Search results for: significant wave data
34714 Emerging Research Trends in Routing Protocol for Wireless Sensor Network
Authors: Subhra Prosun Paul, Shruti Aggarwal
Abstract:
Now a days Routing Protocol in Wireless Sensor Network has become a promising technique in the different fields of the latest computer technology. Routing in Wireless Sensor Network is a demanding task due to the different design issues of all sensor nodes. Network architecture, no of nodes, traffic of routing, the capacity of each sensor node, network consistency, service value are the important factor for the design and analysis of Routing Protocol in Wireless Sensor Network. Additionally, internal energy, the distance between nodes, the load of sensor nodes play a significant role in the efficient routing protocol. In this paper, our intention is to analyze the research trends in different routing protocols of Wireless Sensor Network in terms of different parameters. In order to explain the research trends on Routing Protocol in Wireless Sensor Network, different data related to this research topic are analyzed with the help of Web of Science and Scopus databases. The data analysis is performed from global perspective-taking different parameters like author, source, document, country, organization, keyword, year, and a number of the publication. Different types of experiments are also performed, which help us to evaluate the recent research tendency in the Routing Protocol of Wireless Sensor Network. In order to do this, we have used Web of Science and Scopus databases separately for data analysis. We have observed that there has been a tremendous development of research on this topic in the last few years as it has become a very popular topic day by day.Keywords: analysis, routing protocol, research trends, wireless sensor network
Procedia PDF Downloads 21534713 Sexual Orientation, Household Labour Division and the Motherhood Wage Penalty
Authors: Julia Hoefer Martí
Abstract:
While research has consistently found a significant motherhood wage penalty for heterosexual women, where homosexual women are concerned, evidence has appeared to suggest no effect, or possibly even a wage bonus. This paper presents a model of the household with a public good that requires both a monetary expense and a labour investment, and where the household budget is shared between partners. Lower-wage partners will do relatively more of the household labour while higher-wage partners will specialise in market labour, and the arrival of a child exacerbates this split, resulting in the lower-wage partner taking on even more of the household labour in relative terms. Employers take this gender-sexuality dyad as a signal for employees’ commitment to the labour market after having a child, and use the information when setting wages after employees become parents. Given that women empirically earn lower wages than men, in a heterosexual couple the female partner will often do more of the household labour. However, as not every female partner has a lower wage, this results in an over-adjustment of wages that manifests as an unexplained motherhood wage penalty. On the other hand, in homosexual couples wage distributions are ex ante identical, and gender is no longer a useful signal to employers as to whether the partner is likely to specialise in household labour or market labour. This model is then tested using longitudinal data from the EU Standards of Income and Living Conditions (EU-SILC) to investigate the hypothesis that women experience different wage effects of motherhood depending on their sexual orientation. While heterosexual women receive a significant motherhood wage penalty of 8-10%, homosexual mothers do not receive any significant wage bonus or penalty of motherhood, consistent with the hypothesis presented above.Keywords: discrimination, gender, motherhood, sexual orientation, labor economics
Procedia PDF Downloads 16434712 Nutrition Role in the Management of Psychiatric Disorders
Authors: Abeer Mohammed, Nevein Mustafa Elashery, Mona Hassan Abdel Aal, Ereny Wilson Nagib
Abstract:
The Aim of the current study is to investigate nutrition role in the management of psychiatric disorders. Research Design: A quasi- experimental research design was utilized for this study. Setting The study was conducted at outpatient clinic at Institute of Psychiatry affiliated to Ain Shams University hospitals, using a convenient sample of 50 psychiatric patients with depression, schizophrenia, bipolar disorders, and obsessive compulsive disorders. Tools: data were collected through; first, an interview questionnaire covering socio-demographic characteristics, second, nutrition assessment tools Third, nutrition risk assessment. Fourth, nutrition management program Results showed that there were highly statistically significant improvements in modified nutritional supplements for patients with depression, schizophrenia, bipolar disorders, and obsessive compulsive disorders' patients after conducting the nutrition management program. Regarding psychiatric patients’ knowledge about healthy food, healthy nutritional habits, and patients’ awareness & readiness for change, there were highly statistically significant improvements. Concerning signs and symptoms of psychiatric disorders, there were highly statistically significant improvements for depression, schizophrenia, bipolar disorders, and obsessive-compulsive patients after conducting the management program. In conclusion, the nutrition management program was effective in improving symptoms associated with, depression, schizophrenia, bipolar disorders, and obsessive compulsive disorders. The study recommended that nurses should have more contribution in counseling psychiatric patients, and their families about healthy diet and healthy habits. Further research should recommend studying the effectiveness of herbs on enhancing mental health for psychiatric patients.Keywords: nutrition, role, management, psychiatric disorders
Procedia PDF Downloads 34634711 The Nature and Impact of Trojan Horses in Cybersecurity
Authors: Mehrab Faraghti
Abstract:
Trojan horses, a form of malware masquerading as legitimate software, pose significant cybersecurity threats. These malicious programs exploit user trust, infiltrate systems, and can lead to data breaches, financial loss, and compromised privacy. This paper explores the mechanisms through which Trojan horses operate, including delivery methods such as phishing and software vulnerabilities. It categorizes various types of Trojan horses and their specific impacts on individuals and organizations. Additionally, the research highlights the evolution of Trojan threats and the importance of user awareness and proactive security measures. By analyzing case studies of notable Trojan attacks, this study identifies common vulnerabilities that can be exploited and offers insights into effective countermeasures, including behavioral analysis, anomaly detection, and robust incident response strategies. The findings emphasize the need for comprehensive cybersecurity education and the implementation of advanced security protocols to mitigate the risks associated with Trojan horses.Keywords: Trojan horses, cybersecurity, malware, data breach
Procedia PDF Downloads 1034710 Safeguarding the Construction Industry: Interrogating and Mitigating Emerging Risks from AI in Construction
Authors: Abdelrhman Elagez, Rolla Monib
Abstract:
This empirical study investigates the observed risks associated with adopting Artificial Intelligence (AI) technologies in the construction industry and proposes potential mitigation strategies. While AI has transformed several industries, the construction industry is slowly adopting advanced technologies like AI, introducing new risks that lack critical analysis in the current literature. A comprehensive literature review identified a research gap, highlighting the lack of critical analysis of risks and the need for a framework to measure and mitigate the risks of AI implementation in the construction industry. Consequently, an online survey was conducted with 24 project managers and construction professionals, possessing experience ranging from 1 to 30 years (with an average of 6.38 years), to gather industry perspectives and concerns relating to AI integration. The survey results yielded several significant findings. Firstly, respondents exhibited a moderate level of familiarity (66.67%) with AI technologies, while the industry's readiness for AI deployment and current usage rates remained low at 2.72 out of 5. Secondly, the top-ranked barriers to AI adoption were identified as lack of awareness, insufficient knowledge and skills, data quality concerns, high implementation costs, absence of prior case studies, and the uncertainty of outcomes. Thirdly, the most significant risks associated with AI use in construction were perceived to be a lack of human control (decision-making), accountability, algorithm bias, data security/privacy, and lack of legislation and regulations. Additionally, the participants acknowledged the value of factors such as education, training, organizational support, and communication in facilitating AI integration within the industry. These findings emphasize the necessity for tailored risk assessment frameworks, guidelines, and governance principles to address the identified risks and promote the responsible adoption of AI technologies in the construction sector.Keywords: risk management, construction, artificial intelligence, technology
Procedia PDF Downloads 9934709 Field Evaluation of Different Aubergine Cultivars against Infestation of Brinjal Shoot and Fruit Borer
Authors: Ajmal Khan Kassi, Humayun Javed, Muhammad Asif Aziz
Abstract:
Response of different aubergine cultivars against Brinjal shoot and fruit borer (Leucinodes orbonalis Guenee.) was evaluated at research farm of PMAS, Arid Agriculture University, Rawalpindi, during 2013. Field trials were conducted in randomized completed block design with four replications for the screening of five cultivars of Brinjal (Solanum melongena L) (Short Purpal, Singhnath 666, Brinjal long 6275, Round Brinjal 86602, Round Egg Plant White). Cultivar Round White Brinjal showed maximum fruit infestation (54.44%) followed by Singhnath 666 (53.19%), while minimum fruit infestation was observed in Round Brinjal 86602 (42.39%). Cultivar Short Purpal showed maximum larval population (0.43) followed by Round White Brinjal (0.39), while the minimum larval population was observed in Round Brinjal 86602 with (0.27). It was observed that Round Brinjal 86602 cultivar showed comparatively minimum (L. orbonalis) larval population per leaf. The correlation of Brinjal fruit infestation and larval population of (L. orbonalis) with the different environmental factors showed that, the average relative humidity was positively and significantly correlated with fruit infestation on cultivars average precipitation showed positive but non- significant correlation on all the cultivars except Singhnath 666 with the value of (0.79) which was positive and significant. The average temperature showed non-significant and negative correlation with Brinjal long 6275, Round Brinjal 86602 and Singhnath 666, but significant negative correlation with Short Purpal and Round White Brinjal. Maximum temperature also showed the significant and negative correlation on all the five Brinjal cultivars which were significant and highly significant. Minimum temperature showed negative correlation and not significant correlation with all the cultivars. Consequently, based on the (L. orbonalis) larval density and Brinjal fruit infestation, the Round Brinjal 86602 proved least susceptible and Short Purpal highly susceptible cultivar.Keywords: evaluation, Brinjal (Solanum melongena L), Cultivars, L. orbonalis
Procedia PDF Downloads 19634708 The Effects of Combination of Melatonin with and without Zinc on Gonadotropin Hormones in Female Rats
Authors: Fariba Rahimi, Morteza Zendedel, Mohammad Jaafar Rezaee, Bita Vazir, Shahin Fakour
Abstract:
The present study was carried out to investigate the effect of melatonin (Mel) with and without zinc (Zn) on the gonadotropin hormones, also thyroid (T3 and T4) hormone concentration in female rats. A total of 40 adult female rats were randomly grouped into five treatment groups, each of 2 rats in a Completely Randomized Design (CRD) entire research time. Daily was treated by gavage with Zn and melatonin as follows: T1 (control1, basal diet), T2 (control 2, treated with normal saline) and other experimental groups, including T3, T4 and T5, were treated with a dose of zinc (40 ppm), melatonin (5 mg/kg), and combination zinc plus melatonin with the same level, respectively. Blood FSH and LH concentrations were measured. The result showed no significant differences between treatments in FSH and LH levels. The estrogen and progesterone and TSH levels in rats that received 5 mg of melatonin per day were higher than in other groups but not statistically significant (P>0.05). However, T3 (thyroid) concentration significantly (P<0.05) decreased in the group that received 40 mg/zinc per Kg compared to other groups. No significant (P>0.05) difference was detected among treatments in T4 levels. In conclusion, except for T3, had no significant (P>0.05) effect on another parameter in the female rats that received melatonin or zinc and a blend of melatonin and Zn.Keywords: zinc, melatonin, hormone, rat
Procedia PDF Downloads 10934707 Efficacy of Plant and Mushroom Based Bio-Products against the Red Poultry Mite, Dermanyssus gallinae (Mesostigmata: Dermanyssidae)
Authors: Muhammad Asif Qayyoum, Bilal Saeed Khan
Abstract:
Poultry red mites (Dermanyssus gallinae De Geer) are economically deleterious parasite of hens in poultry industry in all over the world. Due to lack of proper control managements and result of poor application of commercial products, D. gallinae get resistance and severe infestation in poultry birds. Laboratory experiment was planned for the control of D. gallinae by using different mushroom and plant extracts. We used control treatment (100 ml distilled water) and nine treatments (10 gr Lentinula adobas, Ganoderma lucidum and Pleurotus aryngii with 100 ml methanol, 1% and 2% Neemazal, 1.5% Gamma-T-ol, Echinacea Leaf , 1.5% Fungatol with neem spray and Methanol) with five replication having five mites each. Data collected after 12 and 24 hours every day till mites found dead in every treatment. The significant differences among the mean values were compared with the DUNCAN multiple range test. The efficacy (%) of each treatment was determined with the Abbott formula. All statistical analyses were conducted with the SPSS Version 12 program. Lentinula edodes (80%), Ganoderma lucidum (76%) and Fungatol+Neem spray (1.5%) (80%) were significant against D. gallinae within 3 days.Keywords: mushroom extracts, plant extracts, D. gallinae, control
Procedia PDF Downloads 30734706 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data
Authors: S. Nickolas, Shobha K.
Abstract:
The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing
Procedia PDF Downloads 27434705 The Effect That the Data Assimilation of Qinghai-Tibet Plateau Has on a Precipitation Forecast
Authors: Ruixia Liu
Abstract:
Qinghai-Tibet Plateau has an important influence on the precipitation of its lower reaches. Data from remote sensing has itself advantage and numerical prediction model which assimilates RS data will be better than other. We got the assimilation data of MHS and terrestrial and sounding from GSI, and introduced the result into WRF, then got the result of RH and precipitation forecast. We found that assimilating MHS and terrestrial and sounding made the forecast on precipitation, area and the center of the precipitation more accurate by comparing the result of 1h,6h,12h, and 24h. Analyzing the difference of the initial field, we knew that the data assimilating about Qinghai-Tibet Plateau influence its lower reaches forecast by affecting on initial temperature and RH.Keywords: Qinghai-Tibet Plateau, precipitation, data assimilation, GSI
Procedia PDF Downloads 23434704 Financial Market Reaction to Non-Financial Reports
Authors: Petra Dilling
Abstract:
This study examines the market reaction to the publication of integrated reports for a sample of 316 global companies for the reporting year 2018. Applying event study methodology, we find significant cumulative average abnormal returns (CAARs) after the publication date. To ensure robust estimation resultsthe three-factor model, according to Fama and French, is used as well as a market-adjusted model, a CAPM and a Frama-French model taking GARCH effects into account. We find a significant positive CAAR after the publication day of the integrated report. Our results suggest that investors react to information provided in the integrated report and that they react differently to the annual financial report. Furthermore, our cross-sectional analysis confirms that companies with a significant positive cumulative average abnormal show certain characteristic. It was found that European companies have a higher likelihood to experience a stronger significant positive market reaction to their integrated report publication.Keywords: integrated report, event methodology, cumulative abnormal return, sustainability, CAPM
Procedia PDF Downloads 15034703 Morphological Anatomical Study of the Axis Vertebra and Its Clinical Orientation
Authors: Mangala M. Pai, B. V. Murlimanju, Latha V. Prabhu, P. J. Jiji , Vandana Blossom
Abstract:
Background:To study the morphological parameters of the axis vertebra in anatomical specimens. Methods: The present study was designed to obtain the morphometric data of axis vertebra. The superior and inferior articular facets of the axis were macroscopically observed for their shapes and the different parameters were measured using the digital Vernier caliper. It included 20 dried axis bones, which were obtained from the anatomy laboratory. Results: The morphometric data obtained in the present study are represented in the tables. The side wise comparison of the length and width of the articular facets of the axis vertebra were done. The present study observed that, there is no statistically significant difference observed among the parameters of right and left side articular facets (p>0.05). The superior and inferior articular facets were observed to have variable shapes. The frequencies of different shapes of superior and inferior articular facets are represented in figures. All the shapes of the inferior and superior articular facets were symmetrical over the right and left sides. Among the superior articular facets, the constrictions were absent in 13 cases (65%), 2 (10%) exhibited a single constriction, 3 (15%) had 2 constrictions and 2 (10%) were having 3 constrictions. The constrictions were absent in 11 (55%) of the inferior articular facets, 3 (15%) of them had 1 constriction, 3 (15%) were having 2 constrictions, 2 (10%) exhibited 3 constrictions and 1 (5%) of them had 4 constrictions. The constrictions of the inferior and superior articular facets were symmetrical over the right and left sides. Conclusion: We believe that the present study has provided additional information on the morphometric data of the axis vertebra. The data are important to the neurosurgeons, orthopedic surgeons and radiologists. The preoperative assessment of the axis vertebra may prevent dangerous complications like spinal cord and nerve root compression during the surgical intervention.Keywords: axis, articular facet, morphology, morphometry
Procedia PDF Downloads 32834702 Positive Affect, Negative Affect, Organizational and Motivational Factor on the Acceptance of Big Data Technologies
Authors: Sook Ching Yee, Angela Siew Hoong Lee
Abstract:
Big data technologies have become a trend to exploit business opportunities and provide valuable business insights through the analysis of big data. However, there are still many organizations that have yet to adopt big data technologies especially small and medium organizations (SME). This study uses the technology acceptance model (TAM) to look into several constructs in the TAM and other additional constructs which are positive affect, negative affect, organizational factor and motivational factor. The conceptual model proposed in the study will be tested on the relationship and influence of positive affect, negative affect, organizational factor and motivational factor towards the intention to use big data technologies to produce an outcome. Empirical research is used in this study by conducting a survey to collect data.Keywords: big data technologies, motivational factor, negative affect, organizational factor, positive affect, technology acceptance model (TAM)
Procedia PDF Downloads 36234701 IT-Aided Business Process Enabling Real-Time Analysis of Candidates for Clinical Trials
Authors: Matthieu-P. Schapranow
Abstract:
Recruitment of participants for clinical trials requires the screening of a big number of potential candidates, i.e. the testing for trial-specific inclusion and exclusion criteria, which is a time-consuming and complex task. Today, a significant amount of time is spent on identification of adequate trial participants as their selection may affect the overall study results. We introduce a unique patient eligibility metric, which allows systematic ranking and classification of candidates based on trial-specific filter criteria. Our web application enables real-time analysis of patient data and assessment of candidates using freely definable inclusion and exclusion criteria. As a result, the overall time required for identifying eligible candidates is tremendously reduced whilst additional degrees of freedom for evaluating the relevance of individual candidates are introduced by our contribution.Keywords: in-memory technology, clinical trials, screening, eligibility metric, data analysis, clustering
Procedia PDF Downloads 49334700 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain
Authors: Zachary Blanks, Solomon Sonya
Abstract:
Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection
Procedia PDF Downloads 29234699 Kinematical Analysis of Normal Children in Different Age Groups during Gait
Authors: Nawaf Al Khashram, Graham Arnold, Weijie Wang
Abstract:
Background—Gait classifying allows clinicians to differentiate gait patterns into clinically important categories that help in clinical decision making. Reliable comparison of gait data between normal and patients requires knowledge of the gait parameters of normal children's specific age group. However, there is still a lack of the gait database for normal children of different ages. Objectives—The aim of this study is to investigate the kinematics of the lower limb joints during gait for normal children in different age groups. Methods—Fifty-three normal children (34 boys, 19 girls) were recruited in this study. All the children were aged between 5 to 16 years old. Age groups were defined as three types: young child aged (5-7), child (8-11), and adolescent (12-16). When a participant agreed to take part in the project, their parents signed a consent form. Vicon® motion capture system was used to collect gait data. Participants were asked to walk at their comfortable speed along a 10-meter walkway. Each participant walked up to 20 trials. Three good trials were analyzed using the Vicon Plug-in-Gait model to obtain parameters of the gait, e.g., walking speed, cadence, stride length, and joint parameters, e.g. joint angle, force, moments, etc. Moreover, each gait cycle was divided into 8 phases. The range of motion (ROM) angle of pelvis, hip, knee, and ankle joints in three planes of both limbs were calculated using an in-house program. Results—The temporal-spatial variables of three age groups of normal children were compared between each other; it was found that there was a significant difference (p < 0.05) between the groups. The step length and walking speed were gradually increasing from young child to adolescent, while cadence was gradually decreasing from young child to adolescent group. The mean and standard deviation (SD) of the step length of young child, child and adolescent groups were 0.502 ± 0.067 m, 0.566 ± 0.061 m and 0.672 ± 0.053 m, respectively. The mean and SD of the cadence of the young child, child and adolescent groups were 140.11±15.79 step/min, 129±11.84 step/min, and a 115.96±6.47 step/min, respectively. Moreover, it was observed that there were significant differences in kinematic parameters, either whole gait cycle or each phase. For example, RoM of knee angle in the sagittal plane in whole cycle of young child group is (65.03±0.52 deg) larger than child group (63.47±0.47 deg). Conclusion—Our result showed that there are significant differences between each age group in the gait phases and thus children walking performance changes with ages. Therefore, it is important for the clinician to consider age group when analyzing the patients with lower limb disorders before any clinical treatment.Keywords: age group, gait analysis, kinematics, normal children
Procedia PDF Downloads 11934698 Small Target Recognition Based on Trajectory Information
Authors: Saad Alkentar, Abdulkareem Assalem
Abstract:
Recognizing small targets has always posed a significant challenge in image analysis. Over long distances, the image signal-to-noise ratio tends to be low, limiting the amount of useful information available to detection systems. Consequently, visual target recognition becomes an intricate task to tackle. In this study, we introduce a Track Before Detect (TBD) approach that leverages target trajectory information (coordinates) to effectively distinguish between noise and potential targets. By reframing the problem as a multivariate time series classification, we have achieved remarkable results. Specifically, our TBD method achieves an impressive 97% accuracy in separating target signals from noise within a mere half-second time span (consisting of 10 data points). Furthermore, when classifying the identified targets into our predefined categories—airplane, drone, and bird—we achieve an outstanding classification accuracy of 96% over a more extended period of 1.5 seconds (comprising 30 data points).Keywords: small targets, drones, trajectory information, TBD, multivariate time series
Procedia PDF Downloads 4734697 The Effect of Emotional Support towards Quality of Work Life on Balinese Working Women
Authors: I. Ketut Yoga Adityawira, Putu Ayu Novia Viorica, Komang Rahayu Indrawati
Abstract:
In addition to work and take care of the family, Balinese women also have a role to participate in social activities in Bali. So this will have an impact on the quality of work life of Balinese women. One way to reduce the impact of the fulfillment of the role of Balinese women namely through emotional support. The aim of this research is to find out the effect of emotional support towards the quality of work life on Balinese working women. Data were retrieved by quasi-experimental method with pretest-posttest design. Data were analyzed by Analysis of Variance (ANOVA) through SPSS 17.0 for Windows. The number of subjects in this research is 30 people with the criteria: Balinese Women, aged 27 to 55 years old, have a minimum of two years experience of work and has been married. The analysis showed that there is no effect of emotional support towards the quality of work life on Balinese working women, with information there is no significant of probability value p = 0.304 (p > 0.05).Keywords: Balinese women, emotional support, quality of work life, working women
Procedia PDF Downloads 20834696 Big Data Analysis with Rhipe
Authors: Byung Ho Jung, Ji Eun Shin, Dong Hoon Lim
Abstract:
Rhipe that integrates R and Hadoop environment made it possible to process and analyze massive amounts of data using a distributed processing environment. In this paper, we implemented multiple regression analysis using Rhipe with various data sizes of actual data. Experimental results for comparing the performance of our Rhipe with stats and biglm packages available on bigmemory, showed that our Rhipe was more fast than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases. We also compared the computing speeds of pseudo-distributed and fully-distributed modes for configuring Hadoop cluster. The results showed that fully-distributed mode was faster than pseudo-distributed mode, and computing speeds of fully-distributed mode were faster as the number of data nodes increases.Keywords: big data, Hadoop, Parallel regression analysis, R, Rhipe
Procedia PDF Downloads 49734695 Observation of the Effect of Yingyangbao Intervention on Infants and Young Children Aged 6 to 23 Months in Poor Rural Areas of China
Authors: Jin Li, Jing Sun, Xiangkun Cai, Lijuanwang, Yanbin Tang, Junsheng Huo
Abstract:
In order to improve the malnutrition of infants and young children in poor rural areas of China, Chinese government implement a project on improvement of children's nutrition in poor rural areas. Each infant or young child aged 6 to 23 months in selected poor rural areas of China was provided a package of Yingyangbao (YYB) per day, which is a full fat soy powder mixed with multiple micronutrient powders. A technical direction to implement this project comprehensively in poor rural areas of China will be provided by assessing the nutritional status of infants and feeding practices of caregiver. The nutritional intervention was conducted using Yingyangbao for infants aged 6 to 23 months in six poor counties of Shanxi, Yunnan and Hubei Provinces. The caregiver or parents of infants were educated on feeding knowledge and practice. A total of 1840 infants were assessed before the intervention and 1789 infants one year later. The length, weight, hemoglobin concentration of infants were measured to evaluate nutritional status before and after the intervention respectively. The questionnaires were designed to collect data for the basic demographic information and feeding practices. The average weight of infants aged 6 to 23 months increased from 9.59 ± 1.54kg to 9.73 ± 1.61kg one years later (p<0.01), and the average length from 76.0±6.0 to 77.0±6.1(p<0.01). The weight and length of infants aged 12 to 17 months had most obviously improving effect among the three age groups. Before the intervention, the hemoglobin concentration value of infants was 11.7±1.2g/L, and the anemia prevalence was 32.9%. One year later, the hemoglobin concentration value of the infants was increased to 12.0±1.1g/dL, and the anemia prevalence was decreased to 26.0%. There were both statistically significant (p <0.01). The anemia prevalence of infants aged 18 to 23 months had most obviously improving effect,which decreased from 25.0% to 17.2%(p<0.01). The proportion of infants aged 6 to 8 months who received solid, semi-solid or soft foods in time was increased from 89.4% to 91.6%, while there was no statistically significant. The proportion of 6-23 month-old infants who received minimum dietary diversity increased from 55.6% to 60.3%(p <0.01). The differences of the proportion of infants who received minimum meal frequency was no statistically significant between before and after the intervention. The nutritional intervention using Yingyangbao showed the significant effect for improving infants aged 6 to 23 months anemia status, weight and length. The feeding practices were improved through education in the process of nutritional intervention, while the effect is not significant. It is need for Chinese government to explore new publicity pattern.Keywords: nutritional intervention, infants, nutritional status, feeding practice
Procedia PDF Downloads 44434694 Security in Resource Constraints Network Light Weight Encryption for Z-MAC
Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy
Abstract:
Wireless sensor network was formed by a combination of nodes, systematically it transmitting the data to their base stations, this transmission data can be easily compromised if the limited processing power and the data consistency from these nodes are kept in mind; there is always a discussion to address the secure data transfer or transmission in actual time. This will present a mechanism to securely transmit the data over a chain of sensor nodes without compromising the throughput of the network by utilizing available battery resources available in the sensor node. Our methodology takes many different advantages of Z-MAC protocol for its efficiency, and it provides a unique key by sharing the mechanism using neighbor node MAC address. We present a light weighted data integrity layer which is embedded in the Z-MAC protocol to prove that our protocol performs well than Z-MAC when we introduce the different attack scenarios.Keywords: hybrid MAC protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node dataprocessing, Z-MAC
Procedia PDF Downloads 14434693 Implications of Human Cytomegalovirus as a Protective Factor in the Pathogenesis of Breast Cancer
Authors: Marissa Dallara, Amalia Ardeljan, Lexi Frankel, Nadia Obaed, Naureen Rashid, Omar Rashid
Abstract:
Human Cytomegalovirus (HCMV) is a ubiquitous virus that remains latent in approximately 60% of individuals in developed countries. Viral load is kept at a minimum due to a robust immune response that is produced in most individuals who remain asymptomatic. HCMV has been recently implicated in cancer research because it may impose oncomodulatory effects on tumor cells of which it infects, which could have an impact on the progression of cancer. HCMV has been implicated in increased pathogenicity of certain cancers such as gliomas, but in contrast, it can also exhibit anti-tumor activity. HCMV seropositivity has been recorded in tumor cells, but this may also have implications in decreased pathogenesis of certain forms of cancer such as leukemia as well as increased pathogenesis in others. This study aimed to investigate the correlation between cytomegalovirus and the incidence of breast cancer. Methods The data used in this project was extracted from a Health Insurance Portability and Accountability Act (HIPAA) compliant national database to analyze the patients infected versus patients not infection with cytomegalovirus using ICD-10, ICD-9 codes. Permission to utilize the database was given by Holy Cross Health, Fort Lauderdale, for the purpose of academic research. Data analysis was conducted using standard statistical methods. Results The query was analyzed for dates ranging from January 2010 to December 2019, which resulted in 14,309 patients in both the infected and control groups, respectively. The two groups were matched by age range and CCI score. The incidence of breast cancer was 1.642% and 235 patients in the cytomegalovirus group compared to 4.752% and 680 patients in the control group. The difference was statistically significant by a p-value of less than 2.2x 10^-16 with an odds ratio of 0.43 (0.4 to 0.48) with a 95% confidence interval. Investigation into the effects of HCMV treatment modalities, including Valganciclovir, Cidofovir, and Foscarnet, on breast cancer in both groups was conducted, but the numbers were insufficient to yield any statistically significant correlations. Conclusion This study demonstrates a statistically significant correlation between cytomegalovirus and a reduced incidence of breast cancer. If HCMV can exert anti-tumor effects on breast cancer and inhibit growth, it could potentially be used to formulate immunotherapy that targets various types of breast cancer. Further evaluation is warranted to assess the implications of cytomegalovirus in reducing the incidence of breast cancer.Keywords: human cytomegalovirus, breast cancer, immunotherapy, anti-tumor
Procedia PDF Downloads 20834692 The Study of Power as a Pertinent Motive among Tribal College Students of Assam
Authors: K. P. Gogoi
Abstract:
The current research study investigates the motivational pattern viz Power motivation among the tribal college students of Assam. The sample consisted of 240 college students (120 tribal and 120 non-tribal) ranging from 18-24 years, 60 males and 60 females for both tribal’s and non-tribal’s. Attempts were made to include all the prominent tribes of Assam viz. Thematic Apperception Test, Power motive Scale and a semi structured interview schedule were used to gather information about their family types, parental deprivation, parental relations, social and political belongingness. Mean, Standard Deviation, and t-test were the statistical measures adopted in this 2x2 factorial design study. In addition to this discriminant analysis has been worked out to strengthen the predictive validity of the obtained data. TAT scores reveal significant difference between the tribal’s and non-tribal on power motivation. However results obtained on gender difference indicates similar scores among both the cultures. Cross validation of the TAT results was done by using the power motive scale by T. S. Dapola which confirms the results on need for power through TAT scores. Power motivation has been studied in three directions i.e. coercion, inducement and restraint. An interesting finding is that on coercion tribal’s score high showing significant difference whereas in inducement or seduction the non-tribal’s scored high showing significant difference. On the other hand on restraint no difference exists between both cultures. Discriminant analysis has been worked out between the variables n-power, coercion, inducement and restraint. Results indicated that inducement or seduction (.502) is the dependent measure which has the most discriminating power between these two cultures.Keywords: power motivation, tribal, social, political, predictive validity, cross validation, coercion, inducement, restraint
Procedia PDF Downloads 48634691 Short-Term Effects of Extreme Temperatures on Cause Specific Cardiovascular Admissions in Beijing, China
Authors: Deginet Aklilu, Tianqi Wang, Endwoke Amsalu, Wei Feng, Zhiwei Li, Xia Li, Lixin Tao, Yanxia Luo, Moning Guo, Xiangtong Liu, Xiuhua Guo
Abstract:
Extreme temperature-related cardiovascular diseases (CVDs) have become a growing public health concern. However, the impact of temperature on the cause of specific CVDs has not been well studied in the study area. The objective of this study was to assess the impact of temperature on cause-specific cardiovascular hospital admissions in Beijing, China. We obtained data from 172 large general hospitals from the Beijing Public Health Information Center Cardiovascular Case Database and China. Meteorological Administration covering 16 districts in Beijing from 2013 to 2017. We used a time-stratified case crossover design with a distributed lag nonlinear model (DLNM) to derive the impact of temperature on CVD in hospitals back to 27 days on CVD admissions. The temperature data were stratified as cold (extreme and moderate ) and hot (moderate and extreme ). Within five years (January 2013-December 2017), a total of 460,938 (male 54.9% and female 45.1%) CVD admission cases were reported. The exposure-response relationship for hospitalization was described by a "J" shape for the total and cause-specific. An increase in the six-day moving average temperature from moderate hot (30.2 °C) to extreme hot (36.9 °C) resulted in a significant increase in CVD admissions of 16.1%(95% CI = 12.8%-28.9%). However, the effect of cold temperature exposure on CVD admissions over a lag time of 0-27 days was found to be non significant, with a relative risk of 0.45 (95% CI = 0.378-0.55) for extreme cold (-8.5 °C)and 0.53 (95% CI = 0.47-0.60) for moderate cold (-5.6 °C). The results of this study indicate that exposure to extremely high temperatures is highly associated with an increase in cause-specific CVD admissions. These finding may guide to create and raise awareness of the general population, government and private sectors regarding on the effects of current weather conditions on CVD.Keywords: admission, Beijing, cardiovascular diseases, distributed lag non linear model, temperature
Procedia PDF Downloads 6234690 Survival Data with Incomplete Missing Categorical Covariates
Authors: Madaki Umar Yusuf, Mohd Rizam B. Abubakar
Abstract:
The survival censored data with incomplete covariate data is a common occurrence in many studies in which the outcome is survival time. With model when the missing covariates are categorical, a useful technique for obtaining parameter estimates is the EM by the method of weights. The survival outcome for the class of generalized linear model is applied and this method requires the estimation of the parameters of the distribution of the covariates. In this paper, we propose some clinical trials with ve covariates, four of which have some missing values which clearly show that they were fully censored data.Keywords: EM algorithm, incomplete categorical covariates, ignorable missing data, missing at random (MAR), Weibull Distribution
Procedia PDF Downloads 40534689 Psychometric Properties and Factor Structure of the College Readiness Questionnaire
Authors: Muna Al-Kalbani, Thuwayba Al Barwani, Otherine Neisler, Hussain Alkharusi, David Clayton, Humaira Al-Sulaimani, Mohammad Khan, Hamad Al-Yahmadi
Abstract:
This study describes the psychometric properties and factor structure of the University Readiness Survey (URS). Survey data were collected from sample of 2652 students from Sultan Qaboos University. Exploratory factor analysis identified ten significant factors underlining the structure. The results of Confirmatory factor analysis showed a good fit to the data where the indices for the revised model were χ2(df = 1669) = 6093.4; CFI = 0.900; GFI =0.926; PCLOSE = 1.00 and RMSAE = 0.030 where each of these indices were above threshold. The overall value of Cronbach’s alpha was 0.899 indicating that the instrument score was reliable. Results imply that the URS is a valid measure describing the college readiness pattern among Sultan Qaboos University students and the Arabic version could be used by university counselors to identify students’ readiness factors. Nevertheless, further validation of the of the USR is recommended.Keywords: college readiness, confirmatory factor analysis, reliability, validity
Procedia PDF Downloads 22634688 Pressure Sensitive v/s Pressure Resistance Institutional Investors towards Socially Responsible Investment Behavior: Evidence from Malaysia
Authors: Mohammad Talha, Abdullah Sallehhuddin Abdullah Salim, Abdul Aziz Abdul Jalil, Norzarina Md Yatim
Abstract:
The significant contribution of institutional investors across the globe in socially responsible investment (SRI) is well-documented in the literature. Nevertheless, how the SRI behavior of pressure-resistant, pressure-sensitive and pressure-indeterminate institutional investors remain unexplored extensively. This study examines the moderating effect of institutional investors towards socially responsible investment behavior in the context of emerging economies. This study involved 229 institutional investors in Malaysia. A total of 1,145 questionnaires were distributed. Out of these, 308 (130 pressure sensitive institutional investors and 178 pressure resistant institutional investors), representing a usable rate of 26.9 per cent, were found fit for data analysis. Utilizing multi-group analysis via AMOS, this study found evidence for the presence of moderating effect by a type of institutional investor topology in socially responsible investment behavior. At intentional level, it established that type of institutional investor was a significant moderator in the relationship between subjective norms, and caring ethical climate with intention among pressure-resistant institutional investors, as well as between perceived behavioral controls with intention among pressure-sensitive institutional investors. At the behavioral level, the results evidenced that there was only a significant moderating effect between intention and socially responsible investment behavior among pressure-resistant institutional investors. The outcomes are expected to benefit policy makers, regulators, and market participants in order to leap forward SRI growth in developing economies. Nevertheless, the outcomes are limited to a few factors, and it is believed that future studies shall address those limitations.Keywords: socially responsible investment, behavior, pressure sensitive investors, pressure insensitive investors, Institutional Investment Malaysia
Procedia PDF Downloads 36834687 Determinants of Food Insecurity Among Smallholder Farming Households in Southwest Area of Nigeria
Authors: Adesomoju O. A., E. A. Onemolease, G. O. Igene
Abstract:
The study analyzed the determinants of food insecurity among smallholder farming households in the Southwestern part of Nigeria with Ondo and Osun States in focus. Multi-stage sampling procedures were employed to gather data from 389 farming households (194 from Ondo State and 195 from Osun State) spread across 4 agricultural zones, 8 local governments, and 24 communities. The data was analyzed using descriptive statistics, Ordinal regression, and Friedman test. Results revealed the average age of the respondents was 47 years with majority being male 63.75% and married 82.26% and having an household size of 6. Most household heads were educated (94.09%), engaged in farming for about 19 years, and do not belong to cooperatives (73.26%). Respondents derived income from both farming and non-farm activities with the average farm income being N216,066.8/annum and non-farm income being about N360,000/annum. Multiple technologies were adopted by respondents such as application of herbicides (77.63%), pesticides (73.26%) and fertilizers (66.58%). Using the FANTA Cornel model, food insecurity was prevalent in the study area with the majority (61.44%) of the households being severely food insecure, and 35.73% being moderately food insecure. In comparison, 1.80% and 1.03% were food-secured and mildly food insecure. The most significant constraints to food security among the farming households were the inability to access credit (mean rank = 8.78), poor storage infrastructure (8.57), inadequate capital (8.56), and high cost of farm chemicals (8.35). Significant factors related to food insecurity among the farming households were age (b = -0.059), education (b = -0.376), family size (b = 0.197), adoption of technology (b = -0.198), farm income (b = -0.335), association membership (b = -0.999), engagement in non-farm activities (b = -1.538), and access to credit (b = -0.853). Linking farmers' groups to credit institutions and input suppliers was proposed.Keywords: food insecurity, FANTA Cornel, Ondo, Osun, Nigeria, Southwest, Livelihood
Procedia PDF Downloads 3034686 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach
Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas
Abstract:
Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)
Procedia PDF Downloads 7334685 COVID–19 Impact on Passenger and Cargo Traffic: A Case Study
Authors: Maja Čović, Josipa Bojčić, Bruna Bacalja, Gorana Jelić Mrčelić
Abstract:
The appearance of the COVID-19 disease and its fast-spreading brought global pandemic and health crisis. In order to prevent the further spreading of the virus, the governments had implemented mobility restriction rules which left a negative mark on the world’s economy. Although there is numerous research on the impact of COVID-19 on marine traffic around the world, the objective of this paper is to consider the impact of COVID-19 on passenger and cargo traffic in Port of Split, in the Republic of Croatia. Methods used to make the theoretical and research part of the paper are descriptive method, comparative method, compilation, inductive method, deductive method, and statistical method. Paper relies on data obtained via Port of Split Authority and analyses trends in passenger and cargo traffic, including the year 2020, when the pandemic broke. Significant reductions in income, disruptions in transportation and traffic, as well as other maritime services are shown in the paper. This article also observes a significant decline in passenger traffic, cruising traffic and also observes the dynamic of cargo traffic inside the port of Split.Keywords: COVID-19, pandemic, passenger traffic, ports, trends, cargo traffic
Procedia PDF Downloads 216