Search results for: sensitivity and resistance to antibiotics
5021 Prevalence of Antibiotic Resistant Enterococci in Treated Wastewater Effluent in Durban, South Africa and Characterization of Vancomycin and High-Level Gentamicin-Resistant Strains
Authors: S. H. Gasa, L. Singh, B. Pillay, A. O. Olaniran
Abstract:
Wastewater treatment plants (WWTPs) have been implicated as the leading reservoir for antibiotic resistant bacteria (ARB), including Enterococci spp. and antibiotic resistance genes (ARGs), worldwide. Enterococci are a group of clinically significant bacteria that have gained much attention as a result of their antibiotic resistance. They play a significant role as the principal cause of nosocomial infections and dissemination of antimicrobial resistance genes in the environment. The main objective of this study was to ascertain the role of WWTPs in Durban, South Africa as potential reservoirs for antibiotic resistant Enterococci (ARE) and their related ARGs. Furthermore, the antibiogram and resistance gene profile of Enterococci species recovered from treated wastewater effluent and receiving surface water in Durban were also investigated. Using membrane filtration technique, Enterococcus selective agar and selected antibiotics, ARE were enumerated in samples (influent, activated sludge, before chlorination and final effluent) collected from two WWTPs, as well as from upstream and downstream of the receiving surface water. Two hundred Enterococcus isolates recovered from the treated effluent and receiving surface water were identified by biochemical and PCR-based methods, and their antibiotic resistance profiles determined by the Kirby-Bauer disc diffusion assay, while PCR-based assays were used to detect the presence of resistance and virulence genes. High prevalence of ARE was obtained at both WWTPs, with values reaching a maximum of 40%. The influent and activated sludge samples contained the greatest prevalence of ARE with lower values observed in the before and after chlorination samples. Of the 44 vancomycin and high-level gentamicin-resistant isolates, 11 were identified as E. faecium, 18 as E. faecalis, 4 as E. hirae while 11 are classified as “other” Enterococci species. High-level aminoglycoside resistance for gentamicin (39%) and vancomycin (61%) was recorded in species tested. The most commonly detected virulence gene was the gelE (44%), followed by asa1 (40%), while cylA and esp were detected in only 2% of the isolates. The most prevalent aminoglycoside resistance genes were aac(6')-Ie-aph(2''), aph(3')-IIIa, and ant(6')-Ia detected in 43%, 45% and 41% of the isolates, respectively. Positive correlation was observed between resistant phenotypes to high levels of aminoglycosides and presence of all aminoglycoside resistance genes. Resistance genes for glycopeptide: vanB (37%) and vanC-1 (25%), and macrolide: ermB (11%) and ermC (54%) were detected in the isolates. These results show the need for more efficient wastewater treatment and disposal in order to prevent the release of virulent and antibiotic resistant Enterococci species and safeguard public health.Keywords: antibiogram, enterococci, gentamicin, vancomycin, virulence signatures
Procedia PDF Downloads 2195020 Impact of Grade Sensitivity on Learning Motivation and Academic Performance
Authors: Salwa Aftab, Sehrish Riaz
Abstract:
The objective of this study was to check the impact of grade sensitivity on learning motivation and academic performance of students and to remove the degree of difference that exists among students regarding the cause of their learning motivation and also to gain knowledge about this matter since it has not been adequately researched. Data collection was primarily done through the academic sector of Pakistan and was depended upon the responses given by students solely. A sample size of 208 university students was selected. Both paper and online surveys were used to collect data from respondents. The results of the study revealed that grade sensitivity has a positive relationship with the learning motivation of students and their academic performance. These findings were carried out through systematic correlation and regression analysis.Keywords: academic performance, correlation, grade sensitivity, learning motivation, regression
Procedia PDF Downloads 4005019 Antibiogram Profile of Antibacterial Multidrug Resistance in Democratic Republic of Congo: Situation in Bukavu City Hospitals
Authors: Justin Ntokamunda Kadima, Christian Ahadi Irenge, Patient Birindwa Mulashe, Félicien Mushagalusa Kasali, Patient Wimba
Abstract:
Background: Bacterial strains carrying multidrug resistance traits are gaining ground worldwide, especially in countries with limited resources. This study aimed to evaluate the spreading of multidrug-resistant bacteria strains in Bukavu city hospitals in the Democratic Republic of Congo. Methods: We analyzed 758 antibiogram data recorded in files of patients consulted between January 2016 and December 2017 at three reference hospitals selected as sentinel sites, namely the Panzi General Reference Hospital (HGP), BIO -PHARM hospital (HBP), and Saint Luc Clinic (CSL). Results: Of 758 isolates tested, the laboratories identified 12 bacterial strains in 712 isolates, of which 223 (29.42%) presented MDR profile, including Escherichia coli (11.48%), Klebsiella pneumonia (6.07%), Enterobacter (5.8%), Staphylococcus aureus and coagulase-negative Staphylococci (1.58%), Proteus mirabilis (1.85%), Salmonella enterica (1.19%), Pseudomonas aeruginosa (0.53%), Streptococcus pneumonia (0.4%)), Citrobacter (0.13%), Neisseria gonorrhea (0.13%), Enterococcus faecalis (0.13%), and Morganella morganii (0.13%). Infected patients were significantly more adults (73.1% vs. 21.5%) compared to children and mainly women (63.7% vs. 30.9%; p = 0.001). Conclusion: The observed expansion requires that hospital therapeutic committees set up an effective clinical management system and define the right combinations of antibiotics.Keywords: multidrug resistance, bacteria, antibiogram, Bukavu
Procedia PDF Downloads 825018 Synthesis, Antibacterial Activities, and Synergistic Effects of Novel Juglone and Naphthazarin Derivatives Against Clinical Methicillin-Resistant Staphylococcus aureus Strains
Authors: Zohra Benfodda, Valentin Duvauchelle, Chaimae Majdi, David Bénimélis, Catherine Dunyach-Remy, Patrick Meffre
Abstract:
New antibiotics are necessary to treat microbial pathogens, especially ESKAPE pathogens that are becoming increasingly resistant to available treatment. Despite the medical need, the number of newly approved drugs continues to decline. The majority of antibiotics under clinical development are natural products or derivatives thereof. 43 juglone/naphthazarin derivatives were synthesized using Minisci-type direct C–H alkylation and evaluated for their antibacterial properties against various clinical and reference Gram-positive MSSA, clinical Gram-positive MRSA. Different compounds of the synthesized series showed promising activity against clinical and reference MSSA (MIC: 1–8 μg/ml) and good efficacy against clinical MRSA (MIC: 2–8 μg/ml) strains. The synergistic effects of active compounds were evaluated with reference antibiotics (vancomycin and cloxacillin), and it was found that the antibiotic combination with those active compounds efficiently enhanced the antimicrobial activity and consequently the MIC values of reference antibiotics were lowered up to 1/16th of the original MIC. These synthesized compounds did not present hemolytic activity on sheep red blood cells. In addition to the in silico prediction of ADME profile parameter which is promising and encouraging for further development.Keywords: juglone, naphthazarin, antibacterial, clinical MRSA, synergistic studies, MIC determination
Procedia PDF Downloads 1265017 Oleuropein Ameliorates Palmitate-Induced Insulin Resistance by Increasing GLUT4 Translocation through Activation of AMP-Activated Protein Kinase in Rat Soleus Muscles
Authors: Hakam Alkhateeb
Abstract:
Oleuropein, the main constituent of leaves and fruits of the olive tree, has been demonstrated to exert beneficial effects on parameters relevant to the normal homeostatic mechanisms of glucose regulation in rat skeletal muscle. However, the antidiabetic effect of oleuropein, to our knowledge, has not been examined. Therefore, in this study, we examined whether oleuropein ameliorated palmitate-induced insulin resistance in skeletal muscle. To examine this question, insulin resistance was rapidly induced by incubating (12h) soleus muscle with a high concentration of palmitate(2mM). Subsequently, we attempted to restore insulin sensitivity by incubating (12h) muscles with oleuropien (1.5mM), while maintaining high concentrations of palmitate. Palmitate treatment for 12 h reduced insulin-stimulated glucose transport, GLUT4 translocationandAS160 phosphorylation. Oleuropein treatment (12 h) fully restoredinsulin-stimulated glucose transport, GLUT4translocationandAS160 phosphorylation. Inhibition of PI3K phosphorylation with wortmannin (1µM)did not affect the oleuropein-induced improvements in insulin-stimulated glucose transport, GLUT4 translocation, and AS160 phosphorylation. These results suggested that the improvements in these parameters cannot account for activating PI3K pathway. Taken altogether, it appears that oleuropein, through activation of another pathway like activated protein kinase (AMPK), may provide a possible strategy by which they ameliorate palmitate-induced insulin resistance in skeletal muscles.Keywords: AS160, diabetes, GLUT4, oleuropein
Procedia PDF Downloads 2225016 Associations and Interactions of Delivery Mode and Antibiotic Exposure with Infant Cortisol Level: A Correlational Study
Authors: Samarpreet Singh, Gerald Giesbrecht
Abstract:
Both c-section and antibiotic exposure are linked to gut microbiota imbalance in infants. Such disturbance is associated with the Hypothalamic-Pituitary-Adrenal (HPA) axis function. However, the literature only has contradicting evidence for the association between c-sections and the HPA axis. Therefore, this study aims to test if the mode of delivery and antibiotics exposure is associated with the HPA axis. Also, whether exposure to both interacts with the HPA-axis. It was hypothesized that associations and interactions would be observed. Secondary data analysis was used for this co-relational study. Data for the mode of delivery and antibiotics exposure variables were documented from hospital records or self-questionnaires. In addition, cortisol levels (Area under the curve with respect to increasing (AUCi) and Area under the curve with respect to ground (AUCg)) were based on saliva collected from three months old during the infant’s visit to the lab and after drawing blood. One-way and between-subject ANOVA analyses were run on data. No significant association between delivery mode and infant cortisol level was found, AUCi and AUCg, p > .05. Only the infant’s AUCg was found to be significantly higher if there were antibiotics exposure at delivery (p = .001) or their mothers were exposed during pregnancy (p < .05). Infants born by c-section and exposed to antibiotics at three months had higher AUCi than those born vaginally, p < .02. These results imply that antibiotic exposure before three months is associated with an infant’s stress response. The association might increase if antibiotic exposure occurs three months after a c-section birth. However, more robust and causal evidence in future studies is needed, given a variable group’s statistically weak sample size. Nevertheless, the results of this study still highlight the unintended consequences of antibiotic exposure during delivery and pregnancy.Keywords: HPA-axis, antibiotics, c-section, gut-microbiota, development, stress
Procedia PDF Downloads 725015 Impacts and Management of Oil Spill Pollution along the Chabahar Bay by ESI Mapping, Iran
Authors: M. Sanjarani, A. Danehkar, A. Mashincheyan, A. H. Javid, S. M. R. Fatemi
Abstract:
The oil spill in marine water has direct impact on coastal resources and community. Environmental Sensitivity Index (ESI) map is the first step to assess the potential impact of an oil spill and minimize the damage of coastal resources. In order to create Environmental Sensitivity Maps for the Chabahar bay (Iran), information has been collected in three different layers (Shoreline Classification, Biological and Human- uses resources) by means of field observations and measurements of beach morphology, personal interviews with professionals of different areas and the collection of bibliographic information. In this paper an attempt made to prepare an ESI map for sensitivity to oil spills of Chabahar bay coast. The Chabahar bay is subjected to high threaten to oil spill because of port, dense mangrove forest,only coral spot in Oman Sea and many industrial activities. Mapping the coastal resources, shoreline and coastal structures was carried out using Satellite images and GIS technology. The coastal features classified into three major categories as: Shoreline Classification, Biological and Human uses resources. The important resources classified into mangrove, Exposed tidal flats, sandy beach, etc. The sensitivity of shore was ranked as low to high (1 = low sensitivity,10 = high sensitivity) based on geomorphology of Chabahar bay coast using NOAA standards (sensitivity to oil, ease of clean up, etc). Eight ESI types were found in the area namely; ESI 1A, 1C, 3A, 6B, 7, 8B,9A and 10D. Therefore, in the study area, 50% were defined as High sensitivity, less than 1% as Medium, and 49% as low sensitivity areas. The ESI maps are useful to the oil spill responders, coastal managers and contingency planners. The overall ESI mapping product can provide a valuable management tool not only for oil spill response but for better integrated coastal zone management.Keywords: ESI, oil spill, GIS, Chabahar Bay, Iran
Procedia PDF Downloads 3645014 Resistance Analysis for a Trimaran
Authors: C. M. De Marco Muscat-Fenech, A. M. Grech La Rosa
Abstract:
Importance has been given to resistance analysis for various types of vessels; however explicit guidelines applied to multihull vessels have not been clearly defined. The purpose of this investigation is to highlight the importance of the vessel’s layout in terms of three axes positioning, the transverse (separation), the longitudinal (stagger) and the vertical (draught) with respect to resistance analysis. A vessel has the potential to experience less resistance, at a particular range of speeds, for a vast selection of hull positioning. Many potential layouts create opportunities of various design for both the commercial and leisure market.Keywords: multihull, reistance, trimaran, vessels
Procedia PDF Downloads 4775013 Effects of Exercise in the Cold on Glycolipid Metabolism and Insulin Sensitivity in Obese Rats
Authors: Chaoge Wang, Xiquan Weng, Yan Meng, Wentao Lin
Abstract:
Objective: Cold exposure and exercise serve as two physiological stimuli to glycolipid metabolism and insulin sensitivity. So far, it remains to be elucidated whether exercise plus cold exposure can produce an addictive effect on promoting glycolipid metabolism and insulin sensitivity. Methods: 64 SD rats were subjected to high-fat and high-sugar diets for 9-week and sucessfully to establish an obesity model. They were randomly divided into 8 groups: normal control group (NC), normal exercise group (NE), continuous cold control group (CC), continuous cold exercise group (CE), acute clod control group (AC), acute cold exercise group (AE), intermittent cold control group (IC) and intermittent cold exercise group (IE). For continuous cold exposure, the rats stayed in a cold environment all day; for acute cold exposure, the rats were exposed to cold for only 4h before the end of the experiment; for intermittent cold exposure, the rats were exposed to cold for 4h per day. The protocol for treadmill runnings were as follows: 25m/min (speed), 0°C (slope), 30 mins each time, an interval for 10 mins between two runnings, twice/two days, lasting for 5 weeks. Sampling were conducted on the 5th weekend. Blood lipids, free fatty acids, blood glucose (FBG), and serum insulin (FINS) were examined, and the insulin resistance index (HOMA-IR = FBG (mmol/L)×FINS(mIU/L)/22.5) was calculated. SPSS 22.0 was used for statistical analysis of the experimental results, and the ANOVA analysis was performed between groups (p < 0.05 was significant). Results: (1) Compared with the NC group, the FBG of the rats was significantly declined in the NE, CE, AC, AE, and IE groups (p < 0.05), the FINS of the rats was significantly declined in the AE group (p < 0.05), the HOMA-IR of the rats was significantly declined in the NE, CE, AC, AE and IE groups (p < 0.05). Compared with the NE group, the FBG of the rats was significantly declined in the CE, AE, and IE groups (p < 0.05), the FINS and HOMA-IR of the rats were significantly declined in the AE group (p < 0.05). (2) Compared with the NC group, the CHO, TG, LDL-C, and FFA of the rats were significantly declined in CE and IE groups (p < 0.05), the HDL-C of the rats was significantly higher in NE, CC, CE, AE, and IE groups (p < 0.05). Compared with the NE group, the HDL-C of the rats was significantly higher in the CE and IE groups (p < 0.05). Conclusions: Sedentariness or exercise in the acute cold doesn't make sense in the treatment of type 2 diabetes, which led to one-off increases of the body's insulin sensitivity. Exercise in the continuous and intermittent cold can effectively decline the FBG, TC, TG, LDL-C, and FFA levels and increase the HDL-C level and insulin sensitivity in obese rats. These results can impact the prevention and treatment of type 2 diabetes.Keywords: cold, exercise, insulin sensitivity, obesity
Procedia PDF Downloads 1445012 Design and Simulation High Sensitive MEMS Capacitive Pressure Sensor with Small Size for Glaucoma Treatment
Authors: Yadollah Hezarjaribi, Mahdie Yari Esboi
Abstract:
In this paper, a novel MEMS capacitive pressure sensor with small size and high sensitivity is presented. This sensor has the separated clamped square diaphragm and the movable plate. The diaphragm material is polysilicon. The movable and fixed plates and mechanical coupling are gold. The substrate and diaphragm are pyrex glass and polysilicon, respectively. In capacitive sensor the sensitivity is proportional to deflection and capacitance changes with pressure for this reason with this design is improved the capacitance and sensitivity with small size. This sensor is designed for low pressure between 0-60 mmHg that is used for medical application such as treatment of an incurable disease called glaucoma. The size of this sensor is 350×350 µm2 and the thickness of the diaphragm is 2µm with 1μ air gap. This structure is designed by intellisuite software. In this MEMS capacitive pressure sensor the sensor sensitivity, diaphragm mechanical sensitivity for polysilicon diaphragm are 0.0469Pf/mmHg, 0.011 μm/mmHg, respectively. According to the simulating results for low pressure, the structure with polysilicon diaphragm has more change of the displacement and capacitance, this leads to high sensitivity than other diaphragms.Keywords: glaucoma, MEMS capacitive pressure sensor, square clamped diaphragm, polysilicon
Procedia PDF Downloads 3195011 Increase of Sensitivity in 3D Suspended Polymeric Microfluidic Platform through Lateral Misalignment
Authors: Ehsan Yazdanpanah Moghadam, Muthukumaran Packirisamy
Abstract:
In the present study, a design of the suspended polymeric microfluidic platform is introduced that is fabricated with three polymeric layers. Changing the microchannel plane to be perpendicular to microcantilever plane, drastically decreases moment of inertia in that direction. In addition, the platform is made of polymer (around five orders of magnitude less compared to silicon). It causes significant increase in the sensitivity of the cantilever deflection. Next, although the dimensions of this platform are constant, by misaligning the embedded microchannels laterally in the suspended microfluidic platform, the sensitivity can be highly increased. The investigation is studied on four fluids including water, seawater, milk, and blood for flow ranges from low rate of 5 to 70 µl/min to obtain the best design with the highest sensitivity. The best design in this study shows the sensitivity increases around 50% for water, seawater, milk, and blood at the flow rate of 70 µl/min by just misaligning the embedded microchannels in the suspended polymeric microfluidic platform.Keywords: microfluidic, MEMS, biosensor, microresonator
Procedia PDF Downloads 2235010 Modification of Four Layer through the Thickness Woven Structure for Improved Impact Resistance
Authors: Muhammad Liaqat, Hafiz Abdul Samad, Syed Talha Ali Hamdani, Yasir Nawab
Abstract:
In the current research, the four layers, orthogonal through the thickness, 2D woven, 3D fabric structure was modified to improve the impact resistance of 3D fabric reinforced composites. This was achieved by imparting the auxeticity into four layers through the thickness woven structure. A comparison was made between the standard and modified four layers through the thickness woven structure in terms of auxeticity, penetration and impact resistance. It was found that the modified structure showed auxeticity in both warp and weft direction. It was also found that the penetration resistance of modified sample was less as compared to the standard structure, but impact resistance was improved up to 6.7% of modified four layers through the thickness woven structure.Keywords: 2D woven, 3D fabrics, auxetic, impact resistance, orthogonal through the thickness
Procedia PDF Downloads 3375009 Studies on Virulence Factors Analysis in Streptococcus agalactiae from the Clinical Isolates
Authors: Natesan Balasubramanian, Palpandi Pounpandi, Venkatraman Thamil Priya, Vellasamy Shanmugaiah, Karubbiah Balakrishnan, Mandayam Anandam Thirunarayan
Abstract:
Streptococcus agalactiae is commonly known as Group B Streptococcus (GBS) and it is the most common cause of life-threatening bacterial infection. GBS first considered as a veterinary pathogen causing mastitis in cattle later becomes a human pathogen for severe neonatal infections. In this present study, a total of 20 new clinical isolates of S. agalactiae were collected from male (6) and female patient (14) with different age group. The isolates were from Urinary tract infection (UTI), blood, pus and eye ulcer. All the 20 S. agalactiae isolates has clear hemolysis properties on blood agar medium and were identified by serogrouping and MALTI-TOF-MS analysis. Antibiotic susceptibility/resistance test was performed for 20 S. agalactiae isolates, further phenotypic resistance pattern was observed for tetracycline, vancomycin, ampicillin and penicillin. Genotypically we found two antibiotic resistance genes such as Betalactem antibiotic resistance gene (Tem) (70%) and tetracycline resistance gene Tet(O) 15% in our isolates. Six virulence factors encoding genes were performed by PCR in twenty GBS isolates, cfb gene (100%), followed by, cylE(90.47%), lmp(85.7%), bca(71.42%), rib (38%) and low frequency in bac gene (4.76%) were determined. Most of the S. agalactiae isolates produced strong biofilm in the polystyrene surface (hydrophobic), and low-level biofilm formation was found in glass tube (hydrophilic) surface. lytR is secreted protein and localized in bacterial cell wall, extra cellular membrane, and cytoplasm. In silico docking studies were performed for lytR protein with four antibiofilm compounds, including a peptide (PR39) with the docking study showed peptide has strong interaction followed by ellagic acid and interaction length is 2.95, 2.97 and 2.95 A°. In ligand EGCGO10 and O11 two atoms intract with lytR (Leu271), with binding bond affinity length is 3.24 and 3.14. The aminoacid Leu 271 is act as an impartant aminoacid, since ellagic acid and EGCG interact with same aminoacid.Keywords: antibiotics, biofilms, clinical isolates, S. agalactiae, virulence
Procedia PDF Downloads 1085008 Literature Review of the Antibacterial Effects of Salvia Officinalis L.
Authors: Benguerine Zohra, Merzak Siham, Bouziane Cheimaa, Si Tayeb Fatima, Jou Siham, Belkessam
Abstract:
Introduction: Antibiotics, widely produced and consumed in large quantities, have proven problematic due to various types of side effects. The development of bacterial resistance to currently available antibiotics has made the search for new antibacterial agents necessary. One alternative strategy to combat antibiotic-resistant bacteria is the use of natural antimicrobial substances such as plant extracts. The objective of this study is to provide an overview of the antibacterial effects of a plant native to the Middle East and Mediterranean regions, Salvia officinalis (sage). Materials and Methods: This review article was conducted by searching studies in the PubMed, Scopus, JSTOR, and SpringerLink databases. The search terms were "Salvia officinalis L." and "antibacterial effects." Only studies that met our inclusion criteria (in English, antibacterial effects of Salvia officinalis L., and primarily dating from 2012 to 2023) were accepted for further review. Results and Discussion: The initial search strategy identified approximately 78 references, with only 13 articles included in this review. The synthesis of the articles revealed that several data sources confirm the antimicrobial effects of S. officinalis. Its essential oil and alcoholic extract exhibit strong bactericidal and bacteriostatic effects against both Gram-positive and Gram-negative bacteria. Conclusion: The significant value of the extract, oil, and leaves of S. officinalis calls for further studies on the other useful and unknown properties of this multi-purpose plant.Keywords: salvia officinalis, literature review, antibacterial, effects
Procedia PDF Downloads 385007 The Effect of Nanocomposite on the Release of Imipenem on Bacteria Causing Infections with Implants
Authors: Mohammad Hossein Pazandeh, Monir Doudi, Sona Rostampour Yasouri
Abstract:
—Results The prudent administration of antibiotics aims to avoid the side effects and the microbes' resistance to antibiotics. An approach developing methods of local administration of antibiotics is especially required for localized infections caused by bacterial colonization of medical devices or implant materials. Among the wide variety of materials used as drug delivery systems, bioactive glasses (BG) have large utilization in regenerative medicine . firstly, the production of bioactive glass/nickel oxide/tin dioxide nanocomposite using sol-gel method, and then, the controlled release of imipenem from the double metal oxide/bioactive glass nanocomposite, and finally, the investigation of the antibacterial property of the nanocomposite. against a number of implant-related infectious agents. In this study, BG/SnO2 and BG/NiO single systema with different metal oxide present and BG/NiO/SnO2 nanocomposites were synthesized by sol-gel as drug carriers for tetracycline and imepinem. These two antibiotics were widely used for osteomyelitis because of its favorable penetration and bactericidal effect on all the probable osteomyelitis pathogens. The antibacterial activity of synthesized samples were evaluated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa as bacteria model using disk diffusion method. The BG modification using metal oxides results to antibacterial property of samples containing metal oxide with highest efficiency for nancomposite. bioactivity of all samples was assessed by determining the surface morphology, structural and composition changes using scanning electron microscopy (SEM), FTIR and X-ray diffraction (XRD) spectroscopy, respectively, after soaking in simulated body fluid (SBF) for 28 days. The hydroxyapatite formation was clearly observed as a bioactivity measurement. Then, BG nanocomposite sample was loaded using two antibiotics, separately and their release profiles were studied. The BG nancomposite sample was shown the slow and continuous drug releasing for a period of 72 hours which is desirable for a drug delivery system. The loaded antibiotic nanocomposite sample retaining antibacterial property and showing inactivation effect against bacteria under test. The modified bioactive glass forming hydroxyapatite with controlled release drug and effective against bacterial infections can be introduced as scaffolds for bone implants after clinical trials for biomedical applications . Considering the formation of biofilm by infectious bacteria after sticking on the surfaces of implants, medical devices, etc. Also, considering the complications of traditional methods, solving the problems caused by the above-mentioned microorganisms in technical and biomedical industries was one of the necessities of this research.Keywords: antibacterial, bioglass, drug delivery system, sol- gel
Procedia PDF Downloads 605006 Effects of Starvation, Glucose Treatment and Metformin on Resistance in Chronic Myeloid Leukemia Cells
Authors: Nehir Nebioglu
Abstract:
Chemotherapy is widely used for the treatment of cancer. Doxorubicin is an anti-cancer chemotherapy drug that is classified as an anthracycline antibiotic. Antitumor antibiotics consist of natural products produced by species of the soil fungus Streptomyces. These drugs act in multiple phases of the cell cycle and are known cell-cycle specific. Although DOX is a precious clinical antineoplastic agent, resistance is also a problem that limits its utility besides cardiotoxicity problem. The drug resistance of cancer cells results from multiple factors including individual variation, genetic heterogeneity within a tumor, and cellular evolution. The mechanism of resistance is thought to involve, in particular, ABCB1 (MDR1, Pgp) and ABCC1 (MRP1) as well as other transporters. Several studies on DOX-resistant cell lines have shown that resistance can be overcome by an inhibition of ABCB1, ABCC1, and ABCC2. This study attempts to understand the effects of different concentration levels of glucose treatment and starvation on the proliferation of Doxorubicin resistant cancer cells lines. To understand the effect of starvation, K562/Dox and K562 cell lines were treated with 0, 5 nM, 50 nM, 500 nM, 5 uM and 50 uM Dox concentrations in both starvation and normal medium conditions. In addition to this, to interpret the effect of glucose treatment, different concentrations (0, 1 mM, 5 mM, 25 mM) of glucose were applied to Dox-treated (with 0, 5 nM, 50 nM, 500 nM, 5 uM and 50 uM) K562/Dox and K652 cell lines. All results show significant decreasing in the cell count of K562/Dox, when cells were starved. However, while proliferation of K562/Dox lines decrease is associated with the increasingly applied Dox concentration, K562/Dox starved ones remain at the same proliferation level. Thus, the results imply that an amount of K562/Dox lines gain starvation resistance and remain resistant. Furthermore, for K562/Dox, there is no clear effect of glucose treatment in terms of cell proliferation. In the presence of a moderate level of glucose (5 mM), proliferation increases compared to other concentration of glucose for each different Dox application. On the other hand, a significant increase in cell proliferation in moderate level of glucose is only observed in 5 uM Dox concentration. The moderate concentration level of Dox can be examined in further studies. For the high amount of glucose (25 mM), cell proliferation levels are lower than moderate glucose application. The reason could be high amount of glucose may not be absorbable by cells. Also, in the presence of low amount of glucose, proliferation is decreasing in an orderly manner of increase in Dox concentration. This situation can be explained by the glucose depletion -Warburg effect- in the literature.Keywords: drug resistance, cancer cells, chemotherapy, doxorubicin
Procedia PDF Downloads 1765005 Microbiological Examination and Antimicrobial Susceptibility of Microorganisms Isolated from Salt Mining Site in Ebonyi State
Authors: Anyimc, C. J. Aneke, J. O. Orji, O. Nworie, U. C. C. Egbule
Abstract:
The microbial examination and antimicrobial susceptibility profile of microorganism isolated from the salt mining site in Ebonyi state were evaluated in the present study using a standard microbiological technique. A total of 300 samples were randomly collected in three sample groups (A, B, and C) of 100 each. Isolation, Identification and characterization of organization present on the soil samples were determined by culturing, gram-staining and biochemical technique. The result showed the following organisms were isolated with their frequency as follow: Bacillus species (37.3%) and Staphylococcus species(23.5%) had the highest frequency in the whole Sample group A and B while Klebsiella specie (15.7%), Pseudomonas species(13.7%), and Erwinia species (9.8%) had the least. Rhizopus species (42.0%) and Aspergillus species (26.0%) were the highest fungi isolated, followed by Penicillum species (20.0%) while Mucor species (4.0%), and Fusarium species (8.0%) recorded the least. Sample group C showed high microbial population of all the microbial isolates when compared to sample group A and B. Disc diffusion method was used to determine the susceptibility of isolated bacteria to various antibiotics (oxfloxacin, pefloxacin, ciprorex, augumentin, gentamycin, ciproflox, septrin, ampicillin), while agar well diffusion method was used to determine the susceptibility of isolated fungi to some antifungal drugs (metronidazole, ketoconazole, itraconazole fluconazole). The antibacterial activity of the antibiotics used showed that ciproflux has the best inhibitory effect on all the test bacteria. Ketoconazole showed the highest inhibitory effect on the fungal isolates, followed by itraconazole, while metronidazole and fluconazole showed the least inhibitory effect on the entire test fungal isolates. Hence, the multiple drug resistance of most isolates to appropriate drugs of choice are of great public health concern and cells for periodic monitoring of antibiograms to detect possible changing patterns. Microbes isolated in the salt mining site can also be used as a source of gene(s) that can increase salt tolerance in different crop species through genetic engineering.Keywords: microorganisms, antibacterial, antifungal, resistance, salt mining site, Ebonyi State
Procedia PDF Downloads 3215004 Inhibition of Food Borne Pathogens by Bacteriocinogenic Enterococcus Strains
Authors: Neha Farid
Abstract:
Due to the abuse of antimicrobial medications in animal feed, the occurrence of multi-drug resistant (MDR) pathogens in foods is currently a growing public health concern on a global scale. MDR infections have the potential to penetrate the food chain by posing a serious risk to both consumers and animals. Food pathogens are those biological agents that have the tendency to cause pathogenicity in the host body upon ingestion. The major reservoirs of foodborne pathogens include food-producing fauna like cows, pigs, goats, sheep, deer, etc. The intestines of these animals are highly condensed with several different types of food pathogens. Bacterial food pathogens are the main cause of foodborne disease in humans; almost 66% of the reported cases of food illness in a year are caused by the infestation of bacterial food pathogens. When ingested, these pathogens reproduce and survive or form different kinds of toxins inside host cells causing severe infections. The genus Listeria consists of gram-positive, rod-shaped, non-spore-forming bacteria. The disease caused by Listeria monocytogenes is listeriosis or gastroenteritis, which induces fever, vomiting, and severe diarrhea in the affected body. Campylobacter jejuni is a gram-negative, curved-rod-shaped bacteria causing foodborne illness. The major source of Campylobacter jejuni is livestock and poultry; particularly, chicken is highly colonized with Campylobacter jejuni. Serious public health concerns include the widespread growth of bacteria that are resistant to antibiotics and the slowing in the discovery of new classes of medicines. The objective of this study is to provide some potential antibacterial activities with certain broad-range antibiotics and our desired bacteriocins, i.e., Enterococcus faecium from specific strains preventing microbial contamination pathways in order to safeguard the food by lowering food deterioration, contamination, and foodborne illnesses. The food pathogens were isolated from various sources of dairy products and meat samples. The isolates were tested for the presence of Listeria and Campylobacter by gram staining and biochemical testing. They were further sub-cultured on selective media enriched with the growth supplements for Listeria and Campylobacter. All six strains of Listeria and Campylobacter were tested against ten antibiotics. Campylobacter strains showed resistance against all the antibiotics, whereas Listeria was found to be resistant only against Nalidixic Acid and Erythromycin. Further, the strains were tested against the two bacteriocins isolated from Enterococcus faecium. It was found that bacteriocins showed better antimicrobial activity against food pathogens. They can be used as a potential antimicrobial for food preservation. Thus, the study concluded that natural antimicrobials could be used as alternatives to synthetic antimicrobials to overcome the problem of food spoilage and severe food diseases.Keywords: food pathogens, listeria, campylobacter, antibiotics, bacteriocins
Procedia PDF Downloads 715003 The Administration of Infection Diseases During the Pandemic COVID-19 and the Role of the Differential Diagnosis with Biomarkers VB10
Authors: Sofia Papadimitriou
Abstract:
INTRODUCTION: The differential diagnosis between acute viral and bacterial infections is an important cost-effectiveness parameter at the stage of the treatment process in order to achieve the maximum benefits in therapeutic intervention by combining the minimum cost to ensure the proper use of antibiotics.The discovery of sensitive and robust molecular diagnostic tests in response to the role of the host in infections has enhanced the accurate diagnosis and differentiation of infections. METHOD: The study used a sample of six independent blood samples (total=756) which are associated with human proteins-proteins, each of which at the transcription stage expresses a different response in the host network between viral and bacterial infections.Τhe individual blood samples are subjected to a sequence of computer filters that identify a gene panel corresponding to an autonomous diagnostic score. The data set and the correspondence of the gene panel to the diagnostic patents a new Bangalore -Viral Bacterial (BL-VB). FINDING: We use a biomarker based on the blood of 10 genes(Panel-VB) that are an important prognostic value for the detection of viruses from bacterial infections with a weighted average AUROC of 0.97(95% CL:0.96-0.99) in eleven independent samples (sets n=898). We discovered a base with a patient score (VB 10 ) according to the table, which is a significant diagnostic value with a weighted average of AUROC 0.94(95% CL: 0.91-0.98) in 2996 patient samples from 56 public sets of data from 19 different countries. We also studied VB 10 in a new cohort of South India (BL-VB,n=56) and found 97% accuracy in confirmed cases of viral and bacterial infections. We found that VB 10 (a)accurately identifies the type of infection even in unspecified cases negative to the culture (b) shows its clinical condition recovery and (c) applies to all age groups, covering a wide range of acute bacterial and viral infectious, including non-specific pathogens. We applied our VB 10 rating to publicly available COVID 19 data and found that our rating diagnosed viral infection in patient samples. RESULTS: Τhe results of the study showed the diagnostic power of the biomarker VB 10 as a diagnostic test for the accurate diagnosis of acute infections in recovery conditions. We look forward to helping you make clinical decisions about prescribing antibiotics and integrating them into your policies management of antibiotic stewardship efforts. CONCLUSIONS: Overall, we are developing a new property of the RNA-based biomarker and a new blood test to differentiate between viral and bacterial infections to assist a physician in designing the optimal treatment regimen to contribute to the proper use of antibiotics and reduce the burden on antimicrobial resistance, AMR.Keywords: acute infections, antimicrobial resistance, biomarker, blood transcriptome, systems biology, classifier diagnostic score
Procedia PDF Downloads 1555002 Assessment of the Role of Plasmid in Multidrug Resistance in Extended Spectrum βEtalactamase Producing Escherichia Coli Stool Isolates from Diarrhoeal Patients in Kano Metropolis Nigeria
Authors: Abdullahi Musa, Yakubu Kukure Enebe Ibrahim, Adeshina Gujumbola
Abstract:
The emergence of multidrug resistance in clinical Escherichia coli has been associated with plasmid-mediated genes. DNA transfer among bacteria is critical to the dissemination of resistance. Plasmids have proved to be the ideal vehicles for dissemination of resistance genes. Plasmids coding for antibiotic resistance were long being recognized by many researchers globally. The study aimed at determining the antibiotic susceptibility pattern of ESBL E. coli isolates claimed to be multidrug resistance using disc diffusion method. Antibacterial activity of the test isolates was carried out using disk diffusion methods. The results showed that, majority of the multidrug resistance among clinical isolates of ESBL E. coli was as a result of acquisition of plasmid carrying antibiotic-resistance genes. Production of these ESBL enzymes by these organisms which are normally carried by plasmid and transfer from one bacterium to another has greatly contributed to the rapid spread of antibiotic resistance amongst E. coli isolates, which lead to high economic burden, increase morbidity and mortality rate, complication in therapy and limit treatment options. To curtail these problems, it is of significance to checkmate the rate at which over the counter drugs are sold and antibiotic misused in animal feeds. This will play a very important role in minimizing the spread of resistance bacterial strains in our environment.Keywords: Escherichia coli, plasmid, multidrug resistance, ESBL, pan drug resistance
Procedia PDF Downloads 685001 Intensive Crosstalk between Autophagy and Intracellular Signaling Regulates Osteosarcoma Cell Survival Response under Cisplatin Stress
Authors: Jyothi Nagraj, Sudeshna Mukherjee, Rajdeep Chowdhury
Abstract:
Autophagy has recently been linked with cancer cell survival post drug insult contributing to acquisition of resistance. However, the molecular signaling governing autophagic survival response is poorly explored. In our study, in osteosarcoma (OS) cells cisplatin shock was found to activate both MAPK and autophagy signaling. An activation of JNK and autophagy acted as pro-survival strategy, while ERK1/2 triggered apoptotic signals upon cisplatin stress. An increased sensitivity of the cells to cisplatin was obtained with simultaneous inhibition of both autophagy and JNK pathway. Furthermore, we observed that the autophagic stimulation upon drug stress regulates other developmentally active signaling pathways like the Hippo pathway in OS cells. Cisplatin resistant cells were thereafter developed by repetitive drug exposure followed by clonal selection. Basal levels of autophagy were found to be high in resistant cells to. However, the signaling mechanism leading to autophagic up-regulation and its regulatory effect differed in OS cells upon attaining drug resistance. Our results provide valuable clues to regulatory dynamics of autophagy that can be considered for development of improved therapeutic strategy against resistant type cancers.Keywords: JNK, autophagy, drug resistance, cancer
Procedia PDF Downloads 2905000 A PRISMA Systematic Review: Parent Sensitivity in Autism Spectrum Disorder and Its Relationship With Child and Parent Characteristics
Authors: Gabrielle Veloso, Melanie Porter, Kelsie Boulton, Adam Guastella
Abstract:
The aim of the current systematic review was to examine child and parent factors and their associations with parent sensitivity towards children with Autism Spectrum Disorder (ASD). Eight bibliographic databases were used to identify peer-reviewed journal articles examining these associations via quantitative analyses, with parent sensitivity measured via validated and reliable observation coding systems. Thirty-one studies were finalized as having met full criteria for inclusion. The review found agreement across studies that parent sensitivity was positively associated with the child’s initiations and responsiveness toward their parent, with more frequent parent-directed behaviors providing greater opportunity for parents to act and react in sensitive manner. There was also substantial evidence that parent sensitivity predicted later growth in child language ability and child social skills. Other factors such as child attachment, parent insightfulness toward their child, and parent resolution of the diagnosis were also identified across a number of studies as being positively associated with parent sensitivity, however, interpretations of these findings were limited by the absence of covariates identified in the literature as explaining much of the variance in parent sensitivity. With respect to non-significant associations, the literature reliably found that parents showed sensitivity toward their child with ASD, regardless of child age, ASD symptomology, concurrent child social skills, and concurrent child cognitive abilities. The robust associations found in this review and their potential explanations can serve as a jump off point in identifying an understanding protective and risk factors for families of children with ASD. With regard to future directions in research, assessment of the studies’ methodological quality identified points for improvement with respect to the measurement of parent sensitivity, as well as the consideration of several important methodological confounds that may be controlled for in statistical analyses.Keywords: ASD, autism, parenting, parent sensitivity
Procedia PDF Downloads 1464999 Physicochemical Profile of Essential Oil of Daucus carota
Authors: Nassima Behidj-Benyounes, Thoraya Dahmene
Abstract:
Essential oils have a significant antimicrobial activity. These oils can successfully replace the antibiotics. So, the microorganisms show their inefficiencies resistant for the antibiotics. For this reason, we study the physic-chemical analysis and antimicrobial activity of the essential oil of Daucus carota. The extraction is done by steam distillation of water which brought us a very significant return of 4.65%. The analysis of the essential oil is performed by GC/MS and has allowed us to identify 32 compounds in the oil of D. carota flowering tops of Bouira. Three of which are in the majority are the α-pinene (22.3%), the carotol (21.7%) and the limonene (15.8%).Keywords: daucus carota, essential oil, α-pinene, carotol, limonene
Procedia PDF Downloads 3834998 Isolation and Probiotic Characterization of Lactobacillus plantarum and Lactococcus lactis from Gut Microbiome of Rohu (Labeo rohita)
Authors: Prem Kumar, Anuj Tyagi, Harsh Panwar, Vaneet Inder Kaur
Abstract:
Though aquaculture started as an occupation for poor and weak farmers for livelihood, it has now acquired the shape of one of the biggest industry to grow live protein in the form of aquatic organisms. Industrialization of the aquaculture sector has led to intensification resulting in stress on aquatic organisms and frequent disease outbreaks leading to huge economic impacts. Indiscriminate use of antibiotics as growth promoter and prophylactic agent in aquaculture has resulted in rapid emergence and spread of antibiotic resistance in bacterial pathogens. Over the past few years, use of probiotics (as an alternative of antibiotics) in aquaculture has gained attention due to their immunostimulant and growth promoting properties. It has now well known that after administration, a probiotic bacterium has to compete and establish itself against native microbiota to show its eventual beneficial properties. Due to their non-fish origin, commercial probiotics sometimes may display poor probiotic functionalities and antagonistic effects. Thus, isolation and characterization of probiotic bacteria from same fish host is very much necessary. In this study, attempts were made to isolate potent probiotic lactic acid bacteria (LAB) from intestinal microflora of rohu fish. Twenty-five experimental rohu fishes (mean weight 400 ± 20gm, mean standard length 20 ± 3cm) were used in the study to collect fish gut after dissection in a sterile condition. A total of 150 tentative LAB isolates from selective agar media (de Man-Rogosa-Sharpe (MRS)) were screened for their antimicrobial activity against Aeromonas hydrophila and Microccocus leuteus. A total of 17 isolates, identified as Lactobacillus plantarum and Lactococcus lactis, identified by biochemical tests and PCR amplification and sequencing of 16S rRNA gene fragment, displayed promising antimicrobial activity against both the pathogens. Two isolates from each species (FLB1, FLB2 from L. plantarum; and FLC1, FLC2 from L. lactis) were subjected to downstream probiotic potential characterization. These isolates were compared in vitro for their hemolytic activity, acid and bile tolerance for growth kinetics, auto-aggregation, cell-surface hydrophobicity against xylene, and chloroform, tolerance to phenol, cell adhesion, and safety parameters (by intraperitoneal and intramuscular injections). None of the tested isolates showed any hemolytic activity indicating their potential safety. Moreover, these isolates were tolerant to 0.3% bile (75-82% survival), phenol stress (96-99% survival) with 100% viability at pH 3 over a period of 3 h. Antibiotic sensitivity test revealed that all the tested LAB isolates were resistant to vancomycin, gentamicin, streptomycin, and erythromycin and sensitive to Erythromycin, Chloramphenicol, Ampicillin, Trimethoprim, and Nitrofurantoin. Tetracycline resistance was found in L. plantarum (FLB1 and FLB2 isolates), whereas L. lactis were susceptible to it. Intramuscular and intraperitoneal challenges to fingerlings of rohu fish (5 ± 1gm weight) with FLB1 showed no pathogenicity and occurrence of disease symptoms in fishes over an observation period of 7 days. The results revealed FLB1 as a potential probiotic candidate for aquaculture application among other isolates.Keywords: aquaculture, Lactobacillus plantarum, Lactococcus lactis, probiotics
Procedia PDF Downloads 1364997 An Approach for Thermal Resistance Prediction of Plain Socks in Wet State
Authors: Tariq Mansoor, Lubos Hes, Vladimir Bajzik
Abstract:
Socks comfort has great significance in our daily life. This significance even increased when we have undergone a work of low or high activity. It causes the sweating of our body with different rates. In this study, plain socks with differential fibre composition were wetted to saturated level. Then after successive intervals of conditioning, these socks are characterized by thermal resistance in dry and wet states. Theoretical thermal resistance is predicted by using combined filling coefficients and thermal conductivity of wet polymers instead of dry polymer (fibre) in different models. By this modification, different mathematical models could predict thermal resistance at different moisture levels. Furthermore, predicted thermal resistance by different models has reasonable correlation range between (0.84 -0.98) with experimental results in both dry (lab conditions moisture) and wet states. "This work is supported by Technical University of Liberec under SGC-2019. Project number is 21314".Keywords: thermal resistance, mathematical model, plain socks, moisture loss rate
Procedia PDF Downloads 1974996 Tool for Analysing the Sensitivity and Tolerance of Mechatronic Systems in Matlab GUI
Authors: Bohuslava Juhasova, Martin Juhas, Renata Masarova, Zuzana Sutova
Abstract:
The article deals with the tool in Matlab GUI form that is designed to analyse a mechatronic system sensitivity and tolerance. In the analysed mechatronic system, a torque is transferred from the drive to the load through a coupling containing flexible elements. Different methods of control system design are used. The classic form of the feedback control is proposed using Naslin method, modulus optimum criterion and inverse dynamics method. The cascade form of the control is proposed based on combination of modulus optimum criterion and symmetric optimum criterion. The sensitivity is analysed on the basis of absolute and relative sensitivity of system function to the change of chosen parameter value of the mechatronic system, as well as the control subsystem. The tolerance is analysed in the form of determining the range of allowed relative changes of selected system parameters in the field of system stability. The tool allows to analyse an influence of torsion stiffness, torsion damping, inertia moments of the motor and the load and controller(s) parameters. The sensitivity and tolerance are monitored in terms of the impact of parameter change on the response in the form of system step response and system frequency-response logarithmic characteristics. The Symbolic Math Toolbox for expression of the final shape of analysed system functions was used. The sensitivity and tolerance are graphically represented as 2D graph of sensitivity or tolerance of the system function and 3D/2D static/interactive graph of step/frequency response.Keywords: mechatronic systems, Matlab GUI, sensitivity, tolerance
Procedia PDF Downloads 4334995 Sensitivity of Acanthamoeba castellanii-Grown Francisella to Three Different Disinfectants
Authors: M. Knezevic, V. Marecic, M. Ozanic, I. Kelava, M. Mihelcic, M. Santic
Abstract:
Francisella tularensis is a highly infectious, gram-negative intracellular bacterium and the causative agent of tularemia. The bacterium has been isolated from more than 250 wild species, including protozoa cells. Since Francisella is very virulent and persists in the environment for years, the aim of this study was to investigate whether Acanthamoeba castellanii-grown F. novicida exhibits an alteration in the resistance to disinfectants. It has been shown by other intracellular pathogens, including Legionella pneumophila that bacteria grown in amoeba exhibit more resistance to disinfectants. However, there is no data showing Francisella viability behaviour after intracellular life cycle in A. castellani. In this study, the bacterial suspensions of A. castellanii-grown or in vitro-grown Francisella were treated with three different disinfectants, and the bacterial viability after disinfection treatment was determined by a colony-forming unit (CFU) counting method, transmission electron microscopy (TEM), fluorescence microscopy as well as the leakage of intracellular fluid. Our results have shown that didecyldimethylammonium chloride (DDAC) combined with isopropyl alcohol was the most effective in bacterial killing; all in vitro-grown and A. castellanii-grown F. novicida were killed after only 10s. Surprisingly, in comparison to in vitro-grown bacteria, A. castellanii-grown F. novicida was more sensitive to decontamination by the benzalkonium chloride combined with DDAC and formic acid and the polyhexamethylene biguanide (PHMB). We can conclude that the tested disinfectants exhibit antimicrobial activity by causing a loss of structural organization and integrity of the Francisella cell wall and membrane and the subsequent leakage of the intracellular contents. Finally, the results of this study clearly demonstrate that Francisella grown in A. castellanii had become more susceptible to many disinfectants.Keywords: Acanthamoeba, disinfectant, Francisella, sensitivity
Procedia PDF Downloads 1004994 Synthesis and Characterization of Polycaprolactone for the Delivery of Rifampicin
Authors: Evelyn Osehontue Uroro, Richard Bright, Jing Yang Quek, Krasimir Vasilev
Abstract:
Bacterial infections have been a challenge both in the public and private sectors. The colonization of bacteria often occurs in medical devices such as catheters, heart valves, respirators, and orthopaedic implants. When biomedical devices are inserted into patients, the deposition of macromolecules such as fibrinogen and immunoglobin on their surfaces makes it easier for them to be prone to bacteria colonization leading to the formation of biofilms. The formation of biofilms on medical devices has led to a series of device-related infections which are usually difficult to eradicate and sometimes cause the death of patients. These infections require surgical replacements along with prolonged antibiotic therapy, which would incur additional health costs. It is, therefore, necessary to prevent device-related infections by inhibiting the formation of biofilms using intelligent technology. Antibiotic resistance of bacteria is also a major threat due to overuse. Different antimicrobial agents have been applied to microbial infections. They include conventional antibiotics like rifampicin. The use of conventional antibiotics like rifampicin has raised concerns as some have been found to have hepatic and nephrotoxic effects due to overuse. Hence, there is also a need for proper delivery of these antibiotics. Different techniques have been developed to encapsulate and slowly release antimicrobial agents, thus reducing host cytotoxicity. Examples of delivery systems are solid lipid nanoparticles, hydrogels, micelles, and polymeric nanoparticles. The different ways by which drugs are released from polymeric nanoparticles include diffusion-based release, elution-based release, and chemical/stimuli-responsive release. Polymeric nanoparticles have gained a lot of research interest as they are basically made from biodegradable polymers. An example of such a biodegradable polymer is polycaprolactone (PCL). PCL degrades slowly by hydrolysis but is often sensitive and responsive to stimuli like enzymes to release encapsulants for antimicrobial therapy. This study presents the synthesis of PCL nanoparticles loaded with rifampicin and the on-demand release of rifampicin for treating staphylococcus aureus infections.Keywords: enzyme, Staphylococcus aureus, PCL, rifampicin
Procedia PDF Downloads 1264993 Designing a Refractive Index Gas Biosensor Exploiting Defects in Photonic Crystal Core-Shell Rods
Authors: Bilal Tebboub, AmelLabbani
Abstract:
This article introduces a compact sensor based on high-transmission, high-sensitivity two-dimensional photonic crystals. The photonic crystal consists of a square network of silicon rods in the air. The sensor is composed of two waveguide couplers and a microcavity designed for monitoring the percentage of hydrogen in the air and identifying gas types. Through the Finite-Difference Time-Domain (FDTD) method, we demonstrate that the sensor's resonance wavelength is contingent upon changes in the gas refractive index. We analyze transmission spectra, quality factors, and sensor sensitivity. The sensor exhibits a notable quality factor and a sensitivity value of 1374 nm/RIU. Notably, the sensor's compact structure occupies an area of 74.5 μm2, rendering it suitable for integrated optical circuits.Keywords: 2-D photonic crystal, sensitivity, F.D.T.D method, label-free biosensing
Procedia PDF Downloads 924992 In Vitro Antibacterial Effect of Hydroalcoholic Extract of Lawsonia Inermis, Malva Sylvestris and Boswellia Serrata on Aggregatibacter Actinomycetemcomitans
Authors: Surena V.
Abstract:
Background and Aim: Periodontal diseases are among the most common infectious diseases all around the world, even in developed countries. Considering the increased rate of microbial resistance to antibiotics and the chemical side effects of antibiotics and antiseptics used for the treatment of periodontal disease, there is a need for an alternative antimicrobial agent with fewer complications. Medicinal herbs have recently become popular as antimicrobial and preventive agents. This study aimed to assess the antibacterial effects of hydroalcoholic extracts of Lawsonia inermis, Malva sylvestris and Boswellia serrata on Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans). Materials and Methods: Hydroalcoholic extracts of the three medicinal plants were obtained by the maceration technique and A. actinomycetemcomitans was cultured. The antimicrobial efficacy of the three medicinal plants was compared with that of 0.2% chlorhexidine (CHX) according to the CLSI protocol using agar disc diffusion and broth microdilution techniques. All tests were repeated three times. Results: Hydroalcoholic extracts of all three plants had antimicrobial activity against A. actinomycetemcomitans. The minimum inhibitory concentration (MIC) of Lawsonia inermis, Malva sylvestris, and Boswellia serrata was 78.1, 156.2, and 1666 µg/mL with no significant difference between them. The MIC of CHX was 3.33 µg/mL, which was significantly higher than that of Boswellia serrata extract. Conclusion: Given that, further in vivo studies confirm other properties of these extracts and their safety in terms of cytotoxicity and mutagenicity, hydroalcoholic extracts of Lawsonia inermis and Malva sylvestris may be used in mouthwashes or local delivery systems to affect periodontal biofilm.Keywords: actinobacilus actinomycetem commitans, lawsonia inermis, malva sylvestris, boswellia serrata
Procedia PDF Downloads 59