with TB-HIV/AIDS co-infection compared to the healthy control with mean 61.05 pg/mL ± 78.01 pg/mL vs. mean 17.2 pg/mL. Based on this research, there was significant increase of urine IP-10/CXCL-10 in active lung tuberculosis with HIV/AIDS compared to the healthy control. From this finding, it is necessary to conduct further research into whether urine IP-10/CXCL-10 plays a significant role in TB-HIV/AIDS co-infection, which can also be used as a biomarker in the early diagnosis of TB-HIV.

Keywords: chemokine, HIV/AIDS, IP-10 urine, tuberculosis

Procedia PDF Downloads 230
2553 Experimental and Theoretical Study of Melt Viscosity in Injection Process

Authors: Chung-Chih Lin, Wen-Teng Wang, Chin-Chiuan Kuo, Chieh-Liang Wu

Abstract:

The state of melt viscosity in injection process is significantly influenced by the setting parameters due to that the shear rate of injection process is higher than other processes. How to determine plastic melt viscosity during injection process is important to understand the influence of setting parameters on the melt viscosity. An apparatus named as pressure sensor bushing (PSB) module that is used to evaluate the melt viscosity during injection process is developed in this work. The formulations to coupling melt viscosity with fill time and injection pressure are derived and then the melt viscosity is determined. A test mold is prepared to evaluate the accuracy on viscosity calculations between the PSB module and the conventional approaches. The influence of melt viscosity on the tensile strength of molded part is proposed to study the consistency of injection quality.

Keywords: injection molding, melt viscosity, tensile test, pressure sensor bushing (PSB)

Procedia PDF Downloads 478
2552 Energy System Analysis Using Data-Driven Modelling and Bayesian Methods

Authors: Paul Rowley, Adam Thirkill, Nick Doylend, Philip Leicester, Becky Gough

Abstract:

The dynamic performance of all energy generation technologies is impacted to varying degrees by the stochastic properties of the wider system within which the generation technology is located. This stochasticity can include the varying nature of ambient renewable energy resources such as wind or solar radiation, or unpredicted changes in energy demand which impact upon the operational behaviour of thermal generation technologies. An understanding of these stochastic impacts are especially important in contexts such as highly distributed (or embedded) generation, where an understanding of issues affecting the individual or aggregated performance of high numbers of relatively small generators is especially important, such as in ESCO projects. Probabilistic evaluation of monitored or simulated performance data is one technique which can provide an insight into the dynamic performance characteristics of generating systems, both in a prognostic sense (such as the prediction of future performance at the project’s design stage) as well as in a diagnostic sense (such as in the real-time analysis of underperforming systems). In this work, we describe the development, application and outcomes of a new approach to the acquisition of datasets suitable for use in the subsequent performance and impact analysis (including the use of Bayesian approaches) for a number of distributed generation technologies. The application of the approach is illustrated using a number of case studies involving domestic and small commercial scale photovoltaic, solar thermal and natural gas boiler installations, and the results as presented show that the methodology offers significant advantages in terms of plant efficiency prediction or diagnosis, along with allied environmental and social impacts such as greenhouse gas emission reduction or fuel affordability.

Keywords: renewable energy, dynamic performance simulation, Bayesian analysis, distributed generation

Procedia PDF Downloads 494
2551 Sentiment Analysis of Consumers’ Perceptions on Social Media about the Main Mobile Providers in Jamaica

Authors: Sherrene Bogle, Verlia Bogle, Tyrone Anderson

Abstract:

In recent years, organizations have become increasingly interested in the possibility of analyzing social media as a means of gaining meaningful feedback about their products and services. The aspect based sentiment analysis approach is used to predict the sentiment for Twitter datasets for Digicel and Lime, the main mobile companies in Jamaica, using supervised learning classification techniques. The results indicate an average of 82.2 percent accuracy in classifying tweets when comparing three separate classification algorithms against the purported baseline of 70 percent and an average root mean squared error of 0.31. These results indicate that the analysis of sentiment on social media in order to gain customer feedback can be a viable solution for mobile companies looking to improve business performance.

Keywords: machine learning, sentiment analysis, social media, supervised learning

Procedia PDF Downloads 440
2550 The Effect of the Precursor Powder Size on the Electrical and Sensor Characteristics of Fully Stabilized Zirconia-Based Solid Electrolytes

Authors: Olga Yu Kurapova, Alexander V. Shorokhov, Vladimir G. Konakov

Abstract:

Nowadays, due to their exceptional anion conductivity at high temperatures cubic zirconia solid solutions, stabilized by rare-earth and alkaline-earth metal oxides, are widely used as a solid electrolyte (SE) materials in different electrochemical devices such as gas sensors, oxygen pumps, solid oxide fuel cells (SOFC), etc. Nowadays the intensive studies are carried out in a field of novel fully stabilized zirconia based SE development. The use of precursor powders for SE manufacturing allows predetermining the microstructure, electrical and sensor characteristics of zirconia based ceramics used as SE. Thus the goal of the present work was the investigation of the effect of precursor powder size on the electrical and sensor characteristics of fully stabilized zirconia-based solid electrolytes with compositions of 0,08Y2O3∙0,92ZrO2 (YSZ), 0,06Ce2O3∙ 0,06Y2O3∙0,88ZrO2 and 0,09Ce2O3∙0,06Y2O3-0,85ZrO2. The synthesis of precursors powders with different mean particle size was performed by sol-gel synthesis in the form of reversed co-precipitation from aqueous solutions. The cakes were washed until the neutral pH and pan-dried at 110 °С. Also, YSZ ceramics was obtained by conventional solid state synthesis including milling into a planetary mill. Then the powder was cold pressed into the pellets with a diameter of 7.2 and ~4 mm thickness at P ~16 kg/cm2 and then hydrostatically pressed. The pellets were annealed at 1600 °С for 2 hours. The phase composition of as-synthesized SE was investigated by X-Ray photoelectron spectroscopy ESCA (spectrometer ESCA-5400, PHI) X-ray diffraction analysis - XRD (Shimadzu XRD-6000). Following galvanic cell О2 (РО2(1)), Pt | SE | Pt, (РО2(2) = 0.21 atm) was used for SE sensor properties investigation. The value of РО2(1) was set by mixing of O2 and N2 in the defined proportions with the accuracy of  5%. The temperature was measured by Pt/Pt-10% Rh thermocouple, The cell electromotive force (EMF) measurement was carried out with ± 0.1 mV accuracy. During the operation at the constant temperature, reproducibility was better than 5 mV. Asymmetric potential measured for all SE appeared to be negligible. It was shown that the resistivity of YSZ ceramics decreases in about two times upon the mean agglomerates decrease from 200-250 to 40 nm. It is likely due to the both surface and bulk resistivity decrease in grains. So the overall decrease of grain size in ceramic SE results in the significant decrease of the total ceramics resistivity allowing sensor operation at lower temperatures. For the SE manufactured the estimation of oxygen ion transfer number tion was carried out in the range 600-800 °С. YSZ ceramics manufactured from powders with the mean particle size 40-140 nm, shows the highest values i.e. 0.97-0.98. SE manufactured from precursors with the mean particle size 40-140 nm shows higher sensor characteristic i.e. temperature and oxygen concentration EMF dependencies, EMF (ENernst - Ereal), tion, response time, then ceramics, manufactured by conventional solid state synthesis.

Keywords: oxygen sensors, precursor powders, sol-gel synthesis, stabilized zirconia ceramics

Procedia PDF Downloads 280
2549 An Early Detection Type 2 Diabetes Using K - Nearest Neighbor Algorithm

Authors: Ng Liang Shen, Ngahzaifa Abdul Ghani

Abstract:

This research aimed at developing an early warning system for pre-diabetic and diabetics by analyzing simple and easily determinable signs and symptoms of diabetes among the people living in Malaysia using Particle Swarm Optimized Artificial. With the skyrocketing prevalence of Type 2 diabetes in Malaysia, the system can be used to encourage affected people to seek further medical attention to prevent the onset of diabetes or start managing it early enough to avoid the associated complications. The study sought to find out the best predictive variables of Type 2 Diabetes Mellitus, developed a system to diagnose diabetes from the variables using Artificial Neural Networks and tested the system on accuracy to find out the patent generated from diabetes diagnosis result in machine learning algorithms even at primary or advanced stages.

Keywords: diabetes diagnosis, Artificial Neural Networks, artificial intelligence, soft computing, medical diagnosis

Procedia PDF Downloads 335
2548 Comparison of Tidalites in Siliciclastics and Mixed Siliciclastic Carbonate Systems: An Outstanding Example from Proterozoic Simla Basin, Western Lesser Himalaya, India

Authors: Tithi Banerjee, Ananya Mukhopadhyay

Abstract:

The comparison of ancient tidalites recorded in both siliciclastics and carbonates has not been well documented due to a lack of suitable outcropping examples. The Proterozoic Simla Basin, Lesser Himalaya serves a unique example in this regard. An attempt has been made in the present work to differentiate sedimentary facies and architectural elements of tidalites in both siliciclastics and carbonates recorded in the Simla Basin. Lithofacies and microfacies analysis led to identification of 11 lithofacies and 4 architectural elements from the siliciclastics, 6 lithofacies and 3 architectural elements from the carbonates. The most diagnostic features for comparison of the two tidalite systems are sedimentary structures, textures, and architectural elements. The physical features such as flaser-lnticular bedding, mud/silt couplets, tidal rhythmites, tidal bundles, cross stratified successions, tidal bars, tidal channels, microbial structures are common to both the environments. The architecture of these tidalites attests to sedimentation in shallow subtidal to intertidal flat facies, affected by intermittent reworking by open marine waves/storms. The seventeen facies attributes were categorized into two major facies belts (FA1 and FA2). FA1 delineated from the lower part of the Chhaosa Formation (middle part of the Simla Basin) represents a prograding muddy pro-delta deposit whereas FA2 delineated from the upper part of the Basantpur Formation (lower part of the Simla Basin) bears the signature of an inner-mid carbonate ramp deposit. Facies distribution indicates development of highstand systems tract (HST) during sea level still stand related to normal regression. The aggradational to progradational bedsets record the history of slow rise in sea level.

Keywords: proterozoic, Simla Basin, tidalites, inner-mid carbonate ramp, prodelta, TST, HST

Procedia PDF Downloads 232
2547 EEG-Based Screening Tool for School Student’s Brain Disorders Using Machine Learning Algorithms

Authors: Abdelrahman A. Ramzy, Bassel S. Abdallah, Mohamed E. Bahgat, Sarah M. Abdelkader, Sherif H. ElGohary

Abstract:

Attention-Deficit/Hyperactivity Disorder (ADHD), epilepsy, and autism affect millions of children worldwide, many of which are undiagnosed despite the fact that all of these disorders are detectable in early childhood. Late diagnosis can cause severe problems due to the late treatment and to the misconceptions and lack of awareness as a whole towards these disorders. Moreover, electroencephalography (EEG) has played a vital role in the assessment of neural function in children. Therefore, quantitative EEG measurement will be utilized as a tool for use in the evaluation of patients who may have ADHD, epilepsy, and autism. We propose a screening tool that uses EEG signals and machine learning algorithms to detect these disorders at an early age in an automated manner. The proposed classifiers used with epilepsy as a step taken for the work done so far, provided an accuracy of approximately 97% using SVM, Naïve Bayes and Decision tree, while 98% using KNN, which gives hope for the work yet to be conducted.

Keywords: ADHD, autism, epilepsy, EEG, SVM

Procedia PDF Downloads 188
2546 A Comparative Analysis of ARIMA and Threshold Autoregressive Models on Exchange Rate

Authors: Diteboho Xaba, Kolentino Mpeta, Tlotliso Qejoe

Abstract:

This paper assesses the in-sample forecasting of the South African exchange rates comparing a linear ARIMA model and a SETAR model. The study uses a monthly adjusted data of South African exchange rates with 420 observations. Akaike information criterion (AIC) and the Schwarz information criteria (SIC) are used for model selection. Mean absolute error (MAE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) are error metrics used to evaluate forecast capability of the models. The Diebold –Mariano (DM) test is employed in the study to check forecast accuracy in order to distinguish the forecasting performance between the two models (ARIMA and SETAR). The results indicate that both models perform well when modelling and forecasting the exchange rates, but SETAR seemed to outperform ARIMA.

Keywords: ARIMA, error metrices, model selection, SETAR

Procedia PDF Downloads 242
2545 A Resilience Process Model of Natural Gas Pipeline Systems

Authors: Zhaoming Yang, Qi Xiang, Qian He, Michael Havbro Faber, Enrico Zio, Huai Su, Jinjun Zhang

Abstract:

Resilience is one of the key factors for system safety assessment and optimization, and resilience studies of natural gas pipeline systems (NGPS), especially in terms of process descriptions, are still being explored. Based on the three main stages, which are function loss process, recovery process, and waiting process, the paper has built functions and models which are according to the practical characteristics of NGPS and mainly analyzes the characteristics of deterministic interruptions. The resilience of NGPS also considers the threshold of the system function or users' satisfaction. The outcomes, which quantify the resilience of NGPS in different evaluation views, can be combined with the max flow and shortest path methods, help with the optimization of extra gas supplies and gas routes as well as pipeline maintenance strategies, the quick analysis of disturbance effects and the improvement of NGPS resilience evaluation accuracy.

Keywords: natural gas pipeline system, resilience, process modeling, deterministic disturbance

Procedia PDF Downloads 124
2544 Establishment of Precision System for Underground Facilities Based on 3D Absolute Positioning Technology

Authors: Yonggu Jang, Jisong Ryu, Woosik Lee

Abstract:

The study aims to address the limitations of existing underground facility exploration equipment in terms of exploration depth range, relative depth measurement, data processing time, and human-centered ground penetrating radar image interpretation. The study proposed the use of 3D absolute positioning technology to develop a precision underground facility exploration system. The aim of this study is to establish a precise exploration system for underground facilities based on 3D absolute positioning technology, which can accurately survey up to a depth of 5m and measure the 3D absolute location of precise underground facilities. The study developed software and hardware technologies to build the precision exploration system. The software technologies developed include absolute positioning technology, ground surface location synchronization technology of GPR exploration equipment, GPR exploration image AI interpretation technology, and integrated underground space map-based composite data processing technology. The hardware systems developed include a vehicle-type exploration system and a cart-type exploration system. The data was collected using the developed exploration system, which employs 3D absolute positioning technology. The GPR exploration images were analyzed using AI technology, and the three-dimensional location information of the explored precise underground facilities was compared to the integrated underground space map. The study successfully developed a precision underground facility exploration system based on 3D absolute positioning technology. The developed exploration system can accurately survey up to a depth of 5m and measure the 3D absolute location of precise underground facilities. The system comprises software technologies that build a 3D precise DEM, synchronize the GPR sensor's ground surface 3D location coordinates, automatically analyze and detect underground facility information in GPR exploration images and improve accuracy through comparative analysis of the three-dimensional location information, and hardware systems, including a vehicle-type exploration system and a cart-type exploration system. The study's findings and technological advancements are essential for underground safety management in Korea. The proposed precision exploration system significantly contributes to establishing precise location information of underground facility information, which is crucial for underground safety management and improves the accuracy and efficiency of exploration. The study addressed the limitations of existing equipment in exploring underground facilities, proposed 3D absolute positioning technology-based precision exploration system, developed software and hardware systems for the exploration system, and contributed to underground safety management by providing precise location information. The developed precision underground facility exploration system based on 3D absolute positioning technology has the potential to provide accurate and efficient exploration of underground facilities up to a depth of 5m. The system's technological advancements contribute to the establishment of precise location information of underground facility information, which is essential for underground safety management in Korea.

Keywords: 3D absolute positioning, AI interpretation of GPR exploration images, complex data processing, integrated underground space maps, precision exploration system for underground facilities

Procedia PDF Downloads 60
2543 Changing Misconceptions in Heat Transfer: A Problem Based Learning Approach for Engineering Students

Authors: Paola Utreras, Yazmina Olmos, Loreto Sanhueza

Abstract:

This work has the purpose of study and incorporate Problem Based Learning (PBL) for engineering students, through the analysis of several thermal images of dwellings located in different geographical points of the Region de los Ríos, Chile. The students analyze how heat is transferred in and out of the houses and how is the relation between heat transfer and climatic conditions that affect each zone. As a result of this activity students are able to acquire significant learning in the unit of heat and temperature, and manage to reverse previous conceptual errors related with energy, temperature and heat. In addition, student are able to generate prototype solutions to increase thermal efficiency using low cost materials. Students make public their results in a report using scientific writing standards and in a science fair open to the entire university community. The methodology used to measure previous Conceptual Errors has been applying diagnostic tests with everyday questions that involve concepts of heat, temperature, work and energy, before the unit. After the unit the same evaluation is done in order that themselves are able to evidence the evolution in the construction of knowledge. As a result, we found that in the initial test, 90% of the students showed deficiencies in the concepts previously mentioned, and in the subsequent test 47% showed deficiencies, these percent ages differ between students who carry out the course for the first time and those who have performed this course previously in a traditional way. The methodology used to measure Significant Learning has been by comparing results in subsequent courses of thermodynamics among students who have received problem based learning and those who have received traditional training. We have observe that learning becomes meaningful when applied to the daily lives of students promoting internalization of knowledge and understanding through critical thinking.

Keywords: engineering students, heat flow, problem-based learning, thermal images

Procedia PDF Downloads 231
2542 Analysis of Cross-Sectional and Retrograde Data on the Prevalence of Marginal Gingivitis

Authors: Ilma Robo, Saimir Heta, Nedja Hysi, Vera Ostreni

Abstract:

Introduction: Marginal gingivitis is a disease with considerable frequency among patients who present routinely for periodontal control and treatment. In fact, this disease may not have alarming symptoms in patients and may go unnoticed by themselves when personal hygiene conditions are optimal. The aim of this study was to collect retrograde data on the prevalence of marginal gingiva in the respective group of patients, evaluated according to specific periodontal diagnostic tools. Materials and methods: The study was conducted in two patient groups. The first group was with 34 patients, during December 2019-January 2020, and the second group was with 64 patients during 2010-2018 (each year in the mentioned monthly period). Bacterial plaque index, hemorrhage index, amount of gingival fluid, presence of xerostomia and candidiasis were recorded in patients. Results: Analysis of the collected data showed that susceptibility to marginal gingivitis shows higher values according to retrograde data, compared to cross-sectional ones. Susceptibility to candidiasis and the occurrence of xerostomia, even in the combination of both pathologies, as risk factors for the occurrence of marginal gingivitis, show higher values ​​according to retrograde data. The female are presented with a reduced bacterial plaque index than the males, but more importantly, this index in the females is also associated with a reduced index of gingival hemorrhage, in contrast to the males. Conclusions: Cross-sectional data show that the prevalence of marginal gingivitis is more reduced, compared to retrograde data, based on the hemorrhage index and the bacterial plaque index together. Changes in production in the amount of gingival fluid show a higher prevalence of marginal gingivitis in cross-sectional data than in retrograde data; this is based on the sophistication of the way data are recorded, which evolves over time and also based on professional sensitivity to this phenomenon.

Keywords: marginal gingivitis, cross-sectional, retrograde, prevalence

Procedia PDF Downloads 160
2541 E-learning resources for radiology training: Is an ideal program available?

Authors: Eric Fang, Robert Chen, Ghim Song Chia, Bien Soo Tan

Abstract:

Objective and Rationale: Training of radiology residents hinges on practical, on-the-job training in all facets and modalities of diagnostic radiology. Although residency is structured to be comprehensive, clinical exposure depends on the case mix available locally and during the posting period. To supplement clinical training, there are several e-learning resources available to allow for greater exposure to radiological cases. The objective of this study was to survey residents and faculty on the usefulness of these e-learning resources. Methods: E-learning resources were shortlisted with input from radiology residents, Google search and online discussion groups, and screened by their purported focus. Twelve e-learning resources were found to meet the criteria. Both radiology residents and experienced radiology faculty were then surveyed electronically. The e-survey asked for ratings on breadth, depth, testing capability and user-friendliness for each resource, as well as for rankings for the top 3 resources. Statistical analysis was performed using SAS 9.4. Results: Seventeen residents and fifteen faculties completed an e-survey. Mean response rate was 54% ± 8% (Range: 14- 96%). Ratings and rankings were statistically identical between residents and faculty. On a 5-point rating scale, breadth was 3.68 ± 0.18, depth was 3.95 ± 0.14, testing capability was 2.64 ± 0.16 and user-friendliness was 3.39 ± 0.13. Top-ranked resources were STATdx (first), Radiopaedia (second) and Radiology Assistant (third). 9% of responders singled out R-ITI as potentially good but ‘prohibitively costly’. Statistically significant predictive factors for higher rankings are familiarity with the resource (p = 0.001) and user-friendliness (p = 0.006). Conclusion: A good e-learning system will complement on-the-job training with a broad case base, deep discussion and quality trainee evaluation. Based on our study on twelve e-learning resources, no single program fulfilled all requirements. The perception and use of radiology e-learning resources depended more on familiarity and user-friendliness than on content differences and testing capability.

Keywords: e-learning, medicine, radiology, survey

Procedia PDF Downloads 332
2540 Effect of Clinical Depression on Automatic Speaker Verification

Authors: Sheeraz Memon, Namunu C. Maddage, Margaret Lech, Nicholas Allen

Abstract:

The effect of a clinical environment on the accuracy of the speaker verification was tested. The speaker verification tests were performed within homogeneous environments containing clinically depressed speakers only, and non-depresses speakers only, as well as within mixed environments containing different mixtures of both climatically depressed and non-depressed speakers. The speaker verification framework included the MFCCs features and the GMM modeling and classification method. The speaker verification experiments within homogeneous environments showed 5.1% increase of the EER within the clinically depressed environment when compared to the non-depressed environment. It indicated that the clinical depression increases the intra-speaker variability and makes the speaker verification task more challenging. Experiments with mixed environments indicated that the increase of the percentage of the depressed individuals within a mixed environment increases the speaker verification equal error rates.

Keywords: speaker verification, GMM, EM, clinical environment, clinical depression

Procedia PDF Downloads 373
2539 Anterior Tooth Misalignment: Orthodontics or Restorative Treatment

Authors: Maryam Firouzmandi, Moosa Miri

Abstract:

Smile is considered to be one of the most effective methods of influencing people. Increasing numbers of patients are requesting cosmetic dental procedures to achieve the perfect smile. Based on the patient’s age, oral and facial characteristics, and the dentist’s expertise, different concepts of treatment would be available. Orthodontics is the most conservative and the ideal treatment alternative for crowded anterior teeth; however, it may be rejected by patients due to occupational limitations of time, physical discomfort including pain and functional limitations, psychological discomfort, and appearance during treatment. In addition, orthodontic treatment will not resolve deficits of contour and color of the anterior teeth. In consequence, patients may demand restorative techniques to resolve their anterior mal-alignment instead, often called "instant orthodontics". Following its introduction, however, adhesive dentistry has suffered at times from overuse. Creating short-term attractive smiles at the expense of long-term dental health and optimal tooth biomechanics by using cosmetic techniques should not be considered an ethical approach. The objective of this narrative review was to investigate the literature for guidelines with regard to decision making and treatment planning for anterior tooth mal-alignment. In this regard, indications of orthodontic, restorative, combination of both treatments, and adjunctive periodontal surgery were discussed in clinical cases to achieve a proportional smile. Restorative modalities would include disking, cosmetic contouring, veneers, and crowns and were compared with limited or comprehensive orthodontic options. A rapid review was also presented on pros and cons of snap on smile to mask malalignments. Diagnostic tools such as mock up, wax up, and digital smile design were also considered to achieve more conservative and functional treatments with respect to biologic factors.

Keywords: crowding, misalignment, veneer, crown, orthodontics

Procedia PDF Downloads 115
2538 Justyna Skrzyńska, Zdzisław Kobos, Zbigniew Wochyński

Authors: Vahid Bairami Rad

Abstract:

Due to the tremendous progress in computer technology in the last decades, the capabilities of computers increased enormously and working with a computer became a normal activity for nearly everybody. With all the possibilities a computer can offer, humans and their interaction with computers are now a limiting factor. This gave rise to a lot of research in the field of HCI (human computer interaction) aiming to make interaction easier, more intuitive, and more efficient. To research eye gaze based interfaces it is necessary to understand both sides of the interaction–the human eye and the eye tracker. The first section gives an overview on the anatomy of the eye. The second section accuracy and calibration issue. The subsequent section presents data from a user study where eye movements have been recorded while watching a video and while surfing the Internet. Statistics on the eye movement during these tasks for several individuals provide typical values and ranges for fixation times and saccade lengths and are the foundation for discussions in later chapters. The data also reveal typical limitations of eye trackers.

Keywords: human computer interaction, gaze tracking, calibration, eye movement

Procedia PDF Downloads 535
2537 Development of a Biomechanical Method for Ergonomic Evaluation: Comparison with Observational Methods

Authors: M. Zare, S. Biau, M. Corq, Y. Roquelaure

Abstract:

A wide variety of observational methods have been developed to evaluate the ergonomic workloads in manufacturing. However, the precision and accuracy of these methods remain a subject of debate. The aims of this study were to develop biomechanical methods to evaluate ergonomic workloads and to compare them with observational methods. Two observational methods, i.e. SCANIA Ergonomic Standard (SES) and Rapid Upper Limb Assessment (RULA), were used to assess ergonomic workloads at two simulated workstations. They included four tasks such as tightening & loosening, attachment of tubes and strapping as well as other actions. Sensors were also used to measure biomechanical data (Inclinometers, Accelerometers, and Goniometers). Our findings showed that in assessment of some risk factors both RULA & SES were in agreement with the results of biomechanical methods. However, there was disagreement on neck and wrist postures. In conclusion, the biomechanical approach was more precise than observational methods, but some risk factors evaluated with observational methods were not measurable with the biomechanical techniques developed.

Keywords: ergonomic, observational method, biomechanical methods, workload

Procedia PDF Downloads 387
2536 Groundwater Recharge Suitability Mapping Using Analytical Hierarchy Process Based-Approach

Authors: Aziza Barrek, Mohamed Haythem Msaddek, Ismail Chenini

Abstract:

Excessive groundwater pumping due to the increasing water demand, especially in the agricultural sector, causes groundwater scarcity. Groundwater recharge is the most important process that contributes to the water's durability. This paper is based on the Analytic Hierarchy Process multicriteria analysis to establish a groundwater recharge susceptibility map. To delineate aquifer suitability for groundwater recharge, eight parameters were used: soil type, land cover, drainage density, lithology, NDVI, slope, transmissivity, and rainfall. The impact of each factor was weighted. This method was applied to the El Fahs plain shallow aquifer. Results suggest that 37% of the aquifer area has very good and good recharge suitability. The results have been validated by the Receiver Operating Characteristics curve. The accuracy of the prediction obtained was 89.3%.

Keywords: AHP, El Fahs aquifer, empirical formula, groundwater recharge zone, remote sensing, semi-arid region

Procedia PDF Downloads 119
2535 Automatic Classification for the Degree of Disc Narrowing from X-Ray Images Using CNN

Authors: Kwangmin Joo

Abstract:

Automatic detection of lumbar vertebrae and classification method is proposed for evaluating the degree of disc narrowing. Prior to classification, deep learning based segmentation is applied to detect individual lumbar vertebra. M-net is applied to segment five lumbar vertebrae and fine-tuning segmentation is employed to improve the accuracy of segmentation. Using the features extracted from previous step, clustering technique, k-means clustering, is applied to estimate the degree of disc space narrowing under four grade scoring system. As preliminary study, techniques proposed in this research could help building an automatic scoring system to diagnose the severity of disc narrowing from X-ray images.

Keywords: Disc space narrowing, Degenerative disc disorders, Deep learning based segmentation, Clustering technique

Procedia PDF Downloads 124
2534 Testing Chat-GPT: An AI Application

Authors: Jana Ismail, Layla Fallatah, Maha Alshmaisi

Abstract:

ChatGPT, a cutting-edge language model built on the GPT-3.5 architecture, has garnered attention for its profound natural language processing capabilities, holding promise for transformative applications in customer service and content creation. This study delves into ChatGPT's architecture, aiming to comprehensively understand its strengths and potential limitations. Through systematic experiments across diverse domains, such as general knowledge and creative writing, we evaluated the model's coherence, context retention, and task-specific accuracy. While ChatGPT excels in generating human-like responses and demonstrates adaptability, occasional inaccuracies and sensitivity to input phrasing were observed. The study emphasizes the impact of prompt design on output quality, providing valuable insights for the nuanced deployment of ChatGPT in conversational AI and contributing to the ongoing discourse on the evolving landscape of natural language processing in artificial intelligence.

Keywords: artificial Inelegance, chatGPT, open AI, NLP

Procedia PDF Downloads 75
2533 Changing Patterns of Colorectal Cancer in Hail Region

Authors: Laila Salah Seada, Ashraf Ibrahim, Fawaz Al Rashid, Ihab Abdo, Hassan Kasim, Waleed Al Mansi, Saud Al Shabli

Abstract:

Background and Objectives: Colorectal carcinoma is increasing among both men and women worldwide. It has a multifactorial etiology including genetic factors, environmental factors and inflammatory conditions of the digestive tract. A clinicopathologic assessment of colorectal carcinoma in Hail region is done, considering any changing patterns in two 5-year periods from 2005-2009 (A) and from 2012 to 2017 (B). All data had been retrieved from histopathology files of King Khalid Hospital, Hail. Results: During period (A), 75 cases were diagnosed as colorectal carcinoma. Male patients comprised 56/75 (74.7%) of the study, with a mean age of 58.4 (36-97), while females were 19/75 (25.3%) with a mean age of 50.3(30-85) and the difference was significant (p = 0.05). M:F ratio was 2.9:1. Most common histological type was adenocarcioma in 68/75 (90.7%) patients mostly well differentiated in 44/68 (64.7%). Mucinous neoplasms comprised only 7/75 (9.3%) of cases and tended to have a higher stage (p = 0.04). During period (B), 115 cases were diagnosed with an increase of 53.3% in number of cases than period (A). Male to female ratio also decreased to 1.35:1, females being 44.83% more affected. Adenocarcinoma remained the prevalent type (93.9%), while mucinous type was still rare (5.2%). No distal metastases found at time of presentation. Localization of tumors was rectosigmoid in group (A) in 41.4%, which increased to 56.6% in group (B), with an increase of 15.2%. Iliocecal location also decreased from 8% to 3.5%, being 56.25% less. Other proximal areas of the colon were decreased by 25.75%, from 53.9% in group (A) to 40% in group (B). Conclusion: Colorectal carcinoma in Hail region has increased by 53.3% in the past 5 years, with more females being diagnosed. Localization has also shifted distally by 15.2%. These findings are different from Western world patterns which experienced a decrease in incidence and proximal shift of the colon cancer localization. This might be due to better diagnostic tools, population awareness of the disease, as well as changing of life style and/or food habits in the region.

Keywords: colorectal cancer, Hail Region, changing pattern, distal shift

Procedia PDF Downloads 207
2532 Hit-Or-Miss Transform as a Tool for Similar Shape Detection

Authors: Osama Mohamed Elrajubi, Idris El-Feghi, Mohamed Abu Baker Saghayer

Abstract:

This paper describes an identification of specific shapes within binary images using the morphological Hit-or-Miss Transform (HMT). Hit-or-Miss transform is a general binary morphological operation that can be used in searching of particular patterns of foreground and background pixels in an image. It is actually a basic operation of binary morphology since almost all other binary morphological operators are derived from it. The input of this method is a binary image and a structuring element (a template which will be searched in a binary image) while the output is another binary image. In this paper a modification of Hit-or-Miss transform has been proposed. The accuracy of algorithm is adjusted according to the similarity of the template and the sought template. The implementation of this method has been done by C language. The algorithm has been tested on several images and the results have shown that this new method can be used for similar shape detection.

Keywords: hit-or-miss operator transform, HMT, binary morphological operation, shape detection, binary images processing

Procedia PDF Downloads 330
2531 A Custom Convolutional Neural Network with Hue, Saturation, Value Color for Malaria Classification

Authors: Ghazala Hcini, Imen Jdey, Hela Ltifi

Abstract:

Malaria disease should be considered and handled as a potential restorative catastrophe. One of the most challenging tasks in the field of microscopy image processing is due to differences in test design and vulnerability of cell classifications. In this article, we focused on applying deep learning to classify patients by identifying images of infected and uninfected cells. We performed multiple forms, counting a classification approach using the Hue, Saturation, Value (HSV) color space. HSV is used since of its superior ability to speak to image brightness; at long last, for classification, a convolutional neural network (CNN) architecture is created. Clusters of focus were used to deliver the classification. The highlights got to be forbidden, and a few more clamor sorts are included in the information. The suggested method has a precision of 99.79%, a recall value of 99.55%, and provides 99.96% accuracy.

Keywords: deep learning, convolutional neural network, image classification, color transformation, HSV color, malaria diagnosis, malaria cells images

Procedia PDF Downloads 86
2530 Human Posture Estimation Based on Multiple Viewpoints

Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo

Abstract:

This study aimed to address the problem of improving the confidence of key points by fusing multi-view information, thereby estimating human posture more accurately. We first obtained multi-view image information and then used the MvP algorithm to fuse this multi-view information together to obtain a set of high-confidence human key points. We used these as the input for the Spatio-Temporal Graph Convolution (ST-GCN). ST-GCN is a deep learning model used for processing spatio-temporal data, which can effectively capture spatio-temporal relationships in video sequences. By using the MvP algorithm to fuse multi-view information and inputting it into the spatio-temporal graph convolution model, this study provides an effective method to improve the accuracy of human posture estimation and provides strong support for further research and application in related fields.

Keywords: multi-view, pose estimation, ST-GCN, joint fusion

Procedia PDF Downloads 68
2529 The Role of Non-Governmental Organizations in Combating Human Trafficking in South India: An Overview

Authors: Kumudini Achchi

Abstract:

India, being known for its rich cultural values has given a special place to women who are also been victims of humiliation, torture, and exploitation. The major share of Human Trafficking goes to sex trafficking which is recognised as world’s second most huge social evil. The original form of sex trafficking in India is prostitution with and without religious sanction. Today the situation of such women reached as an issue of human rights where they rights are denied severely. This situation demanded intervention to protect them from the exploitative situation. NGO are the proactive initiatives which offer support to the exploited women in sex trade. To understand the intervention programs of NGOs in South India, a study was conducted covering four states and a union territory considering 32 NGOs based on their preparedness to participate in the research study. Descriptive and diagnostic research design was adopted along with interview schedule as a tool for collecting data. The study reveals that these NGOs believes in the possibility of mainstreaming commercially sexually exploited women and found adopted seven different programs in the process such as rescue, rehabilitation, reintegration, prevention, developmental, advocacy and research. Each area involves different programs to reach and prepare the exploited women towards mainstreamed society which has been discussed in the paper. Implementation of these programs is not an easy task for the organizations rather they are facing hardships in the areas such as social, legal, financial, political which are hindering the successful operations. Rescue, advocacy, and research are the least adopted areas by the NGOs because of lack of support as well as knowledge in the area. Rehabilitation stands as the most adopted area in implementation. The paper further deals with the challenges in the implementation of the programs as well as the remedial measures in social work point of view having Indian cultural background.

Keywords: NGOs, commercially sexually exploited women, programmes, South India

Procedia PDF Downloads 247
2528 Mathematical Modeling for Diabetes Prediction: A Neuro-Fuzzy Approach

Authors: Vijay Kr. Yadav, Nilam Rathi

Abstract:

Accurate prediction of glucose level for diabetes mellitus is required to avoid affecting the functioning of major organs of human body. This study describes the fundamental assumptions and two different methodologies of the Blood glucose prediction. First is based on the back-propagation algorithm of Artificial Neural Network (ANN), and second is based on the Neuro-Fuzzy technique, called Fuzzy Inference System (FIS). Errors between proposed methods further discussed through various statistical methods such as mean square error (MSE), normalised mean absolute error (NMAE). The main objective of present study is to develop mathematical model for blood glucose prediction before 12 hours advanced using data set of three patients for 60 days. The comparative studies of the accuracy with other existing models are also made with same data set.

Keywords: back-propagation, diabetes mellitus, fuzzy inference system, neuro-fuzzy

Procedia PDF Downloads 256